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Breast cancer (BC) is one of the most common malignancies affecting women. Ferroptosis is a novel cancer treatment option. The
present study is aimed to identify suitable ferroptosis-related lncRNAs to predict and diagnose BC. Differential expression and
Cox regression analyses were used to screen suitable prognostic biomarkers and construct a suitable risk model. We identified
four ferroptosis-related differentially expressed lncRNAs (FR-DELs) (LINC01152, AC004585.1, MAPT-IT1, and AC026401.3),
which were independently correlated with the overall survival of BC patients. The area under the curve value of the prognostic
model using those four biomarkers was over 0.60 in all three groups. The sensitivity and specificity of the diagnostic model
using those four biomarkers were 86.89% and 86.73%, respectively. Our present study indicated that these four FR-DELs
(LINC01152, AC004585.1, MAPT-IT1, and AC026401.3) could be prognostic biomarkers for BC, although clinical validation
studies are required.

1. Introduction

With more than 2 million new cases (11.7% of all new cancer
cases) and 68 thousand deaths (6.9% of all cancer deaths) in
2020 globally, breast cancer (BC) is one of the most common
malignancies in women [1]. With the development of early
screening and anticancer strategies, the treatment effect of BC
has improved dramatically [2]. However, the recurrence rates
of BC remain high [3, 4]. Additionally, evidence has indicated
that BC’s prognosis is affected by many factors, such as age,
tumor size, grade, lymph node involvement, and lymphatic
vascular infiltration [5, 6]. The prognosis of BC remains a com-
plex problem, even though many BC prognostic biomarkers
have been discovered in ESMO Clinical Practice Guidelines
for diagnosis, treatment, and follow-up [5–13]. Constructing
a new risk assessment model to predict the prognosis of BC
patients is necessary.

The main treatments for BC are surgery with adjuvant
radiation therapy and chemotherapy [14–18]. However,
many BC patients are resistant to chemotherapy, endocrine,

and targeted therapy, and these patients generally have poor
survival rates [6, 19–24]. The complexity and high heteroge-
neity of the underlying mechanisms of BC make its treat-
ment difficult [25–29]. Ferroptosis is a novel type of cell
death that plays an essential role in the progression of many
diseases, including cancers [30]. Intriguingly, previous stud-
ies have indicated that erastin, a ferroptosis inducer, could
enhance the effectiveness of chemotherapy drugs [31–34].
These results suggest that ferroptosis may be a novel anti-
cancer therapeutic strategy.

Long noncoding RNAs (lncRNA) are a class of transcripts
with 200 nucleotides in length, which generally do not have
protein-coding potential. Previous evidence demonstrated
that lncRNAs play an essential role in various biological pro-
cesses, including the proliferation, apoptosis, migration, and
invasion of cancer cells [35–38]. Many lncRNAs are closely
related to the survival status and could be prognostic biomark-
ers for several cancers [39–41]. Therefore, we aimed to identify
suitable ferroptosis-related lncRNAs as prognostic biomarkers
to predict the outcome of BC.
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Figure 1: Continued.
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2. Materials and Methods

2.1. Data Acquisition. The RNAseq data (counts) and their cor-
responding clinical information for 1215 samples (113 normal
and 1102BC patients) were downloaded from the Cancer
Genome Atlas database (https://portal.gdc.cancer.gov/projects/
TCGA-BRCA). The annotation lncRNAs and recognized
ferroptosis-related genes were downloaded from the Gene
Transfer Format file [42]and FerrDb [43], respectively. Using
the Estimate script in R (3.6.1), we used all normalized gene
expression values to evaluate Stromal Score, Immune Score,
Tumor Purity, and Estimate Score. The evaluated infiltrating
score of immune cells and immune factors were downloaded
from Tumor IMmune Estimation Resource (TIMER).

