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Abstract

We introduce a method for large scale reconstruction of complex bundles of neural processes from fluorescent image
stacks. We imaged yellow fluorescent protein labeled axons that innervated a whole muscle, as well as dendrites in cerebral
cortex, in transgenic mice, at the diffraction limit with a confocal microscope. Each image stack was digitally re-sampled
along an orientation such that the majority of axons appeared in cross-section. A region growing algorithm was
implemented in the open-source Reconstruct software and applied to the semi-automatic tracing of individual axons in
three dimensions. The progression of region growing is constrained by user-specified criteria based on pixel values and
object sizes, and the user has full control over the segmentation process. A full montage of reconstructed axons was
assembled from the ,200 individually reconstructed stacks. Average reconstruction speed is ,0.5 mm per hour. We found
an error rate in the automatic tracing mode of ,1 error per 250 um of axonal length. We demonstrated the capacity of the
program by reconstructing the connectome of motor axons in a small mouse muscle.
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Introduction

The nervous system is comprised of a large number of neurons

with extensive and specific interconnections, but the wiring

diagram is largely unknown. One approach to unravel neural

circuits is to reconstruct the network by imaging its cellular

components. A full wiring diagram (‘‘connectome’’) would require

complete reconstruction of all the connections between all cells

within the network, and has only been attempted rarely, the most

notable example being the nervous system of the nematode C.

elegans done by electron microscopy [1,2].

In recent years, with the adoption of confocal and two-photon

microscopy as well as transgenic techniques to label neurons with

fluorescent proteins [3,4], it becomes possible to do connectomic

studies with fluorescent microscopy. However, a main technical

challenge in connectomic reconstruction is to analyze the images

and delineate neural processes. A number of programs have been

developed to visualize and to trace neural processes in optical

image stacks, allowing the user to interactively perform or monitor

the tracing. Such programs include the NeuronJ plug-in to the

open-source ImageJ platform [5], as well as commercial packages

such as Imaris (Bitplane AG, Zurich, Switzerland), Neurolucida

(MicroBrightField, Inc., Williston, VT), Amira (Mercury Com-

puter Systems, Inc., Chelmsford, MA), and Volocity (Improvision

Inc., Lexington, MA).

These software packages do not perform satisfactorily when

dealing with image stacks in which multiple neural processes branch

and intertwine with each other. For instance, NeuronJ works on 2D

image only, but the complexity of fasciculated nerve fibers makes it

necessary to distinguish individual processes by exploring the full 3D

data set. Moreover, when neural processes are closely apposed, the

boundaries of such processes tend to smear into each other due to the

diffraction-limited resolution of optical microscope and scattering. In

this situation, the automatic or semi-automatic tracing functions

provided by existing software do not guarantee correct tracing or

segmentation. In addition, many of these programs do not allow

segmentation tools to work on arbitrary slices. This limitation is

serious because we find that reconstructing nerve fascicles is much

easier from the cross-section orientation than a longitudinal one.

To facilitate the tracing of complex bundles of axons we

enhanced the Reconstruct software [6], which was initially developed

for manual segmentation of serial section electron microscopy. This

platform permits the user to trace neural structures by delineating

their profiles on each section of an image stack. In this way, the user

can guarantee the correctness of the segmentation. The problem

with this approach is that it cannot be done efficiently when large

amounts of data need to be analyzed. We thus modified the software

to allow faster, semi-automatic tracing of axons in image stacks. The

modified program can be freely downloaded from the Yahoo group

(http://tech.groups.yahoo.com/group/reconstruct_users/), which

also provides a forum for user support and technical discussions.

As a demonstration of the capacity of the program we reconstructed

the full connectome of axons in a small mouse muscle, which

required analysis of over 20,000 images.

Results

Image Acquisition
We imaged the axons innervating the omohyoid muscle of

transgenic mice (the thy-1-YFP-16 line, [3]) that express cytoplas-
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mic YFP in all motor neurons. We also imaged dendrites of

cortical pyramidal neurons of transgenic mice of the thy-1-YFP-H

line [3]. Briefly, adult mice were fixed with paraformaldehyde; the

muscles were removed, post-fixed, rinsed and mounted on slides.

