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Abstract: Inorganic arsenic is a known environmental toxicant and carcinogen of global public health concern. Arsenic is genotoxic 
and cytotoxic to human keratinocytes. However, the biological pathways perturbed in keratinocytes by low chronic dose inorganic 
arsenic are not completely understood. The objective of the investigation was to discover the mechanism of arsenic carcinogenicity in 
human epidermal keratinocytes. We hypothesize that a combined strategy of DNA microarray, qRT-PCR and gene function annotation 
will  identify aberrantly expressed genes in HaCaT keratinocyte cell line after chronic treatment with arsenic trioxide. Microarray data 
analysis identified 14 up-regulated genes and 21 down-regulated genes in response to arsenic trioxide. The expression of 4 up- regulated 
genes and 1 down-regulated gene were confirmed by qRT-PCR. The up-regulated genes were AKR1C3 (Aldo-Keto Reductase fam-
ily 1, member C3), IGFL1 (Insulin Growth Factor-Like family member 1), IL1R2 (Interleukin 1 Receptor, type 2), and TNFSF18 
(Tumor Necrosis Factor [ligand] SuperFamily, member 18) and down-regulated gene was RGS2 (Regulator of G-protein Signaling 2). 
The observed over expression of TNFSF18 (167 fold) coupled with moderate expression of IGFL1 (3.1 fold), IL1R2 (5.9 fold) and 
AKR1C3 (9.2 fold) with a decreased RGS2 (2.0 fold) suggests that chronic arsenic exposure could produce sustained levels of TNF with 
 modulation by an IL-1 analogue resulting in chronic immunologic insult. A concomitant decrease in growth inhibiting gene (RGS2) and 
increase in AKR1C3 may contribute to chronic inflammation leading to metaplasia, which may eventually lead to carcinogenicity in the 
skin keratinocytes. Also, increased expression of IGFL1 may trigger cancer development and progression in HaCaT keratinocytes.
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Introduction
Inorganic arsenic is a known environmental toxicant 
and carcinogen1,2 which when exposed to humans 
through inhalation or ingestion may result in human 
diseases such as intraepidermal carcinomas (Bowen 
disease), squamous cell carcinomas (SCC), basal 
cell carcinomas (BCC), and Merkel cell carcinoma 
(MCC), hyperkeratosis and hyperpigmentation.3 
Increasing reports of arsenic (As) related cancers in 
different parts of the world including southeastern 
Michigan (USA),4 India,5 Taiwan,6 and Bangladesh,7 
have raised more public health concerns about long-
term exposure to arsenic through drinking water or 
medications.

Inorganic arsenic is genotoxic and cytotoxic to 
keratinocytes.8 It also causes alterations of gene 
expression in cultured human  keratinocytes.9 Though 
the molecular mechanisms of action are not completely 
understood, it is known that arsenic can reduce 
DNA repair, increase growth factors, induce gene 
amplification, reactive oxygen production and 
oxidative stress, enhance cell proliferation, and 
alter DNA methylation and signal transduction.10 
Arsenic has low mutagenic activity and can serve as 
a  co-carcinogen.11 The intriguing property of arsenic 
trioxide is its ability to elicit apoptosis in some cell 
lines and tumorigenic in other cell lines. To explain 
the molecular mechanism of action of arsenic, 
high-throughput gene expression studies such as 
microarray technologies were employed to investigate 
multiple mechanisms together based on alterations in 
expression of target genes.

DNA microarrays typically consist of thousands of 
immobilized DNA sequences present on a miniaturized 
surface.12 Microarrays have been used to propose a 
mechanism of arsenic toxicity/carcinogenicity in 
skin,13 kidney,14 myeloma,15 peripheral lymphocytes,13 
neural tube,16 liver17 and urogenital cells.18 Other 
researchers have used microarrays to investigate the 
effects of arsenic on keratinocytes.19,20 There is still 
a limited number of public domain genome-wide 
gene expression datasets on the effect of arsenic on 
epidermal cells after chronic exposure. As human 
exposure to arsenic occurs primarily through inges-
tion and skin contact, we selected HaCaT keratinocyte 
cell line for this in vitro study. HaCaT is the first 
permanent immortalized epithelial cell line from 

adult human skin that exhibits normal differentiation 
and provides a promising tool for studying regulation 
of keratinization in human cells.21

