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Abstract: Circulating tumor cells (CTCs) are promising biomarkers for prognosis, therapeutic
response prediction, and treatment monitoring in cancer patients. Despite its epithelial origin,
renal cell carcinoma (RCC) shows low expression of epithelial markers hindering CTC-enrichment
approaches exploiting epithelial cell surface proteins. In 21 blood samples serially collected from
10 patients with metastatic RCC entering the TARIBO trial, we overcame this limitation using the
marker-independent Parsortix™ approach for CTC-enrichment coupled with positive and negative
selection with the DEPArray™ with single cell recovery and analysis for copy number alterations
(CNA) by next generation sequencing NGS. Two CTC subpopulations were identified: epithelial CTC
(eCTC) and non-conventional CTC (ncCTC) lacking epithelial and leukocyte markers. With a threshold
≥1CTC/10 mL of blood, the positivity rates were 28% for eCTC, 62% for ncCTCs, and 71% considering
both CTC types. In two patients with detectable eCTCs at baseline, progression free survival was
less than 5 months. In an index case, hierarchical structure by translational oncology (TRONCO)
identified three clones among 14 CTCs collected at progression and at baseline, each containing cells
with a 9p21.3loss, a well-known metastasis driving subclonal alteration. CTCs detection in RCC can
be increased by marker-independent approaches, and CTC molecular characterization can allow
detection of subclonal events possibly related to tumor progression.

Keywords: renal cell cancer; circulating tumor cells; heterogeneity; cancer evolution; copy number
alterations; single-cell analysis

1. Introduction

About 30% of patients with renal cell carcinoma (RCC) present metastatic disease at diagnosis [1].
The prognosis of metastatic RCC (mRCC) is poor, with an overall 5-year survival rate of lower than
20% [1]. In the past decade, targeted therapies (TTs) have permitted prolonged progression free
survival (PFS) and overall survival (OS) in this setting. Among TTs, sunitinib [2] and pazopanib [3],
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approved as first-line treatment options for mRCC patients, showed comparable efficacy in terms
of PFS and OS [4]. However, the role of nephrectomy remained controversial in metastatic diseases.
Two randomized phase three trials showing a significant improvement in OS for patients receiving
cytoreductive nephrectomy (CN) followed by IFN-α compared to IFN-α alone support the role of
CN as a part of treatment for mRCC patients [5–7]. More recently, the CARMENA trial showed
the non-inferiority of a treatment with sunitinib alone over nephrectomy followed by sunitinib in
patients with intermediate-risk or poor-risk metastatic renal cell carcinoma [8]. Thus, the identification
of patients that may really benefit from a combination of CN and tyrosin kinase inhibitors (TKI)
represents a challenge for clinicians. In this regard, the explorative objective of the TARIBO trial was
the development of non-invasive biomarkers that predictive clinical outcome, thus helping treatment
choice and patients’ selection.

Circulating blood biomarkers (CBBs), including circulating tumor DNA (ctDNA) and circulating
tumor cells (CTCs), represent promising biomarkers for predicting prognosis and monitoring
response/resistance to treatment in cancer. In addition, CBBs may reflect the intratumor heterogeneity
and offer a picture of the tumor genetic landscape, helping clinical management in the absence of
available metastatic tissue samples [9–15].

Since intratumoral heterogeneity limits the validity of molecular information obtained from
single biopsies [16], we hypothesized that CTC analysis at single-cell level helps uncovering spatial
heterogeneity, offers a hint on temporal heterogeneity (through longitudinal blood sample collection),
and contributes to identification of clones driving tumor progression.