The mouse brain was removed, post-fixed, rinsed, sliced on a

vibrotome, and mounted on slides. A confocal microscope

equipped with a motorized stage was used to automatically scan

a montage of image stacks covering the entire area of muscle

innervation. Technical details of sample preparation and image

acquisition are discussed in the Methods section.

Pre-processing of Image Stacks
Image stacks were taken on a Zeiss Pascal confocal microscope

with 12-bit dynamic range to ensure sufficient signal to noise ratio

when the structures to be imaged were deep or dim. The Zeiss lsm

file does not have native 12-bit format, so image stacks were saved

in 16-bit format, with the highest four bits being zero. Hereafter

these image stacks are referred to as ‘‘XY files’’ or ‘‘XY stacks.’’

We wrote Matlab scripts to preprocess these image stacks, but

many of the operations are also available through other programs

such as ImageJ plug-ins. As Zeiss lsm files are not among the

standard file formats recognizable to the Matlab system, each stack

(i.e., one lsm file) was converted into a series of individual 16-bit tiff

files using ImageJ.

XY files were first converted to 8-bit, in which the dimmest

pixel in the stack was mapped to value 0 and the brightest pixel in

the stack mapped to value 255. In Matlab this was performed with

the imadjust function. Each XY stack (Figure 1A) was then loaded

in Matlab as a 3D array, and re-sampled along either the X-axis or

the Y-axis with standard array manipulation functions in Matlab.

The axis for re-sampling (the preferred axis) was chosen so that the

majority of axons in the stack would appear in their cross-sections

orthogonal to their long axes (Figure 1B). Although images were

taken at the Nyquist limit, we found that in many stacks the

structures to be traced were not very densely compacted or highly

complicated, and a lower resolution sufficed for reconstruction. In

these cases we used a bicubic interpolation algorithm in Matlab (the

imresize function with ‘bicubic’ option) to downsize the XY stacks

before re-sampling to reduce the number of sections to be

analyzed without losing the ability to track individual axons. This

downsizing operation has two additional advantages: it in effect

applies a mean filter to the original image and thus reduces the

noise, and each re-sampled image will have square pixels as

required by Reconstruct, since the original Z step size was twice that

of the X-Y pixel size.

Semi-automatic Tracing of Axons
The original platform of the Reconstruct program allows a user to

trace objects in serial sections by manually drawing the outline of

each object on each section, which is time-consuming. We

modified Reconstruct to enable semi-automatic tracing of axons

using a region-growing algorithm called wildfire. The wildfire tool

can be quickly guided by user input in an intuitive way, and

generates a boundary enclosing the contiguous area of an axonal

Figure 1. Re-sampling of a XY stack along the Y axis. A. A fluorescent image stack rendered as volume data. The raw data set contained 159 z-
direction optical sections. Each section is a 102461024 image. X-Y pixel size: 0.1060.10 mm; z-step size: 0.20 mm. B. En face view of three virtual
sections generated by resampling the stack in A along the Y-axis at positions schematically indicated by white lines in A.
doi:10.1371/journal.pone.0005655.g001

Neural Process Reconstruction
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profile, while ignoring the outer halo of disjoint, scattered bright

pixels common to confocal data.

The wildfire tool in Reconstruct allows the user to initiate region

growing by selecting a ‘‘seed’’ pixel by a mouse-click. Region

growing expands outward from the seed pixel to all 4-connected

neighboring pixels (i.e., pixels with coordinates (x+1, y), (x21, y), (x,

y+1), and (x, y21), given the seed pixel coordinate (x, y)) that fail to

satisfy user-specified stopping criteria based on hue, saturation

and/or brightness. These pixels at which growth does not stop

then serve as new ‘‘seeds’’ for the next iteration of growth. Region

growth stops when all pixels at the frontier of growth satisfy the

stopping criteria and thus provide no new seed. Once the growth

process stops, a labeled boundary of the region is generated by

tracing clockwise around the outermost frontier of pixels. The user

can block region growing by using the mouse to define temporary

boundaries.