2.2. Differentially Expressed Analyses. DESeq2 in R (3.6.1) was
used to screen the differentially expressed genes with the spe-
cific criterion as follows: adj. p < 0:05, jlog FCj ≥ 0:5, and
basemean ≥ 50. The ferroptosis-related DEGs (FR-DEGs)
were obtained by overlapping with the recognized ferroptosis
related-genes. The ferroptosis-related lncRNAs (FR-DELs)
were obtained by correlation analyses of FR-DEGs with DELs
with the following criteria: p < 0:05 and r > 0:5.

2.3. Survival Analyses and Principal Component Analyses. After
regrouping the samples by the median value of each gene, we
performed univariate and multivariate Cox regression analyses
using survival, survminer, and regparallel packages in R soft-
ware (3.6.1). We carry out the principal component analyses
(PCA) in R software (3.6.1).

2.4. Construction of Prognostic and Diagnosis Model

(1) Prognostic model, Risk value = ExpressLINC01152∗
βLINC01152 + ExpressAC004585:1∗ βAC004585:1 + Expres
sMAPT−IT1

∗ βMAPT−IT1 + ExpressAC026401:3∗ βAC026401:3.
The expression values were obtained from the nor-
malized value of DESeq2 analyses, and the β were
obtained from multivariate Cox regression analyses
[44]

(2) Diagnosis model, The Logit value = Constant +
ExpressLINC01152∗ βLINC01152 + ExpressAC004585:1∗
βAC004585:1 + ExpressMAPT−IT1

∗ βMAPT−IT1 + Expres

sAC026401:3∗ βAC026401:3. The Express (Exp) values
were obtained from the normalized value of DESeq2
analyses, and the constant and β were obtained from
a stepwise logistic regression analysis [44]

2.5. Statistical Analyses. Unpaired two-tailed Student’s t-test
was used to investigate the relationship of risk value with the
clinical characteristics. Time-dependent receiver operating
characteristic (ROC) curves were used to estimate the utility
of the outcome prediction.

3. Results

3.1. Differential Expression Analyses. Through differentially
expressed analyses, we obtained 8495 DEGs, including 5337
upregulated DEGs and 3158 downregulated DEGs
(Figure 1(a)). By overlapping analyses of DEGs with ferrop-
tosis genes, we obtained 119 FR-DEGs (65 upregulated DEGs
and 54 downregulated DEGs) (Figure 1(b)). Through similar
analyses, we obtained 709 DELs, including 430 upregulated
DELs and 279 downregulated DELs (Figure 1(c)). To obtain
FR-DELs, we introduced the Spearman correlation analyses
for these 119 FR-DEGs and 709 DELs and obtained 787 pairs
of FR-DEGs-DELs, including 74 FR-DEGs and 203 DELs.
We named these 203 DELs as FR-DELs.

3.2. Development and Validation of Prognosis Biomarkers.
To screen for suitable prognosis biomarkers and verify them,
we randomly divided the BC patients into training and vali-
dation groups (Table 1). We found that 13 FR-DLEs
(Figure 1(d)) and four FR-DELs (Figure 1(e)) were corre-
lated with the overall survival (OS) of patients with BC by
univariate and multivariate Cox regression analyses, respec-
tively, in the training group. The expression of LINC01152
was significantly decreased, while AC004585.1, MAPT-IT1,
and AC026401.3 increased significantly (Figure 1(f)). The
Kaplan-Meier curves of those four FR-DELs were displayed
in Figures 1(g)–1(j).

We used these four FR-DELs to construct a risk assess-
ment model in the training, validation, and entire group.
The Youden index (cutoff value = −15:25) in the training
group was used to regroup the patients with BC into low
and high-risk groups (Supplementary Figure 1). The risk
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Figure 1: Differential expression analyses for BC. (a-c), differentially expressed genes (a), ferroptosis-related differentially expressed genes
(b), and differentially expressed lncRNAs (c) for BC. (d), univariate Cox regression illustrated 13 FR-DELs correlated with prognosis. (e),
multivariate Cox regression illustrated four FR-DELs correlated with prognosis. (f), expression of these four FR-DELs between control
and BC. (g-j), survival curve of these four FR-DELs in the training group. (g), LINC01152. (h), AC004585.1.(i), MAPT-IT1. (j), AC026401.3.
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value and survival status for each patient in the training
group were displayed in Figure 2(a). The expressions of
these four FR-DELs were significantly decreased in patients
with BC with high-risk values (Figure 2(b)). The BC
patients with high-risk values displayed worse OS
(Figure 2(c)).