The objective of the investigation was to discover 
the mechanism of arsenic carcinogenicity in human 
epidermal keratinocytes. We hypothesize that a com-
bined strategy of DNA microarray, RT-qPCR and gene 
function annotation will identify aberrantly expressed 
genes in HaCaT keratinocyte cell line after chronic 
treatment with arsenic trioxide. Knowledge of the 
biological pathways and networks of the genes that 
are significantly expressed or altered are pertinent 
to understanding the mechanism of action of arsenic 
carcinogenicity to HaCaT cells. Therefore, functional 
and pathway annotation using bioinformatics tools 
can help identify specific pathways of interest from 
the gene expression datasets.

In this article, we report the genes aberrantly 
expressed in HaCaT cells in response of chronic 
exposure to arsenic trioxide. The global transcriptomics 
approach identified over expression of TNFSF18 
(tumor necrosis factor (ligand) superfamily, member 
18), moderate expression of IL1R2 (Interleukin 1 
receptor, type 2), IGFL1 (Insulin Growth Factor-Like 
family member 1) and AKR1C3 (Aldo-Keto Reductase 
family 1, member C 3) coupled with a decreased 
expression of RGS2 (Regulator of G-protein 
 Signaling 2). This suggests that arsenic exposure 
induces immunotoxic, anti-differentiation, growth 
factor promotion and anti-apoptotic effects in skin 
keratinocytes.

Materials and Methods
Chemical and reagents
Arsenic trioxide (99.9% purity, Fisher  Scientific 
Suwanee, GA) and fetal bovine serum (FBS, Hyclone 
Laboratories Logan, UT) were purchased for 
 culturing HaCaT cell line. Cell culture supplies such 
as  Dulbecco’s Minimum Essential Medium (DMEM), 
antibiotics, and phosphate buffered solution (PBS) 
were purchased from ATCC.

Cell culture
Our experimental design included a control (untreated 
HaCaT cell), and test (Treated HaCaT cell) group. The 
HaCaT cell line was kindly provided by Dr. N. Fusenig 
(German Cancer Research Center, Heidelberg, 
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 Germany). 1.5 × 105 HaCaT cells were cultured in 
7.5 ml of complete DMEM containing 10% Fetal 
Bovine Serum (FBS) and 1%  penicillin, streptomycin 
in T-25 culture plate. Cells were incubated in a humid-
ified atmosphere with 5% CO2 at 37 °C. The treatment 
groups were exposed to 5 mg/L As2O3 (equivalent to 
Lethal Concentration, LC 0.5%), and passaged at 90% 
 confluent. Chronic exposure was established by sub-
culturing the treatment group up to passage 22.

RnA extraction and gene expression
Total RNA was extracted from 4 technical replicates of 
unexposed HaCaT cells and HaCaT cells  chronically 
exposed to arsenic trioxide up to passage 22 using 
RNA STAT-60 (TEL-TEST, INC, Friendswood, TX, 
USA).22 A NanoDrop ND-1000 spectrophotometer 
(NanoDrop products, Wilmington, DE) was used to 
quantify the RNA by optical density reading. Also, 
the Agilent 2100 Bioanalyzer (Agilent Technologies, 
Palo Alto, CA) was used to determine the purity and 
quality of the extracted RNA. Only high quality RNA, 
having RNA Integrity Number (RIN) of .7.0,23 and 
an A260/280 absorbance ratio of .1.8, was utilized 
for microarray experiments.