Presently, only enumeration of CTC using the CellSearch™ (Menarini Silicon Biosystems) has
received approval by the FDA for use in treatment monitoring in metastatic prostate breast and colon
cancer. The CellSearch™, which exploits antibodies against epithelial cell adhesion molecule (EpCAM)
for CTC enrichments and checks expression of cytokeratins (CKs) for CTC identification, is not the
optimal tool for evaluating CTCs in every tumor type. Indeed, in patients with RCC, a tumor that,
despite its epithelial origin, is characterized at tissue level by low EpCAM and low CK expression [17],
the use of CellSearch™ did not provide relevant results. Not surprisingly, a study including 11 patients
with mRCC reported the presence of at least 1 CTC/7.5 mL of blood only in 16% of patients [18] and
suggested the presence of distinct CTC subpopulations not matching the classic CellSearch™ criteria.
Therefore, improving CTC detection in mRCC by developing alternative CTC detection approaches will
help unlock their informative content and offer important hints in treatments planning of this disease.

We tested our hypothesis on the clinical relevance of CTCs in a subset of patients from the TARIBO
study [19], an Italian multicenter phase three study comparing sunitinib or pazopanib vs. CN followed
by sunitinib or pazopanib for patients with mRCC who have not received surgery and prior systemic
treatment for metastatic disease. In blood samples collected from patients enrolled in the TARIBO trial,
we ran a head-to-head comparison of two different CTC detection methods: the AdnaTest that employs
a positive selection for CTC-enrichment based on antibody-mediated recognition of surface markers
followed by multiplex RT-PCR for epithelial or tumor-associated transcripts, and a new method
developed in our laboratory that performs an unbiased CTC enrichment and allows enumeration and
isolation of single CTC for downstream molecular analyses [20]. Despite the low number of patients
(due to discontinuation of the TARIBO trial), we observed a strong heterogeneity in CTCs both at
phenotypic and at molecular level, identified a new subpopulation of non-conventional CTCs lacking
epithelial markers, and provided preliminary evidence on the prognostic role of the classic epithelial
CTCs. In a case study, genomic profiling of 14 CTCs isolated from a patient experiencing clinically
documented disease progression revealed the presence hallmark genomic losses at chromosome 9p
and 14q, which represent known genomic drivers of metastasis in RCC [21].
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2. Results

2.1. Blood Collection for CTC Studies

We collected blood samples from ten patients recruited at our Institution (four in the CN arm and
six in the treatment-only arm). Baseline (BL) blood samples were available for nine out of 10 patients,
samples collected during treatment (DT) were available for seven patients, and blood at progression
was available for three patients only, whereas postsurgical samples were available in all four patients
who underwent CN. CTC determination was performed on all available samples without knowledge
of clinical data by using two methods as described in Material and Methods. Only for two cases
(patients K016 and K017) were blood draws not evaluable when processed with the DEPArray™ due
to a technical failure. Table 1 reports CTC results and clinical outcomes for each single patient.

Table 1. CTC and treatment response data in the TARIBO case series.

CTC by DEPArray AdnaTest Clinical Outcomes

Patient ID Time eCTC ncCTC CTC
tot

CTC
Status Response PD PFS

(mos) * DEATH OS
(mos)

K009
preS 1 0 1 pos

PD yes 4.14 yes 8.98postS 0 1 1 pos
DT 0 0 0 pos

K012

preS 0 1 1 neg

SD yes 13.22 yes 22.07
postS 0 3 3 pos

DT 0 0 0 pos
progress 1 0 1 neg

K016
preS / / / /

RP no 28.22 no 28.22postS 0 0 0 neg
DT neg

K017
preS 2 2 4 neg

PD yes 4.74 no 20.13postS neg
progress 9 3 12 neg

K008
BL 0 0 0 neg

SD yes 36.32 no 48.06DT 1 2 3 neg

K010 BL 0 2 2 neg NA NA yes 3.39

K011
BL 0 1 1 pos

SD yes 42.83 no 42.83DT 0 1 1 neg

K013 BL 0 2 2 neg NA NA yes 7.99

K014
BL 0 0 0 neg

PD yes 5.56 no 8.75DT 0 1 1 neg

K015
BL 0 2 2 pos

PD yes 8.222 yes 26.84DT 1 1 2 neg
progress 0 0 0 pos

* months. CTC and treatment response data in the TARIBO case series. Abbreviations: CTC, circulating tumor cells;
eCTC, epithelial CTC; ncCTC, non-conventional CTC; PFS, progression free survival; OS, overall survival; preS,
pre-surgery; postS, post-surgery; DT, 24 h after randomization; BL, baseline; PD, progression disease; SD, stable
disease; NA, not available.

