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In this manuscript, the applicability of the Hausman test to the evaluation of item
response models is investigated. The Hausman test is a general test of model fit.
The test assesses whether for a model in question the parameter estimates of two
different estimators coincide. The test can be implemented for item response models
by comparing the parameter estimates of the marginal maximum likelihood estimator
with the corresponding parameter estimates of a limited information estimator. For a
correctly specified item response model, the difference of the two estimates is normally
distributed around zero. The Hausman test can be used for the evaluation of item fit
and global model fit. The performance of the test is evaluated in a simulation study.
The simulation study suggests that the implemented versions of the test adhere to the
nominal Type-I error rate well in samples of 1000 test takers and more. The test is also
capable to detect misspecified item characteristic functions, but lacks power to detect
violations of the conditional independence assumption.
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ANALYZING THE FIT OF IRT MODELS WITH THE HAUSMAN
TEST

Item response models are measurement models that allow inferring individual traits from responses
given to the items of a standardized test. Core of item response models are precise assumptions
about the relation between the traits and the response in a single item and the interrelation of
the responses from different items. These assumptions then serve as a mathematical basis for
deducing statements about a test taker’s traits from his/her responses. The correctness of such
inferential statements depends crucially on the validity of the item response model. As the results
of psychological assessment often have important consequences, one has to guarantee that the
conclusions drawn about the test takers have a sound basis. Therefore, it is indispensable to check
the adequacy of the chosen item response model and its assumptions carefully. Such a check
requires a powerful test of model fit.

Several tests of model fit have been proposed in the past. A short overview over of the different
tests is given in the following section. In doing so, the focus is mainly on the two-parameter
logistic model. Nothing will be said about tests that were proposed exclusively for the Rasch
model and cannot be used in general; for such tests see Glas and Verhelst (1995), Suaréz Falcón
and Glas (2003), and Maydeu-Olivares and Montaño (2013). The review does also not cover the
general approaches used in non-parametric item response theory (Sijtsma, 1998) or tests within
the Bayesian framework (Sinharay, 2016). Tests of differential item functioning will also not be
addressed (Magis et al., 2010). Having given this overview, an alternative test of model fit is
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proposed. The test is an implementation of the general
specification test of Hausman (1978) and can be used to assess the
fit of single items or the global fit of the model. The Hausman test
has several attractive features. It is easy to implement in case an
efficient and an inefficient estimator is available. The test statistic
has a known asymptotic distribution. Due to its generality, the
test can be used for models (e.g., multidimensional IRT models),
for which other tests are hard to implement. Furthermore, the test
does not require the grouping of the responses, which sometimes
conceals misspecification. The test is also powerful (Hausman
and Taylor, 1980). The performance of the test is investigated
in a simulation study. The application of the Hausman test is
illustrated with an empirical example.

TESTS OF MODEL FIT

Overviews of tests of model fit for item response models
have been given by Swaminathan et al. (2006), Mavridis et al.
(2007), Maydeu-Olivares (2013), and Glas (2016). Due to space
limitations, only a condensed summary will be given here. Tests
for model fit can broadly be classified into omnibus tests that
assess the global fit of a model and tests that assess the local fit
of a model in single items or item pairs. Both types of tests will be
addressed in the following.

The most obvious test for the global fit of an item
response model is the χ2-test that compares the observed
frequencies of the possible response patterns with the expected
marginal frequencies that are implied by the model. In practice,
the expected marginal frequencies are usually very small.
This invalidates the application of the standard asymptotic
distribution theory, according to which the sample distribution
of the χ2-statistic should be a chi-square distribution. A solution
to this problem consists in pooling cells (Bartholomew and
Tzamourani, 1999), an approximation of the sample distribution
via a parametric bootstrap (Tollenaar and Mooijaart, 2003) or in
a modification of the χ2-statistic in order to improve its small
sample behavior (Kraus, 2009). Alternatively, the problem of
sparse tables can be dealt with the so called limited information
tests of model fit. These tests are denoted as limited information
tests as not the whole response pattern is considered, but
only the cross tabulations of item pairs or item triples. For
each cross tabulation, the limited information tests compare
the observed cell frequencies quantifying the co-occurrence of
specific responses to the frequencies implied by the item response
model. This is done for all cross tabulations jointly. Popular
limited information tests are the M2-test of Maydeu-Olivares and
Joe (2005, 2006), the test proposed by Cai et al. (2006) and the
test proposed by Reiser (2008); see also Cagnone (2012). Recent
developments are the M∗2-test of Cai and Hansen (2013) and the
C2-test of Cai and Monroe (2014) for ordinal data. A limited
information test of approximate model fit was proposed by
Maydeu-Olivares and Joe (2014). The reduction of the response
patterns to cross tabulations resembles the typical proceeding
in structural equation modeling where the empirical covariance
matrix and the theoretical covariance matrix are compared.
When using the polychoric correlation matrix instead of the

standard covariance matrix, the methods are also applicable to
item response models. The fit of a specific item response model
can then be tested similar to confirmatory factor models (e.g.,
Wirth and Edwards, 2007; Shi et al., 2018).