Microarray
The Human Whole Genome OneArray™  (Phalanx 
Biotech, Palo Alto, CA) was used to perform DNA 
microarray analysis. RNA was converted to 
 double-stranded cDNA and amplified using in vitro 
transcription systems that included amino-allyl UTP, 
and the aRNA product was subsequently con-
jugated with Cy5™ NHS ester (GEH Lifesciences, 

 Pittsburgh, PA).  Fragmented aRNA was hybridized at 
42 °C  overnight using the HybBag mixing  system with 
1X  OneArray Hybridization Buffer (Phalanx  Biotech, 
Palo Alto, CA), 0.01 mg/ml sheared salmon sperm 
DNA (Promega, Madison, WI, USA), at a concentration 
of 0.025 mg/ml labeled target. After hybridization, the 
arrays were washed according to the OneArray 
 protocol. Raw intensity signals for each microarray 
were captured using a Molecular  Dynamics™ Axon 
4100A scanner, measured using GenePixPro™ 
 Software, and stored in GenePix Results (GPR)  format. 
The data from all microarrays in each experimental set 
was then passed to Rosetta Resolver (Rosetta Biosoft-
ware, Seattle, WA) for analysis.

Two-step quantitative RT-pCR
Relative quantitation using the comparative CT met-
hod24 was employed to confirm the microarray gene 
expression data. Untreated HaCaT cell sample was 
used as calibrator and Beta glucuronidase (GUSB) 
as endogenous control gene for normalization.  
Applied Biosystems (Applied Biosystems,  Carlsbad, 
CA) standard protocol was  followed. The RNA 
 samples were reverse-transcribed for 120 min at 37 °C 
with High Capacity cDNA Reverse Transcription 
Kit. Quantitative PCR was carried out for 10 min at 
95 °C, and 40 cycles of 15 sec at 95 °C, 1 min at 
60 °C using 2X Power SYBR Green PCR Master Mix 
(Applied Biosystems, Carlsbad, CA) and 200 nM of 
forward and reverse primers. The primers are listed 
in Table 1. Triplicates of each assay were run on an 
Applied  Biosystems 7300 Real-Time PCR system 
and expression fold-changes were derived using the 

Table 1. Quantitative pCR primers for microarray validation.

Gene Forward Reverse
AKR1C3 GGAGAAGTGTAAGGATGCAGGATT GTACTTGAGTCCTGGCTTGTTGAG
GUSB TGATCGCTCACACCAAATCC CCCCTTGTCTGCTGCATAGTTA
IGFL1 CATCGTAGCTGTCTTTGCCATT TGGCTGGCACAGCATCAG
IL1R2 CACTACGCACCACAGTCAAGGA ATCCATATTCCCCCCAAAACC
MKnK1 CAACTCCTGTACCCCCATAACC TGGCCTGGTCCGTGAAGA
pCSK1 CCTGGAAGCAAACCCAAATC ATCCAAATCGACTATTCACCATCA
ppp1R13B GCCACACCACCTAAGAATTACCA GAGAGGTTGAACCCGAAGGTAAA
RGS2 GAATTCTGGCTGGCCTGTGA ATGTTTATCTCTTTTGGAGCTTCCTT
TM4SF4 TGGGCCTGAAGAACAATGACT CAAGAATCCAACCACAGCAAATAT
TMEM70 AAGGCATGGGATCGTTTCC ACTCCTGGCTCAATACTGATGGA
TnFSF18 AGCCCTGTATGGCTAAGTTTGG GCCATTCTGAAGTATCTCCAGCTT
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comparative threshold (CT) method. Each replicate 
cycle threshold (CT) was normalized to the average CT 
of GUSB on a per sample basis. Applied Biosystems 
formula was used to calculate the relative amount of 
the transcripts in the arsenic treated HaCaT and the 
untreated sample (control), and both were normal-
ized to the endogenous control (GUSB): ∆∆CT = ∆CT 
(treated) - ∆CT (control), where ∆CT is the difference 
in CT between the target gene and endogenous con-
trols by subtracting the average CT of controls. The 
fold-change for each treated sample relative to the 
control sample equals 2-∆∆CT.

Results
differentially expressed genes
The criterion for selection of differentially expressed 
genes (DEGs) was a fold change greater than or 
equal to 2. Comparison of the microarray data from 
untreated (control) and chronically exposed HaCaT 
keratinocyte cell identified a total of 35  differentially 
expressed genes with 14 genes up-regulated (Table 2) 
and 21 genes down-regulated (Table 3). Genes 
with $2 fold changes and P-value #0.05 were 

 considered  significantly expressed and were selected 
for confirmation using qRT-PCR. The  functional 
annotations including Gene Ontology for these 
genes were  determined using the Michigan Molecu-
lar Interactions (MiMI) web tool25 (http://mimi.ncibi.
org).