Subsequently, we performed similar analyses in the vali-
dation and entire groups. These results were shown in
Figures 2(e)–2(l). PCA analyses indicated that these BC
patients with high-risk values could well be distinguished
from the BC patients with low-risk values using these four
FR-DELs (Figures 2(d), 2(h), and 2(l)).

3.3. Independent Prognostic Factors of Overall Survival. To
know whether the risk model could be used independently,
we performed univariate and multivariate Cox regression
analyses for different clinical features and the risk model.
We found that age, pathological TNM, pathological Stage,
and risk model were correlated with the OS, whereas age,

pathological M, and risk model were correlated with the
OS independently (Figure 3(a)). In the validation group,
the age, pathological NM, pathological Stage, and risk model
were correlated with the OS by univariate Cox regression
analyses. In contrast, age and pathological M were correlated
with the OS by multivariate Cox regression analyses
(Figure 3(b)). In the entire group, the age, pathological
NM, pathological Stage, and risk model were correlated with
the OS by univariate Cox regression analyses, whereas the
age, pathological M, pathological Stage, and risk model were
correlated with the OS by multivariate Cox regression anal-
yses (Figure 3(c)). Compared with pathological TNM and
Stage, these results suggested that these four FR-DELs were
more accurate as measured by the ROC analyses
(Figure 3(d)–3(f)). The area under curve (AUC) value of
the prognostic model using those four biomarkers was over
0.60 in all three groups. Subsequently, we performed ROC
curves analyses at 1, 3, 5, and 10-year in the entire group
(Figure 3(g)).

Table 1: Clinical features of BC in different groups.

Clinical features Entire (n = 1091) Training (n = 546) Validation (n = 545)
Age

≤65 772 388 384

>65 319 158 161

Gender

Female 1079 539 540

Male 12 7 5

Stage

Stage I 181 87 94

Stage II 619 312 307

Stage III 248 133 115

Stage IV 20 7 13

Unknown 23 7 16

T

T1 279 133 146

T2 631 321 310

T3 138 71 67

T4 40 20 20

TX 3 1 2

N

N0 514 252 262

N1 361 187 174

N2 120 60 60

N3 76 40 36

Unknown 20 7 13

M

M0 908 456 452

M1 22 8 14

Unknown 161 82 79

Vital

Alive 939 482 457

Death 152 64 88
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Figure 2: Continued.
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To know the relationship of the risk model with clinical
features, we performed comparative analyses for risk value
in different groups for the entire group. The results were dis-
played in Figures 4(a)–4(e). Then, we performed compara-
tive analyses for these four FR-DELs in sets for the entire
group. The results were shown in Figures 4(f)–4(j). Addi-
tionally, we performed the correlation analyses for the risk
model with the different clinical features and found no sig-
nificant correlation (Figure 4(k)).

3.4. Correlation Analyses with the Immunity. Previous studies
demonstrated that ferroptosis and the immune system could
regulate each other to achieve their antitumor effect. We used
the ESTIMATE package to evaluate the immune status. We
found that the ESTIMATE score and stromal score were signif-
icantly decreased while the immune score and tumor purity
were significantly increased in the patients with BC (Supple-
mentary Figures 2(a)–2(d)). In the patients with BC with a
high-risk value, the ESTIMATE score, immune scores, and
stromal scores were significantly decreased while the tumor
purity was significantly increased (Figure 5(a)–5(d)). The
correlations of ESTIMATE score, immune score, stromal

score, tumor purity, and risk value were displayed in
Figures 5(e)–5(f).