2.2. DEPArray CTC Counts

Globally, considering all the 21 blood samples successfully processed with the DEPArray™, we
were able to identify 15 CTCs expressing epithelial markers (eCTCs) corresponding to the classical
CTC definition and 22 CTCs lacking both epithelial and leukocyte markers. Those latter CTCs that did
not meet the classical CTC definition were characterized by aberrant genomes and were considered as
non-conventional CTC (ncCTCs).

When considering as positivity threshold ≥1 CTC/10 mL of blood, the positivity rate in our blood
samples was 6/21 (28%) for eCTC, increased to 13/21 (62%) for ncCTCs, and was 15/21 (71%) when
considering both CTC types (CTC tot). Both for eCTC and ncCTC, median values did not differ
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between BL (including pre-surgical samples) and DT samples (zero vs. zero and one vs. one for eCTC
and ncCTC, respectively). Only in one of the three patients for whom blood draws at progression were
available was a clear increase in the number of eCTC and ncCTCs observed (one eCTC/10 mL vs. nine
eCTC/10 mL and zero ncCTC/10 mL vs. three ncCTC/10 mL).

2.3. CTC Status by AdnaTest

Overall, considering 23 blood samples available for the AdnaTest, the CTC status was defined
as positive in 8/23 samples (35%) and was not influenced by the blood drawing time (Fisher exact
test p = 0.538). The results on CTC status obtained with the AdnaTest were discordant with the CTC
status defined with the DEPArray™method when considering both eCTC (Cohen’s kappa = −0.27)
and ncCTCs (Cohen’s kappa = −0.17).

2.4. CTC Status Clinical Correlates

After 6 months of treatment, four patients were rated as progressive disease (PD), three as stable
disease (SD), and one patient showed a partial response (PR). For this last patient, blood draws were
negative for all types of CTC determinations at all available times, and the patient was still disease-free
after 18 months. On the contrary, in the patients with SD or PD, no clear associations were observed
with either baseline CTCs or with CTCs during the treatment.

Since the number of patients with evaluable follow-up time was very limited, we do not report
here a formal statistical analysis to explore the associations between the baseline CTC results obtained
with the various methods and the OS and the PFS. However, we noticed that the only two patients
scored as eCTC-positive at BL were characterized by a less than 5 months PFS with respect to a median
PFS superior to 13 months in patients negative for eCTC at BL.

2.5. Molecular Characterization of Single CTCs

The molecular characterization of single cells recovered with the DEPArray™ provided additional
information by identifying chromosomal regions affected by copy number alterations. Only 32 CTCs
(13 eCTCs and 19 ncCTCs) for which at least 500,000 reads were available by whole genome sequencing
(WGS) were used for this analysis (Figure 1). Data are reported in Figure 1 as Genomic Identification
of Significant Targets in Cancer (GISTIC) plots. GISTIC is a tool that evaluates the frequency and the
amplitude of segmented copy number values. We noticed that regions that have been reported to
be frequently affected by copy number gains and losses in RCC were also consistently affected by
genomic alterations in our cells, thus supporting the technical reliability of our data and the possible
tissue surrogacy by CTCs [21,22].

It is immediately clear that deletions prevailed over amplifications. None of the regions affected
by amplifications or losses included canonical suppressor genes often mutated in RCC, such as VHL,
PBRM1 SETD2, or BAP1. However, losses involved regions on chromosomal arms such as 1p, 9p,
and 20q, which have already been described in the literature as frequently undergoing losses during
tumor evolution.