Quantitative PCR confirmation  
of microarray data
Relative quantitation using the comparative CT method 
was employed to confirm the microarray gene  expression 
data. The expression of 4 up-regulated genes and 1 
down-regulated gene were confirmed by qRT-PCR for 
genes with a fold change of $2 when compared to the 
reference untreated control sample. The up-regulated 
genes were AKR1C3 (9.2 fold), IGFL1 (3.1), IL1R2 
(5.9 fold), and TNFSF18 (167 fold) and down-regulated 

Table 2. Genes up-regulated in response to chronic-dose 
exposure of arsenic trioxide to HaCaT keratinocyte cells.

Gene symbol Gene description
AGpAT4 1-acylglycerol-3-phosphate 

o-acyltransferase 4 (lysophosphatidic 
acid acyltransferase, delta) [

AKR1C2 aldo-keto reductase family 1, member 
C2 (dihydrodiol dehydrogenase 2;  
bile acid binding protein; 3-alpha 
hydroxysteroid dehydrogenase, type III)

AKR1C3 aldo-keto reductase family 1, 
member C3 (3-alpha hydroxysteroid 
dehydrogenase, type II)

C22orf42 Uncharacterized protein C22orf42
GLT6d1 glycosyltransferase 6 domain containing 1
IGFL1 IGF-like family member 1
IL1R2 interleukin 1 receptor, type II
KLHdC8A Kelch domain-containing protein 8A
nQo2 nAd(p)H dehydrogenase, quinone 2
pCSK1 proprotein convertase subtilisin/kexin 

type 1
STRAp STRAp serine/threonine kinase 

receptor associated protein
TMEM70 Transmembrane protein 70
TnFSF18 tumor necrosis factor (ligand) 

superfamily, member 18
ZFp36L1 zinc finger protein 36, C3H type-like

Table 3. Genes down-regulated in response to chronic-dose 
exposure of arsenic trioxide to HaCaT keratinocyte cells.

Gene symbol Gene description
CCdC150 coiled-coil domain containing 150
CLCC1 Chloride channel CLIC-like 1
CSRp1 Cysteine and glycine-rich protein 1
FGF1 Fibroblast growth factor 1 (acidic)
GCnT3 Glucosaminyl (n-acetyl) 

transferase 3, mucin type
GdA Guanine deaminase
HoXA5 homeobox A5
IMp5 Signal peptide peptidase-like 2C 

precursor (protein Spp-like 2C)
(protein SppL2c)(EC 3.4.23.-) 
(Intramembrane protease 5)(IMp5)

MAK male germ cell-associated kinase 
MKnK1 MAp kinase interacting serine/

threonine kinase 1
MRC2 mannose receptor, C type 2
np153 nucleoporin 153 kda
nT5C 5′, 3′-nucleotidase, cytosolic
pHF12 PHD finger protein 12
ppp1R13B Apoptosis-stimulating of p53 

protein, protein phosphatase 1, 
regulatory (inhibitor) subunit 13B

pRKAR1B protein kinase, cAMp-dependent, 
regulatory, type I, beta

RASL10A RAS-like, family 10, member A
RGS2 regulator of G-protein signaling 2, 

24kda
TM4SF4 transmembrane 4 L six family 

member 4
ToM1 target of myb1 (chicken)
ZnF19 zinc finger protein 19
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gene was RGS2 (2.0 fold). A visualization comparing 
the fold change obtained by microarray and qRT-PCR 
for 9 genes is presented in Figure 1.

Biological pathway modeling
Ingenuity Pathways Analysis (IPA; Ingenuity 
 Systems, Redwood City, CA) was used to  determine 
models of biological pathways and networks that 
are  significantly represented in the differentially 
expressed (both up and down regulated) genes.