We also carried out the difference analyses for the infil-
tration of immune cells and immune factors of each BC
patient. We found that 84 immune cells and factors differ
between normal and BC patients. Of the 84, we found that
55 immune cells and factors differ significantly
(Figures 6(a)–6(g)). We introduced the correlation analyses
for the risk value and these 55 immune cells and factors.
We found that four immune cells and factors were signifi-
cantly correlated with the risk model in the entire group.

3.5. Construction of a Diagnostic Model. X-ray mammogra-
phy is the golden standard for diagnosing BC patients, which
has some drawbacks, such as unsuitability for people under
40, for people with high gland density, can be done no more
than twice a year, and high cost [45]. Therefore, to know its
role in diagnosing patients with BC, we performed a step-
wise logistic regression analysis for these four FR-DELs
and constructed a diagnosis model according to previous
studies. The sensitivity and specificity of the diagnosis model
were 86.89% and 86.73%, respectively (Table 2). We also
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Figure 2: Development and validation of prognosis signature for BC. (a-d), risk value and survival status (a), expression (b), survival curve
(c), PCA analyses (d) using these four FR-DELs in the training group. (e-h), risk value and survival status (e), expression (f), survival curve
(g), PCA analyses (h) using these four FR-DELs in the validation group. (i-l), risk value and survival status (i), expression (j), survival curve
(k), PCA analyses (l) using these four FR-DELs in the entire group. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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Figure 3: Prognostic factors of clinical features for BC. (a-c), univariate (blue) and multivariate (red) Cox regression analyses for clinical
features and the risk model in the training (a), validation (b), and entire group (c), respectively. (d-f), comparison of ROC curve of risk
model with the clinical features. (d), for patients in the training group. (e), for patients in the validation group. (f), for patients in the
entire group. (g), time-dependent ROC curve of the risk model in the entire group.
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Figure 5: Comparison and correlation analyses of risk assessment model with the immunity. (a-d), comparison of the ESTIMATE score (a),
immune score (b), stromal score (c), and tumor purity (d) between the patients with BC with high- and low-risk values. (e-f), correlation
analyses for ESTIMATE score, immune score, stromal score, and tumor purity between the normal and patients with BC patients (e),
between patients with BC with high- and low-risk value (f). ∗∗∗p < 0:001.
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Figure 4: Correlation of risk value and prognosis biomarkers with clinical features. (a-e), correlation of risk value with clinical features. (a),
for the pathologic Stage. (b), for pathologic T. (c), for pathologic N. (d), for pathologic M. (e), for age. (f-j), correlation of expression of these
four FR-DELs with clinical features. (f), for the pathologic Stage. (g), for pathologic T. (h), for pathologic N. (i), for pathologic M. (j), for age.
(k), correlation analyses for the risk model with the clinical features. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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Figure 6: Continued.
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Figure 6: Correlation analyses of risk value with the immune infiltration. (a-g), differentially expression analyses of infiltrating score
between BC patients with low-risk value and BC patients with high-risk value. (a), XCELL. (b), QUANTISEQ. (c), MCPCOUNTER. (d),
TIMER. (e), CIBERSORT-ABS. (f), CIBERSORT. (g), EPIC. (h), the immune cells and factors significantly correlated with the risk
model. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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plotted the ROC curve of the diagnosis model, and the AUC
value was 0.9277 (Supplementary Figure 3).

4. Discussions

With the development of early screening and anticancer
strategies, the treatment of BC has improved dramatically.
However, the recurrence rates of BC remain high. Therefore,
it is necessary to construct a new risk prediction model to
predict the outcome. Ferroptosis is a novel type of cell death,
which could be a novel anticancer therapeutic strategy. In
the present study, we identified four FR-DELs (LINC01152,
AC004585.1, MAPT-IT1, and AC026401.3) correlated with
the OS of BC.