On the front of genomic gains, the 10q26.3 region was among the regions showing the most
frequent gains (in 62% of the analyzed CTCs). Such a region contains around 50 genes, including
ADAM8, a membrane metalloproteinase involved in the development of RCC described to be associated
with shorter OS and with distant metastases development [23].

Among regions affected by genomic losses, the chromosomal region 3p11.1, which includes
EPHA3, appears as particularly interesting for RCC. EPHA3 codes for a member of the ephrin receptor
tyrosine kinase family, whose loss has been described as linked with progression in clear cell RCC [24].
Figure 2 reports the 22 top alterations detected with GISTIC.
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We next focused on a single case, patient K017, a 68-year-old women diagnosed with a clear cell
RCC with lung and brain metastases showing progressive disease 5 months after CN and sunitinib
treatment. Since, for this patient, we successfully isolated and profiled 14 CTCs, i.e., one eCTC and
one ncCTC in a blood sample collected pre-surgery, nine eCTCs and three ncCTCs in blood obtained
at progression, we could use our CNA data to investigate the presence of single cells deriving from
clones enriched in genomic alterations that have been described in the literature as metastatic drivers
of CNA [21]. In particular, by comparing our data with chromosome regions frequently involved
in losses at tissue level in the TRACERx study (Figure 3), we noticed that the region 9p21.3 was the
most frequently lost among the CTCs from this patient (8/14 CTCs independently from the specific
phenotype).
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Figure 3. Matrix reporting genomic gains (red) and losses (blue) commonly observed in renal cell
cancer for 14 CTCs isolated from patient K017. Color codes refer to blood collection timing and
CTC phenotype.

Loss of chromosome 9p21.3 was reported as a selected event in metastasis in the TRACERx
landmark study, where it was shown to be significantly enriched across three distinct cohorts (TRACERx
Renal; Hospital Universitario Cruces, HUC; Memorial Sloane Kettering, MSK). Moreover, loss at
this region, which contains two members of the cyclin-dependent kinase family (p16/p14ARF and
p15INK4b), was also associated with reduced OS in the HUC and the TRACERx cohorts (no OS data
were available for the MSK cohort). Similar to what was reported in the literature for OS, our K017
patient bearing the loss at 9p21.3 in the majority of its CTCs had a shorter PFS (4 months, i.e., 6 months
earlier than the median PFS of our case series).

Figure 4 reports the clonal structure of the 14 CTCs isolated in patient K017 as inferred from CNA
data at single-cell level. Three major clones were identified, and we noticed that the 9p21.3, as expected
for a subclonal event, was present in some CTCs in each of the three clones, supporting its role as an
alteration strongly selected at progression.
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Figure 4. Translational oncology (TRONCO) was used to order 14 single CTCs isolated from patient
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distinct clones by considering genomic regions altered in at least 50% of all CTCs. Loss at 9p21.3
(indicated by blue color) was observed across all the three clones.

3. Discussion

Until June 2018, when data of the CARMENA trial were presented, no prospective data were
available regarding the role of CN in mRCC. In this trial, mRCC patients were randomized to receive
CN and then sunitinib or sunitinib alone. The results in the sunitinib-alone group were non-inferior to
those in the nephrectomy-sunitinib group with regard to overall survival, and no significant differences
in response rate or PFS were observed [8]. Due to availability of these results and to the slowness in
the accrual, the enrollment in the TARIBO trial was prematurely closed. However, despite the limited
patient accrual that prevented us from optimally addressing the clinical objectives of the trial, the
exploratory objectives that dealt with the relevance of CTC isolated at baseline in predicting clinical
outcome and with longitudinal molecular characterization of CTCs to identify genomic alterations
fostering progression could be completed.