IPA identifies networks and pathways represented 
in the gene lists of interest. It generates a P-value for 
each network and canonical pathway, which is the like-
lihood that a given network was identified by chance. 
We selected networks scoring $2, which have .99% 
confidence of not being generated by chance.26

IPA assigns biological functions to each network by 
using annotations from scientific literature and stored 
in their knowledge base. Fisher exact test is used to 
calculate the P-value for each biological function/ 
disease or pathway being assigned by chance. We used 
Benjamini-Hochberg corrected P # 0.05 to select 
highly significant biological functions and pathways 
represented in the datasets analyzed.26

The predicted gene interaction pathways for the 
following up-regulated genes: IL1R2, TNFSF18 
and AKR1C3 are presented in Figure 2, Figure 3 
and  Figure 4 respectively. Molecules in red are 
up- regulated while molecules in green are down-
 regulated in the microarray data.

Discussion
In this investigation, the HaCaT keratinocyte cell line 
was used to pilot future investigations that will compare 
arsenic trioxide induced aberrantly expressed genes 
in a variety of human epidermal cells. The microarray 
experiment identified 14 up-regulated and 21 down-
regulated genes with expression fold change of $2 in 
HaCaT keratinocytes exposed to chronic dose of arsenic 
trioxide. The criterion for selecting differentially 
expressed genes for qRT-PCR confirmation was a 
P-value #0.05 and fold change of $2. The following 
four up-regulated genes, AKR1C3 (9.2 fold), IGFL1 
(3.1 fold), IL1R2 (5.9 fold), and TNFSF18 (167 
fold) and one down-regulated gene RGS2 (2.0 fold) 
were selected for validation using complementary 
qRT-PCR approach. Subsequently, annotations for 
molecular function, cellular location and biological 

Gene QPCR
(Fold change) 

Microarray 
(Fold change)

AKR1C3
Aldo-keto reductase family 1, member C3 9.2 10.4
IGFL1
Insulin growth factor-like family member 1 3.1 4.0
IL1R2
Interleukin 1 receptor, type II  5.9 4.9
PCSK1
Proprotein convertase subtilisin/kexin type 1 −3.1 6.9
PPP1R13B  
Protein phosphatase 1, regulatory (inhibitor) subunit 13B −1.4 −100.0
RGS2
Regulator of G-protein signaling 2 −2.0 −9.9
TMEM70
Transmembrane protein 70 0.9 4.0
TNFSF18
Tumor necrosis factor (ligand) superfamily, member 18  166.6 5.9
GUSB
Beta glucuronidase −1.2 −1.3

Figure 1. Comparison of fold change between microarray data and q-pCR data. Red: up-regulated; yellow: unchanged; green: down-regulated.
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pathway were determined using bioinformatics tools. 
The fold change values quantified by microarray and 
PCR do not agree well (Fig. 1). About half of the 
data pairs are significantly different and sometimes 
totally opposite. The big variances may be due to dif-
ferential transcript recognition by the two methods.27 
Furthermore, different hybridization kinetics may 
account for genes with identical microarray values 
but with dissimilar qRT-PCR values (eg, IGFL1 
and TMEM70). In most of the data pairs where the 
direction of expression is identical, the fold change 
was higher in the qRT-PCR as observed by other 
investigators.27

IL1R2 also referred to as CD121b, IL1RB, 
and MGC4772528 plays a vital role in immune 
response and it is associated with the membrane 
(Fig. 2). IL1R2 is a decoy receptor for inflammatory 
interleukin 1 (IL-1). It acts by sequestering active and 
inactive IL1, which in turn restricts the availability 
of the ligand for the functional receptor and inhibits 
its maturation.29–32 IL1R1 and IL1R2 are the known 
receptors of IL1 and cell activation which is capable 
of transducing the activation signal which occurs 
when IL1 binds to cell surface IL1R1 in conjunction 
with IL1R accessory protein (IL1RAP).33 IL1R2 
is known as a potent,  specific and natural inhibitor 
of IL1, but in contrast to IL1R1 it has no signaling 
properties when bound to IL1.29–32 Over expression 
of IL1R2 has been reported in human uroepithelial 
cell line (HUC-1)  chronically exposed to arsenite.34 
Our results confirmed this  observation in HaCaT cell 
line. ILIR2 may therefore be a biomarker for chronic 
exposure to arsenicals. In our investigation, HaCaT 
cells were chronically exposed to low arsenic trioxide 
dose of 5 mg/L up to 22 passages. In HUC-1, IL1R2 
over expression is linked with enhanced expression 
of Smad-interacting protein 1 (SIP-1) and reduced 
expression of E-cadherin.34