When there are many fragments of the same structure

appearing on the same section (e.g., at the highly branched

neuromuscular junction), it is desirable to be able to trace all these

fragments on a single section with a single command rather than

requiring the user to click inside every profile. We thus

implemented a feature to allow the user to specify a rectangular

region by dragging the mouse across the image. The wildfire tool

then traces all noncontiguous profiles in the rectangle using the

region growth algorithm and the same stopping criteria. A user-

specified size threshold is used to block the generation of outlines

around isolated pixels.

Region growing is extended to serial sections by using the

centroid of each trace to locate a seed pixel for wildfire on the next

section. Successful region growing is thus repeated on successive

sections automatically (Figure 2A). To control this propagation,

constraints are imposed based on the knowledge that biological

structures like axons typically do not make abrupt turns, or suddenly

enlarge or shrink; therefore the cross-sections of the same object on

successive sections should be similar to each other in location, shape

and size. The area of each new region is compared with that on the

previous section; if the two areas differ by a user-specified

percentage (e.g. 50%), or the area is too small (e.g. less than 10

pixels), the propagation will stop. The user can re-initiate the wildfire

tracing with a mouse click. The stopping criteria (such as the hue,

saturation or brightness thresholds) can also be modified to improve

performance after a stop. Another constraint is that different axons

cannot overlap with each other. The user can set a minimal distance

between axons (e.g., 3–5 pixels), and the region-growing procedure

will stop when it reaches such ‘‘forbidden zones’’ defined by the

boundaries that have been already traced.

The program also typically stops at branching points. Axons

branch only at nodes of Ranvier, which show characteristically

smaller diameters than the internode regions (Figure 2B and 3A)

and subsequent emergence of two or more distinct profiles

(Figure 3B). By recognizing this characteristic morphology, the

user can easily re-initiate tracing on each of the branches with

mouse clicks. Automatic tracing can continue with each of the

branches, either one at a time or all together simultaneously.

Figure 2. Reconstruction of an un-branching nerve fascicle. A. Axons in the nerve fascicle were traced out across multiple sections. Traces on
the first 3 sections and the last 2 sections of the stack are shown. Scale bar: 10 mm. B. Traced axons were rendered in Reconstruct. Constrictions in the
axons (arrows) represent nodes of Ranvier. Scale bars: 20 mm.
doi:10.1371/journal.pone.0005655.g002
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Another difficulty lies where axons do not go parallel to the

preferred axis of re-sampling. Sometimes axons fan out and go in

all directions, and no matter which axis is chosen for re-sampling,

there are always some axons (or parts of axons) that go almost

perpendicular to it (Figure 4A). An axon in this category does not

appear as a single ellipsoid on each cross-section, but often as a

series of fragmented, elongated pieces with variable lengths

(Figure 4B). Based on contiguity of the same axon across multiple

sections, the user can trace all the sectioned pieces belonging to the

axon by initiating wildfire on each piece.

The reconstruction procedure described above generates

multiple 2D contours of each axon throughout the stack. These

contours can be rendered as 3D objects in different ways for

visualization and subsequent merging (for details of the rendering

methods provided by the program, see [6] and the manual of the

Reconstruct program provided at the download site).

We also tested this algorithm in tracing dendrites of cortical

pyramidal neurons in a YFP-H transgenic mouse [3]. We traced

the dendrites of two nearby neurons from their somata within a

confocal stack. As shown in Figure 5, we could clearly distinguish

the processes belonging to these two neurons from en passant

processes of other cells.