Therefore, we are reporting here the translational results only, referring to the clinical relevance
of CTC detection, discussing methodological issues, and presenting, for the first time in this tumor
type, molecular CTC studies at a single cell level. Indeed, despite the fact that only ten patients were
included in CTC studies, the collected data are innovative and offer a proof of concept on the relevance
of our CTC detection approach thanks to the successful isolation of different CTC subpopulations and
to the molecular characterization of 14 individual CTCs from a single patient that were collected across
baseline and progression.

CTCs have been studied in different cancer types, including urologic tumors, proving to be a
non-invasive and feasible approach with different clinical implication, including prediction of recurrence
and response to treatment, disease staging, and prognostication. Antonarakis et al. demonstrated
the predictive role of CTCs status combined with ARV7 detection in patients affected by metastatic
castration resistant prostate cancer [25,26]. Moreover, in patients undergoing radical cystectomy for
bladder cancer, CTCs showed to be a useful prognostic biomarker [27]. However, compared to other
genitourinary tumors, less is known regarding CTCs in kidney cancer, mainly due to the low expression
of EpCAM, the epithelial cell surface protein commonly used for CTC assays.

In our 10 mRCC patients, CTC status positivity rates of samples analyzed by the AdnaTest were
low (35%) despite the fact that patients presented metastatic diseases. This low detection rate supports
the need to use unbiased CTCs collection methods to be able to capture the entire CTC population
(i.e., conventional CTCs expressing epithelial markers and non-conventional CTC lacking epithelial
markers). Indeed, thanks to technical improvements made possible by the Parsortix technology
coupled with the use of DEPArray™, which offered the possibility to recover single CTCs or small
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CTCs pools devoid of leukocyte contamination, we could obtain an improved CTC identification
with a global CTC positivity rate (eCTC+ncCTC) of 76%. Nonetheless, the median number of CTCs
remained low (median = 1, range 0–12, n = 21), but it was noteworthy that, in samples collected at
baseline/presurgery, despite the extremely low CTC counts, the presence of even one single eCTC was
associated with a shorter PFS.

CTCs from patients with RCC are particularly heterogeneous both at phenotypic and genotypic
levels, possibly due to the involvement of chromosomal remodeling genes in RCC etiology [22].
Moreover, most renal tumors are characterized by low expression of cytokeratins and EpCAM. As a
consequence, the classic FDA-approved CellSearch® approach, which detects only cells expressing
epithelial markers, has been rarely used in this neoplasia [18,28]. Indeed, other groups similarly
attempted what we attempted—To use marker-independent CTC capture approaches spanning from
density gradient centrifugation for negative depletion of leukocytes and filtration-based methods [29,30].
In all such studies, CTC identification was based on the expression of specific biomarkers evaluated
either by PCR or by immunofluorescence or was simply based on morphology. New cell surface
markers have been recently used, including membrane CAIX and CD147, in conjunction with the
NanoVelcro platform, obtaining a significant increase in CTC positivity rates [31]. Among new methods
that have been used to overcome limited sensitivity of EpCAM based methods, there are marker
independent methods such as subtraction-enrichment immunostaining fluorescent in situ hybridization
(SE-iFISH), which identifies CTCs based on chromosome 8 aneuploidy and characterizes them further
based on the expression of a set of other biomarkers (CK18, EPCAM, PDL1, VIM) after having enriched
the blood samples by subtraction of CD45-positive cells [32].

We showed here that using a marker-independent approach for CTC enrichment was instrumental
for increasing CTC detection and for being able to separately identify the subpopulations by
immunostaining. We obtained similar results using the same method in the context of patients
with advanced biliary tract cancer, similar to the trend observed in RCC, where baseline eCTCs
were predicting clinical outcome [33]. Indeed, patients where at least one eCTC/10 mL of blood
was detectable prior to treatment start were characterized by a significantly shorter OS than those
with undetectable eCTCs, supporting their prognostic relevance, whereas—Different from what was
observed in RCC—In biliary tract cancer patients, changes in the numbers of ncCTCs were able to
anticipate treatment response.