E-cadherin is a calcium-dependent, epithelial cell 
adhesion molecule, whose reduced expression has been 
associated with tumor dedifferentiation and increased 
lymph node metastasis in clinical studies involving 
several carcinomas.35 Furthermore, reduced expression 
levels of E-cadherin was associated with moderately 

IL1A

IL1RAP
IL1R2

GLI1

IL1B

Figure 2. Interaction network of Interleukin 1 Receptor, Type II (IL1R2). 
Molecules in red are up-regulated while molecules in green are down-
regulated in the microarray analysis data.

IL2

Lipopolysaccharide

NFkB (complex)
Tnf

TNFSF18

TNFRSF18

Nuclear factor 1

Figure 3. Interaction network for TnFSF18 interaction network. Molecules in red are up-regulated while molecules in green are down-regulated in the 
microarray data.
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and poorly differentiated squamous and small cell 
carcinoma in a limited number of patients with lung 
cancer.36 IL1R2 also improves cell migration34 and 
are suggestive of  oncogenic potential of IL1R2. Gene 
network analysis with IL1R2 gene as illustrated in 
Figure 2, showed that IL1R2  interacts with IL1RAP, 
IL1A, IL1B and GLI1 and this agrees with previous 
findings.29–32 GLI1, a protein which was originally 
isolated from human glioblastoma37,38 is the effector 
of Hedgehog (Hh) signaling which critical role in 
 carcinogenesis.39 Furthermore, GLI1 was reported to 
be upregulated in many tumors including basal cell 
carcinomas. Arsenic ingestion through drinking water 
has also been linked with increased risk of basal cell 
carcinomas (BCC).40 Thus, ILIR2 indirectly interacts 
with GLI1, which is the trigger for BCC indicative of 
contribution in skin carcinogenesis.

The cytokine TNFSF18, which can also be 
represented as glucocorticoid-induced tumor necrosis 
factor receptor-related ligand (GITRL), is a ligand for 
receptor TNFRSF18/AITR/GITR and it modulates 
T lymphocyte survival in peripheral tissues41 (Fig. 3). 

TNFSF18 is found in extracellular space and integral 
to membrane.42 We observed that TNFSF18 was 
 significantly over expressed with fold change of more 
than 167. The glucocorticoid-induced tumour necro-
sis factor receptor-related gene (GITR) is expressed 
on regulatory T-cells (Treg), which are CD4+CD25+ 
lymphocytes. Binding of the GITR-ligand (GITRL) 
leads to down-regulation of the biology function of 
Tregs. It is believed that a defect in Tregs causes a 
skin condition resembling atopic dermatitis.43  Soluble 
forms of GITRL (sGITRL) are released by human 
tumor cells.44 This suggests that determination of 
sGITRL levels might be implemented as a tumor 
marker in patients.

Activated keratinocytes are known to engage 
intraepithelial T-cells through co-stimulatory mol-
ecules, keratinocytes express GITRL and through 
this important co-stimulatory molecule expressed by 
antigen-presenting cells (APCs).45 Furthermore, they 
have the potential to influence T-cell numbers in the 
skin via chemokine production and through a direct 
cell-cell effect on T-cell proliferation. This means that 

C1ORF103 Prostaglandin-F synthase

T3-TR-RXR

Propylthiouracil

Methylprednisolone

UBE2W

HNF4A

Androsterone

Indan-1-ol

Bexarotene

Naringenin

RIF1

ACIN1

Luteolin

Prostaglandin h2

20alpha-hydroxysteroid dehydrogenase

3alpha-hydroxysteroid dehydrogenase (A-specific)