Concatenating Adjacent Stacks
Although the Reconstruct software can montage multiple images

in each section, the fact that different stacks were re-sampled in

different directions made it necessary to use Reconstruct to trace one

stack at a time. Within each stack, each distinct axon is recognized

by the unique name the user assigns to it. However, axons go

across multiple image stacks and it is important to make sure that

the same axon is given the same name and color in all the stacks it

traverses. If two adjacent stacks have the same preferred direction

(Figure 6A and B), concatenation can be easily done through

inspection of a single section in the overlapping region. For

example, section 231 of the left stack (Figure 6C) is almost identical

to section 001 of the right stack (Figure 6D). If axons in the right

stack have been traced out, direct comparison of the two sections

can unambiguously determine the correspondence between each

axonal profile in the left stack with its counterpart in the right

stack, and tracing the left stack can proceed with known axonal

identity.

When the two adjacent stacks have different preferred directions

(Figure 6E and F) it is no longer feasible to directly compare the

sections in the overlapping region, as none of the re-sampled

sections appear identical. The solution is to first reconstruct the

two stacks independently, and then match the corresponding

Figure 3. Example of a branching axon. A. Maximum intensity
projection of an axon that branched between the two red lines. Scale
bar: 10 mm. B. The axonal branching point shown in cross-sections.
Scale bar: 5 mm.
doi:10.1371/journal.pone.0005655.g003

Figure 4. Example of axons traveling perpendicular to the preferred axis. A. Maximum intensity projection of a stack in which some axons
lay parallel or oblique to the cross-sections. Red lines indicate the orientation as well as the position of virtual sections shown in B. Scale bar: 20 mm.
B. Virtual sections of the region between the red lines in A. Part of the yellow axon traveled parallel to the virtual sections and appeared as multiple
disconnected segments in successive sections. C. 3D rendering of all axons in this stack.
doi:10.1371/journal.pone.0005655.g004

Neural Process Reconstruction
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axons in 3D rendered view, as Reconstruct allows arbitrary rotation

of rendered objects. For instance, axons in the left stack (Figure 6G)

are rendered, using a unique color for each distinct axon (axons

that do not continue into the right stack are omitted from the

rendering for clarity). The correspondence between identified

axonal segments in the left stack and the reconstructed but

unidentified segments in the right stack (Figure 6H, in gray) is

easily established. Subsequently the names and colors of axonal

segments in the right stack can be changed in Reconstruct to be

consistent with that in the left stack.

Assembly of Montage
The reconstructed individual stacks need to be assembled into a

full montage covering the entire sample. We first used Photoshop

to manually montage the maximum intensity projection (MIP)

images of all stacks (in our case monochromatic images) to provide

a reference map. The overlap between adjacent stacks enables

accurate alignment of the MIP images into a complete montage.

This reference map facilitates obtaining the correct magnification

for reconstructions from different stacks.

For each reconstructed stack, all axons were rendered in 3D in

Reconstruct. The 3D rendering was rotated by a suitable angle to

make it en face, i.e., viewed in the original XY orientation, and

exported as a bmp or jpeg image. The rendering of all axons in the

stack collectively was aligned onto the monochromatic montage

with suitable resizing. Then each axon in the stack was rendered

one by one and saved separately. These individual images were

superimposed onto the montage subsequently, with one Photoshop

layer per image. The collective rendering now serves as the

reference for the alignment of individual axons. The reason to use

a separate Photoshop layer per axon is to allow the user to turn on

or off any axon from the view later. This procedure was repeated

for each stack until the entire montage was aligned and colored.

Then all layers belonging to the same axon were collapsed in

Photoshop, allowing each axon to occupy a separate layer. In

order to make the appearance of individual axons more

distinguishable, we used the Photoshop magic wand tool to select

one axon at a time on its layer, and used the paint bucket tool to

fill its interior with a distinct color.

The procedure described above produces a 2D montage of the

entire sample (Figure 7). However, as we already have the full 3D

reconstruction of each stack, and as Reconstruct can export 3D

rendering of objects in VRML formats, it should also be possible to

do the alignment using VRML objects in a 3D modeling program.