Importantly, beyond proving the malignant nature of CTCs, results from CNA were also
informative for identification of genomic regions frequently altered in mRCC patients and that
might be involved in metastatic progression. Tumor heterogeneity and tumor cell evolution over time
still represent major hurdles in the treatment of cancer [13]. As a result, often genetic alterations that
bear metastatic potential are already present at the subclonal level in the primary tumor and may be
missed when sequencing single samples from the tissue. CTCs released in the blood stream by both the
primary tumor and metastases can provide a snapshot on clones responsible for tumor dissemination
and progression. However, minor clones may be difficult to detect in CTC-enriched fractions, and only
single cell analysis can enable detection of such clones. We described among our patients an index case
that supports the importance of studying single CTCs for understanding tumor evolution and put it
into the context of state-of-art studies in RCC [21].

The TRACERx renal study showed that cellular clones bearing chromosomes 9p21.3 and 14q31.1
loss are frequently enriched in metastatic disease and act as drivers of the dissemination process. In
fact, in blood samples from patient K017, prior to CN, two CTCs representing distinct clones were
found, one harboring 9p21.3 and 14q loss and the other with only the 9p21.3. At the time of disease
progression, when the primary tumor had already been removed by CN, and thus CTCs could only be
released from the metastatic site, almost 65% of isolated CTCs presented those alterations.

Indeed, as observed by Turajlic and colleagues [21], loss at 9p21.3, despite being a potentially
useful biomarker for RCC patients, can be missed when analyzing a single region of the primary tumor
since it is a subclonal event.
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Therefore, beside eCTC enumeration, molecular characterization of both eCTC and ncCTC provide
clinically valid information that is not readily available at the tissue level. However, the low number
of detected CTC still represents the major limitation. Finally, single cell analysis can inform clonal
evolution and phylogenesis, but again, we have here CTC numbers too low to allow speculation on the
disease evolution.

4. Materials and Methods

4.1. Patients

Eligible patients for the TARIBO study were adults with age between ≥ 18 years and ≤ 75 years
affected by a metastatic predominantly clear cell RCC. Up to three different metastatic sites and at least
three metastatic lesions had to be documented. Oligometastatic disease suitable for metastasectomy
(less than 3 lesions confined at one organ site) was excluded. Patients were required to be classified as
good or intermediate Memorial Sloan Kettering Cancer center (MSKCC) score or Heng risk score and
to have Eastern Cooperative Oncology Group (ECOG) performance status of 0 and 1, absence of brain
and liver metastases, and adequate bone marrow, liver, renal, and pancreatic function. The tumor had
to be considered suitable to nephrectomy by a urologist, and patients had to be considered eligible for
treatment with sunitinib or pazopanib before enrollment. Patients with respectable in situ primary
tumors were considered eligible in the absence of symptoms that could be exclusively assigned to the
primary tumor, such as flank pain and/or gross hematuria necessitating blood transfusion. Patients
were excluded if they had diagnosis of bilateral RCC, non-clear cell histology, concomitant cardiac
disorders, and if they had received prior therapies for advanced disease. Adjuvant treatment was
admitted if stopped at least six months before entry into the study. All the patients provided written
informed consent before undergoing any trial procedures.

4.2. Objectives

In this study, we addressed the translational exploratory objective of the TARIBO dealing with the
relevance of CTCs in predicting the clinical outcome and in identifying molecular drivers of progression.

4.3. Blood Collection

All the patients provided written informed consent before undergoing any trial procedures, and
the CTC study was approved by the Istituto Nazionale dei Tumori (INT) Institutional Review Board
and Ethics Committee on 23 July 2015 with the identification code INT 75/15. The study involved the
collection of blood samples for dynamic analyses of blood biomarkers.