The ROC curve showed that the AUC value of the risk
model constructed by these four FR-DELs was over 0.6,
which indicated that these four FR-DELs (LINC01152,
AC004585.1, MAPT-IT1, and AC026401.3) could be prog-
nosis biomarkers for BC in the outcome prediction. Chen
et al. found that LINC01152 is up-expressed in HBV-
positive hepatocellular carcinoma (HCC) [46]. LINC01152
could promote HCC cell proliferation and tumor formation
in nude mice [46]. Wu et al. found that LINC01152 was
upregulated in glioblastoma multiforme [47]. LINC01152
could promote the progression of GBM by upregulating
MAML2 [47]. But in the present study, we found that
LINC01152 was downregulated, which differed from previ-
ous studies. The patients with BC with low expression of
LINC01152 displayed worse OS. In the present study, we
found that the expression of AC004585.1 was significantly
increased in BC and significantly decreased in BC with a
high-risk value. By the univariate and multivariate Cox
regression analyses, we found that AC004585.1 was corre-
lated with the OS of BC. Our present study further increased
the possibility of AC004585.1 as a prognosis biomarker for
BC [48, 49]. The expression of MAPT-IT1 was significantly
increased in BC and significantly decreased in BC patients
with a high-risk value. In the present study, we found that
MAPT-IT1 was correlated with OS of BC significantly. The
HR ratio of less than 1.0 was consistent with the previous
study [50]. There have been few studies on the function of
MAPT-IT1, but our results further confirmed the possibility
of MAPT-IT1 as a prognosis biomarker for BC. The expres-
sion of AC026401.3 was significantly increased in BC. We
found AC026401.3 was correlated with the OS of BC. The
HR ratio was less than 1.0. The patients with high expression
of AC026401.3 displayed better OS. Our present study indi-
cated that AC026401.3 could be a prognosis biomarker for

BC. Previous studies also demonstrated that AC026401.3
was correlated with the OS and could be a prognosis bio-
marker for several cancers, including renal adenocarcinoma,
colon adenocarcinoma, and ovarian cancer. These results
indicated that AC026401.3 might play an essential role in
developing a variety of cancers.

Although imaging diagnoses have high sensitivity and
specificity, these methods also have some major drawbacks,
such as being unsuitable for people under 40, for people with
high gland density, and can be done no more than twice a
year [45]. Although the sensitivity and specificity of this
model were lower than those of imaging diagnosis, molecu-
lar biotechnology examination can overcome these short-
comings. LncRNA can regulate the cell cycle of tumor cells
and various cell signaling pathways of cancer cell prolifera-
tion, apoptosis, migration, and invasion of cancer cells
[35–38], which could be prognostic and diagnostic biomark-
ers for several cancers [39–41]. Such as Ye et al. found that
the AUC value of myocardial infarction associated transcript
as a diagnostic biomarker was 0.86, and the sensitivity and
specificity were 87.80% and 75.61%, respectively [51]. El-
Ashmawy et al. found that lncRNA-ATB had a high AUC
value (AUC: 0.844, p < 0:01) for early diagnosis of breast
cancer in patients with stage I-II [52]. In our present study,
we found that the AUC value of the diagnostic model
reached 0.927. The sensitivity and specificity of this diagnos-
tic model were 86.89% and 86.73%, respectively. These
results suggest that this model may be a better diagnostic
model for breast cancer, although further studies are needed
to verify it. Additionally, although the sensitivity and speci-
ficity of this model were lower than those of imaging diagno-
sis, it can overcome these shortcomings.

5. Conclusions

In the present study, we found four FR-DELs (LINC01152,
AC004585.1, MAPT-IT1, and AC026401.3) that could be
used as prognosis and diagnosis biomarkers to predict the
outcome of BC. Our study provides a new perspective on
the prognosis and diagnosis of BC, although there were sev-
eral limitations, especially due to the lack of clinical
validation.
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