Evaluation of the reconstruction method
We evaluated the effectiveness of the reconstruction method

presented above in terms of the reconstruction speed and the error

rate. The reconstruction speed depends on the complexity and

layout of the axonal bundle, as well as image quality (e.g., signal to

noise level). A stack that contains axons that are homogenously

labeled, well separated, and imaged with high signal to noise ratio

can be reconstructed without much user intervention, and the

reconstruction speed approaches ,4 mm per hour. In this case

most of the time is consumed by the delay (a fraction of a second)

after generating a contour on each section, which is deliberately

introduced to enable the user to see the result clearly. However,

stacks that contain axons that ‘‘bleed’’ into each other, or are

dimly labeled, or travel along non-preferred directions, take much

more human intervention and manual reconstruction to complete,

and the speed is consequently much slower. According to our

experience, the average reconstruction speed for the whole muscle

sample is ,0.5 mm per hour [7].

The error rate of segmentation algorithms is usually determined

by comparing the results of the automatic segmentation and that

of manual segmentation. For our semi-automated approach,

however, it seems that the usual metric of ‘‘error rate’’ is not

appropriate, because the program does not proceed all by itself

Figure 5. Reconstruction of dendrites of cortical pyramidal neurons. A. Dendrites of two pyramidal neurons were reconstructed together
with part of the cell bodies from an image stack that contained many en passant neural processes. Reconstructed neurons were superimposed on the
maximum-intensity projection of the entire image stack. B. 3D rendering of the two reconstructed neurons. Scale bar: 10 mm.
doi:10.1371/journal.pone.0005655.g005
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Figure 6. Concatenation of adjacent stacks. A–B. Two adjacent stacks with the same preferred axis. Red lines: orientation of virtual sections.
Scale bar: 20 mm. C–D. Cross-sections of the same axon in the two stacks were almost identical on corresponding virtual sections. C: section 231 of
stack A. D: section 001 of stack B. Scale bar: 5 mm. E–F. Two stacks that overlapped but had different preferred orientations. Red lines: orientations of
virtual sections. Cyan dotted lines: boundary of the overlapping region. Scale bar: 20 mm. G–H. Corresponding axons in E and F were identified using
3D rendered images based on their morphologies and relative positions in the overlapping region. G: Reconstruction of axons in E. Axons that did
not go through both stacks were omitted for clarity. Arrows in H point to axons corresponding to the reconstructed ones in G. Arrow colors are
matched to axon colors in G.
doi:10.1371/journal.pone.0005655.g006
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and let the user correct the answers afterwards. In fact, the design

of the semi-automated feature is to allow the user to discover any

error in the wildfire segmentation as soon as it emerges, and correct

it, so that the error does not propagate. Therefore, we believe that

a better metric is the rate at which the semi-automated

reconstruction process requires user intervention. This rate not

only gives an estimation of the reliability of the automated

processing, but affects the speed of reconstruction as well.

The rate of intervention depends critically on the complexity of

the data. We thus used stacks of different complexity to estimate

the rate of intervention. We reconstructed 9 axons from 2

‘‘simple’’ stacks (Figure 2 and Figure 6B), and 6 axons from a

‘‘complex’’ stack (Figure 1A). Axons in the ‘‘simple’’ stacks have

relatively homogeneous intensity and are well separated from each

other. Axons in the ‘‘complex’’ stack are more variable in intensity

and occasionally get very close to each other. We further classified

user interventions into ‘‘stops’’ and ‘‘errors’’. ‘‘Stops’’ refer to the

fact that the program automatically stops tracing and waits for user

re-initiation. We identified 3 broad categories of events that can

lead to stops: (1) the topology of the axonal profile changes (e.g.,

branching points), which makes the location and size of the axonal

profiles on the subsequent section differ significantly from that on

the previous section; (2) the intensity and/or size of the axonal

profile changes sufficiently; (3) the shape of the axonal profile

becomes concave (this may happen when a large mitochondrion is

present, which is not labeled and thus shows up as a dark hole in

the axon) and thus the ‘‘seed’’ pixel falls outside the contour of

axonal profile and fails to initiate the new round of tracing.