Blood samples were collected at baseline (BL), pre- and post-operatively (in patients undergoing
CN), 24 weeks after randomization (DT), and at the time of PD, as shown in Figure S1. Samples
of peripheral venous whole blood were drawn using a 21 G needle and collected in 4 mL K3EDTA
or 6 mL K2EDTA BD Vacutainer tubes if intended to be processed with the AdnaTest (AdnaGen,
AG, Langenhagen, Germany) or the Parsortix™ (Angle plc, Guildford, UK), respectively. In order to
minimize the risk of contamination with epithelial skin cells during puncture, the first mL of blood
was discarded. Fresh samples were stored at 4 ◦C in the dark and processed within 2 h.

4.4. Circulating Tumor Cell (CTCs) Assessment

4.4.1. AdnaTEST for CTC Status Assessment

The AdnaTest ProstateCancerSelect kit (AdnaGen, AG, Langenhagen, Germany), which uses a
positive CTC-selection method, was used for CTC enrichment. Briefly, 5 mL of whole blood were
incubated with 100 µL of magnetic beads and coated with antibodies against the epithelial and the
tumor-associated antigens EpCAM and ErbB2 on a tube rotator for 25 min at room temperature.
Cell–bead complexes were captured using the AdnaMag-L magnetic particle concentrator and washed
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in Dulbecco’s phosphate-buffered saline (DPBS). Cell lysates were stored at −20 ◦C, and downstream
molecular analyses were performed within 2 weeks.

For CTC identification, the expression of EPCAM, MUC1, and ERBB2 was assessed by
semiquantitative multiplex-PCR according to the manufacturer’s instructions using the AdnaTest
BreastCancerDetect kit (AdnaGEN). Briefly, mRNA was isolated using Dynabeads® Oligo(dT)25
and retrotranscribed in a final volume of 40 µl. The multiplex-PCR was performed using the
BreastCancerDetect kit. PCR products were analyzed on the Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA) using the DNA 1000 kit (Agilent Technologies). Samples with
ACTB concentration ≥ 3.0 ng/µL were considered good quality. Samples were considered as CTC
positive when at least one among EPCAM, MUC1, and ERBB2 markers was higher than the previously
defined cut off values, (≥0.40 ng/µL for EPCAM;≥0.10 ng/µL for MUC1; and≥0.20 ng/µL for ERBB2 [34].
Samples with all marker concentrations under the cut off values were defined as CTC negative.

4.4.2. CTC Identification and Recovery by DEPArray™ for Single Cell Studies

The protocol for CTC identification and recovery by DEPArray was previously described in
detail [20].

Blood samples (10 mL) collected in K2EDTA tubes were subjected to CTC enrichment with
Parsortix (Angle plc, Guildford, UK) within 1 h from blood draw [35]. Enriched cells were harvested
according to manufacturer’s instructions and fixed for 20 min at room temperature (RT) with 2%
paraformaldehyde. Fixed samples were stained immediately or within 24 h from enrichments. Mean
Parsortix’s recovery rates (previously investigated using 5 different cell lines spiked in healthy donor
blood at final concentrations ranging between 25–50 cells/10 mL) were 81% (range 75–90%, depending
on the cell line) [20].

Fixed samples were fluorescently stained with phycoerythrin (PE)-labeled antibodies against
epithelial markers EpCAM (clone HEA-125, Miltenyi Biotec, Bergisch Gladbach, Germany, working
dilution 1:11 for 10 min at 4 ◦C), cytokeratins (pan cytokeratin clone C11, Abcam, San Francisco, CA,
USA, and pan cytokeratin clone AE1/AE3, NSJ Bioreagents, San Diego, CA, USA, working dilution
1:10 for 10 min at RT) and EGFR (clone 423103, SantaCruz Biotechnology, Dallas, TX, USA, working
dilution 1:11 for 10 min at 4 ◦C), and with allophycocyanin (APC)-labeled antibodies recognizing
leukocytes and monocytes: CD45 (clone 5B1, Miltenyi Biotec, working dilution 1:11 for 10 min at 4 ◦C),
CD14 (clone M5E2, BD Biosciences Pharmigen, San Diego, CA, USA, working dilution 1:20 for 10 min
at 4 ◦C), and CD16 (clone 3G8, BD Biosciences Pharmigen, working dilution 1:20 for 10 min at 4 ◦C).
Nuclei were stained with 1 µg/mL Hoechst 33342 (Sigma-Aldrich, Saint Louis, MI, USA) for 5 min at
RT. The labeling procedure did not lead to significant loss of cells.