MAGEA11

Androgen

Silibinin
Testosterone

Quercetin

Alefacept

PTEN

Prostaglandin F2alpha

Apigenin

HNF1A

Progesterone

ZHX1

AG490

(+/−)-trans-7, 8-dihydroxy-7, 8-dihydro-5-methylchrysene

(+/−)-trans-7, 8-dihydroxy-7, 8-dihydrobenzo[a]pyrene

(+/−)-trans-3, 4-dihydroxy-3, 4-dihydro-benzo[c]phenanthrene

(+/−)-trans-3, 4-dihydroxy-3, 4-dihydrobenz[a]anthracene

(+/−)-trans-3, 4-dihydroxy-3, 4-dihydro-7-mehtylbenz[a]anthracene

(+/−)-trans-1, 2-dihydroxy-1, 2-dihydrochrysene

(+/−)-trans-1, 2-dihydroxy-1, 2-dihydronaphthalene

(+/−)-trans-3, 4-dihydroxy-3, 4-dihydro-7, 12-dimethylbenz[a]anthracene

Trans-1, 2-dihydrobenzene-1, 2-diol dehydrogenase

Trans-7, 8-dihydroxy-7, 8-dihydrobenzo(a)pyrene

Trans-(±)-3, 5-cyclohexadiene-1, 2-diol
(+/−)-trans-11, 12-dihydroxy-11, 12-dihydro-benzo[g]chrysene

Figure 4. Interaction network for AKR1C3. Molecules in red are up-regulated while molecules in green are down-regulated in the microarray data.
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sustained arsenic insult could have activated the HaCaT 
 keratinocytes, which may lead to an immunotoxigenic 
reaction as reported by  Baumgartner-Nielsen et al.43

Aldo-keto reductase family 1, member C3 (3-alpha 
hydroxysteroid dehydrogenase, type II) (AKR1C3) 46 
was up-regulated up to 9.2 folds in our investigation. 
Human AKR1C3 is an enzyme involved in  steroid 
metabolism as illustrated in Figure 4. Elevated  levels 
of AKR1C3 expression are implicated in  leukemia 
cell differentiation, prostate cancer (in both androgen-
 dependent and androgen-independent prostate cancer),47 
endometrial cancer48 and chronic inflammation.47

We observed a moderate expression (3.1 fold) of 
insulin growth factor-like family member 1 (IGFL1). 
The IGF-like (IGFL1) genes encode proteins that con-
tain 11 conserved cysteine residues at fixed positions 
including two CC motif.49 The biological functions and 
gene interactions of IGFL1 is not very clear, however, 
the structure and sequence suggest that IGFL proteins 
are distantly related to the Insulin-like growth factors 
(IGF), a superfamily of growth factors. Both IGFL 
and IGF share gene expression patterns in many can-
cers.49 The human skin is the critical organ of arsenic 
toxicity because arsenic has a strong affinity for the 
keratin proteins, which are rich in the sulphur contain-
ing cysteine residues50 and potentially arsenic-binding 
proteins based on presence of vicinal cysteines.51 In 
our previous investigation,52 we observed that proteins 
with abundance of vicinal cysteines will increase 
responsiveness to arsenic-induced keratinocyte 
carcinogenesis. Since IGLF1 encodes proteins rich 
in cysteine residues, it could be playing a vital role in 
arsenic binding and responsiveness in keratinocytes. 
Further, IGFL1 is associated with embryonic tissue and 
was observed in libraries derived from carcinoma cell 
lines.49 Therefore, the increase in IGFL1 is involved 
in cancer development and progression and probably a 
marker of chronic exposure to arsenic trioxide.

The growth suppressor gene RGS2  accelerate 
GTPase activity of heterotrimeric G proteins, resulting 
in inactivation of specific signaling  pathways.53 
Down regulation of RGS2 occurred in human pros-
tate tumor specimens54 as well as in recurrence and 
 metastasis-derived colorectal cancer cell lines.55 
In HaCaT keratinocyte cells, aberrant expression of 
RGS2 may aid in the spread of cancer or metastasis.

In conclusion, we have used a combination of 
microarray, gene functional annotation data and qPCR 

to identify genes differentially expressed in HaCaT 
cell line in response to chronic, low dose arsenic 
trioxide. Two immune response genes IL1R2 and 
TNFSF18 were identified which may result to chronic 
immunologic insult in keratinocytes. Also, the down 
regulation of growth inhibiting gene (RGS2) and 
upregulation of AKR1C3 and IGLF1 may aid chronic 
inflammation leading to metaplasia.
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