‘‘Errors’’ refer to the case in which the program erroneously

segments but does not stop by itself. A summary of rate of

intervention is given in Table 1 (unit: number of occurrences per

100 mm of axons reconstructed). We excluded axons that were

very dim and those that were very tightly intertwined with other

axons from the analysis above. In these cases manual tracing

would be preferred, given the large number of times the

automated algorithm would require human intervention.

Discussion

In this paper we introduced a method for large scale

reconstruction of neuronal processes from fluorescent image

stacks. The processes are imaged at the diffraction limit with a

confocal microscope. Images are pre-processed to remove noise

and re-sampled so that tracing of axons can be performed along a

Figure 7. Full montage of reconstructed axons. A. The entire connectome of an omohyoid muscle with 4 axons and 96 neuromuscular
junctions. The white square indicates the size of one single image stack relative to the full montage of 168 stacks. Arrow: the entry point of the nerve
into the muscle. Scale bar: 100 mm. B. Each axon in the connectome shown separately. Motor unit size: red (41), green (22), yellow (21), cyan (12).
doi:10.1371/journal.pone.0005655.g007
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convenient orientation (X, Y or Z axis) which shows the cross-

sections of the majority of axons. A semi-automatic program based

on the infrastructure of Reconstruct was developed and applied to

the tracing of individual image stacks. The program employs a

region-growing algorithm, and uses the centroid of an existing

axonal contour as the seed for region-growth on the next section in

order to proceed automatically. For a non-branching, well

segregated axonal process the program can automatically segment

it through the entire stack (e.g., 256 sections) without interruption

or human intervention in 2–3 min (,4 mm per hour). The

program stops when ambiguity arises, and the user has full control

over the segmentation process. A full montage can then be

assembled from the reconstructed stacks.

Several factors must be considered in the design of a program

for image reconstruction from large data sets. Obviously, it is

desirable to automate as many operations as possible. For

connectomics, automation is especially important, as the amount

of data to be processed is usually large, and manual segmentation

is one of the main bottlenecks. On the other hand, the variability

and complexity of the structure of the objects to be reconstructed

means that some user monitoring and intervention is necessary. A

user-friendly interface is thus required. If online user monitoring is

required, the algorithms used in the automatic segmentation

cannot be too time-consuming. This is the reason that we adopted

the fast and simple region-growing algorithm based on pixel values

for segmentation. If the strategy is to first go through the data

automatically and then let the user validate and correct the results,

the automatic processing can employ more sophisticated and

computationally expensive algorithms. Many image processing

algorithms, such as live wire [5], active contour or snake [8], level

sets [9], Kalman filter and optical flowlevel sets [10], wavelet-

based segmentation [11], and kernel-based tracking [12,13], have

been proposed for tracing 2D and 3D filamentous objects such as

axons and dendrites.

The Reconstruct program processes images in an essentially 2D

manner. Therefore one particular orientation must be selected and

maintained for each stack at the re-sampling step. When objects

within the stack assume very different main axes, this requirement

of a single orientation leads to some inconveniences for objects

along non-preferred directions. Manual segmentation is often

necessary for such objects as discussed above. An alternative

strategy would be to dynamically re-orient and re-sample the stack

along the local preferred direction as tracing proceeds. This will

ensure that at each step, the object is processed on its cross-section,

which is advantageous for segmentation. This approach, however,

is computationally more demanding, and remains to be fully

explored.

The reconstruction method presented in this paper is applicable

to the analysis of branching, tubular structures (e.g., neural

processes of both peripheral and central nervous system, blood

vessels, lung airways) imaged with fluorescent microscopy

techniques that can obtain volumetric data (e.g., confocal and

two photon microscopy). We also expect that the reconstruction

method is compatible with fluorescent image stacks taken by Array

Tomography [14], Selective Plane Illumination Microscopy [15],

as well as ultramicroscopy [16]. Images taken with electron

microscopes, however, may not be well segmented by the semi-

automated algorithm presented here, because in such images

neural structures are typically distinguished by their enclosing

membranes, which show up as closed contours, and there is no

universal intensity-based distinction between ‘‘signal’’ and ‘‘back-

ground.’’ Of course, these images may still be analyzed manually

with the Reconstruct program as reported previously [6]. In

summary, there is no intrinsic restriction on the type of tissue

preparation; as long as the structures of interest can be

distinguished from the background by their intensities (or hue/

saturation) in the image stack, the semi-automated segmentation

can be utilized.