Labeled cells were analyzed using the DEPArray™ (Menarini Silicon Biosystems, Bologna, Italy)
within 2 days from staining to visualize and recover single cells manually selected based on fluorescence
labeling and morphology [36]. Selected single epithelial or double-negative (PE-ve/APC-ve) cells
were recovered for downstream molecular analyses. CTC enrichments by Parsortix lasted about 3 h,
fixation lasted 20 min, and the cell selection and recovery process with the DEAPrray lasted about
3–4 h depending on the number of cells recovered from the patient

4.5. Molecular Characterization of Isolated CTCs

Recovered single cells and pools of white blood cells (WBC) were subjected to whole genome
amplification employing the Ampli1™WGA kit (Silicon Biosystems). Amplified DNA quality was
checked with the Ampli1™ QC kit (Silicon Biosystems), and a low-pass whole genome sequencing
(lpWGS) to detect copy number aberrations (CNAs) was performed using the Ampli1™Low Pass kit
(Silicon Biosystems) for barcoded libraries preparation, followed by sequencing with the IonTorrent
Ion S5™ system (Thermo Fisher, Waltham, MA, USA), using the Ion530 chip according to the
manufacturer’s instructions.
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4.6. Bioinformatics Analyses

WGS sequences were aligned to the human reference genome (hg19) using tmap aligner tool on
Torrent_Suite 5.4.0. CNAs were predicted by using control-FREEC 11.0 with the following settings:
coefficientofVariation = 0.05, mateOrientation = 0, sex = XY or XX. control-FREEC produced different
window size according to the sequencing depth in each sample. “Gain” and “loss” calls were filtered
out when the Wilcoxon Rank-Sum Test, and Kolmogorov–Smirnov p-values were greater than 0.05.

Segmented copy number data of each sample were extracted starting from logRatio value and
submitted to GISTIC 2.0 [37]. The software identifies regions and corresponding genes targeted by
frequent and significant somatic copy number alteration. TRONCO (TRanslational ONCOlogy), a tool
to infer progression models [38] and hierarchical clustering analysis, was used to identify the clonal
hierarchy of K017 patient starting from genomic regions altered in at least 50% of CTCs.

4.7. Clinical Correlates

Progression-free survival (PFS) was calculated from date of enrollment to the date of detection of
imaging-documented progression. Overall survival (OS) was calculated from the date of enrollment to
the death date or censored at the date of last follow-up for living patients (median follow-up = 28 months,
range = 9–48 months).

5. Conclusions

In conclusion, as pointed out in the literature, CTC studies in kidney cancer patients are very
limited due to the difficulty of tracing CTCs in the blood of patients, even when at advanced disease
stages. Taking advantage of the TARIBO clinical trial, we reported here CTC status and CTC molecular
features on a small number of patients with mRCC. Our data confirm the heterogeneity of CTCs in
RCC [29] and suggest that detection of even one single eCTC prior to systemic treatment start predicts
a short PFS.

However, despite having overcome selection biases due to low expression epithelial markers
and having run in parallel CTC methods addressing bulk CTC at mRNA level and single cell CTC at
DNA level characterizations, we could not prove the validity of our approach for treatment response
monitoring and for OS prediction due to the limited number of patients. Nonetheless, the possibility
to obtain reliable molecular data on the molecular features of single CTCs opens new perspectives,
as demonstrated by results obtained with our index patient proving that single cell analysis of CTCs
unlocks the presence of hidden clones with metastatic potential.
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