Materials and Methods

Sample preparation
All animal experiments were conducted according to protocols

approved by Harvard University Institutional Animal Care and

Use Committee (IACUC). Transgenic mice of thy-1-YFP-16 line

(Feng et al. 2000, now available from the Jackson Lab, Bar

Harbor, ME) were used throughout these studies. Young adult

mice (,30 days old) received an intraperitoneal injection of

0.1 ml/20 g ketamine-xylazine (Ketaset, Fort Dodge Animal

Health, U.S.A.), and were perfused transcardially with 4%

paraformaldehyde (PFA) in 0.1 M phosphate-buffered saline

(PBS; pH 7.4). For the muscle preparation: the omohyoid muscle

along with a short length of the innervating nerve was removed,

post-fixed in 4% PFA for 30 min, rinsed in PBS (room

temperature, 30 min62), and then mounted on slides with the

Vectashield mounting medium (Vector Laboratories, Burlingame,

CA). Mounted slides were slightly squeezed between a pair of

small magnets over night to flatten the tissue so that the distance

from tissue surface to the coverslip was roughly constant. For the

brain slice preparation: the whole brain was removed from the

skull, post-fixed in 4% PFA over night, rinsed in PBS (room

temperature, 30 min62), sliced at 50 or 100 mm thickness with a

vibrotome (Leica VT1000S), and mounted on slides with the

Vectashield mounting medium.

Confocal Imaging
Samples were imaged using a confocal laser scanning

microscope (Zeiss Pascal, Carl Zeiss, Jena, Germany) equipped

with a motorized stage. We used a 6361.4NA oil-immersion

objective and optically zoomed-in by a factor of 1.5. YFP

fluorescence was excited with a 488 nm Argon laser and detected

through a band-pass emission filter of 530–600 nm. Images were

sampled at the Nyquist frequency in the x-y direction (pixel

size = 0.1 mm) and over-sampled by a factor of ,2 in the z

direction (z-step size = 0.2 mm), with 12 bit dynamic range.

According to the well-known sampling theorem, a signal that

Table 1. Rate and Reasons of User Intervention in Reconstruction.

Stack Topology Change Size/Intensity Change Initiation Failure Errors

Simple (n = 9) 1.3 3.5 0.8 0

Complex (n = 6) 2.2 7.9 1.0 0.4

Unit: number of occurrences per 100 mm of axons reconstructed.
doi:10.1371/journal.pone.0005655.t001
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contains data at maximal frequency fmax must be sampled at least

at frequency 2fmax to ensure that the signal can be accurately

recovered from the sampling [17]. This minimal sampling

frequency is called the Nyquist frequency. In the imaging system,

the maximal spatial frequency is determined by the resolution of

the microscope, and for the particular imaging condition we used

the resolution is ,0.2 mm in the x-y plane, and ,0.75 mm along

the z axis [18]. Thus we used the optical zoom feature of the

microscope to obtain pixel size that was at the corresponding

Nyquist frequency. The motorized stage was controlled by the

MultiTimeZ macro (developed by Carl Zeiss) to set up the

coordinates and imaging conditions for each stack in the montage.

Adjacent stacks had 10% overlap to guarantee the precision of

later alignment and tracing.

Image Processing
Image stacks were pre-processed with ImageJ (NIH, http://rsb.

info.nih.gov/ij/) and custom-written programs in Matlab (The

MathWorks, Inc.), and reconstructed with Reconstruct (http://

synapses.clm.utexas.edu/tools/reconstruct/reconstruct.stm). Final

assembly into a complete montage was done with Adobe

Photoshop (Adobe Systems Inc.). See Results section for details.
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