Limited information tests do not necessarily have to be
limited to cross tabulations. In theory, one can use any arbitrary
function of the responses for which its observed realization is
compared to its expectation under the model. The statistical
theory for these so called generalized residuals was presented by
Haberman (2009) and Haberman and Sinharay (2013). A test
that goes beyond the simple cell frequencies is, for example,
the information matrix test. According to the Bartlett identities,
the expected Hessian matrix equals the expectation of the outer
product of the score vector in case the model is specified
correctly (Chesher et al., 1999). The fit of the model can therefore
be tested by comparing the equality of both versions of the
observed information matrix as suggested by White (1982). The
information matrix test has been implemented for the two-
parameter logistic model by Ranger and Kuhn (2012).

An alternative approach to the evaluation of global model fit
consists in comparing models. In doing so, the item response
model in question is embedded into a more flexible model that
is able to account for a specific form of model misspecification.
The need for the higher flexibility is then tested with a likelihood
ratio test or a score test. A score test of global model fit was
implemented by Ranger and Kuhn (2012), who replaced the logit
link function of the two-parameter logistic model with the more
flexible link function proposed by Czado (1994). Alternatively,
one could compare the two-parameter logistic model with
the three-parameter logistic model or with a multidimensional
model. As tests based on a model comparison probe for a
specific form of misspecification, they have more power to
detect this form of misspecification than the unspecific limited
information tests.

Most of the tests for global model fit are complemented by
a test for the local fit of the item response model. Such local
tests of model fit assess the validity of the item characteristic
function in single items, the validity of the local independence
assumption in item pairs or item triples or the validity of the
assumed distribution of the latent trait. The first tests of the
item characteristic function in single items were the Q1-test
of Yen (1981) and the test proposed by Bock (1972); see also
McKinley and Mills (1985). These tests are similar in spirit to
the popular Hosmer–Lemeshow test of logistic regression models
(Hosmer and Lemeshow, 2000). Both tests require that the test
takers are grouped into subgroups according to their trait level.
For each subgroup defined by a typical trait level, the observed
frequencies of the possible responses are compared to the
expected frequencies that are implied by the item characteristic
function. The similarity of the observed and the expected
frequencies is then compared via a χ2-test or a likelihood ratio
test. Unfortunately, the large sample distribution of the test
statistic is unknown for the tests. The difficulty to derive the
sample distribution is partly caused by the grouping of the test
takers according to a trait estimate instead of the true trait level.
One solution of this problem is to approximate the distribution
via a parametric bootstrap as it is done in the ltm package of

Frontiers in Psychology | www.frontiersin.org 2 February 2020 | Volume 11 | Article 149

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00149 February 7, 2020 Time: 15:19 # 3

Ranger and Much Hausman Test for IRT Models

Rizopoulos (2006). Stone (2000) and Stone and Zhang (2003)
accounted for the measurement error of the trait estimates by
resorting to posterior expectations. Orlando and Thissen (2000,
2003) finally suggested conditioning on the observable sum
score when comparing observed and expected frequencies. They
proposed the popular S− X2-test statistic, whose distribution can
be approximated by a chi-square distribution very well.

Alternatively, one can assess the validity of the item
characteristic function in single items by comparing models. For
that purpose, one has to embed the item characteristic function
of a single item into a more flexible one. The need for the
additional flexibility can then be tested item-wise via a score
test or a likelihood ratio test. Such a test was proposed by Glas
(1999) and Glas and Suárez Falcón (2003). In their test, the item
characteristic function of the two-parameter logistic model is
extended by allowing for different item parameters in groups
defined by the sum score. The need for the extension is then
tested with a score test. In similar spirit, Ranger and Kuhn (2012)
implemented a score test that assessed the need for a more flexible
link function in single items. Douglas and Cohen (2001) and
Haberman et al. (2013) evaluate the congruency of the estimated
item characteristic function with a non-parametric estimate.
Although their approaches are primarily graphical checks of
model fit, they also allow for formal tests of model fit.

In order to assess the conditional independence assumption
locally, one usually focuses on single item pairs. Again, there
are two general approaches to the assessment of local fit, one
based on the analysis of cross tabulations and the other one
based on model comparisons. Similar to the limited information
tests of global fit, the corresponding tests of local fit compare
the data and the model’s predictions with respect to the cross
tabulation of two items. Chen and Thissen (1997) proposed a
χ2-test that assesses whether the observed frequencies in single
cross tabulations are equal to the frequencies implied by the
model. The distribution of the test statistic, however, cannot be
approximated by a chi-square distribution well. Drasgow et al.
(1995) suggested adjusting the test statistic and also proposed a
critical value for it, which they determined with Monte Carlo
methods. Reiser (1996), Haberman and Sinharay (2013), and
Liu and Maydeu-Olivares (2014) finally derived the large sample
distribution of the difference between the observed and expected
frequencies in single cross tabulations. Liu and Maydeu-Olivares
(2012) generalized the S− X2-test of Orlando and Thissen (2003)
to item pairs. For this test, the cross tabulation in an item pair
are considered separately for subgroups defined by the total test
score. A similar test was suggested by Ip (2001) who implemented
a Mantel–Haenszel test of local fit.

An alternative to the limited information tests of local
independence are tests based on model comparisons. For that
purpose, the item response model in question is embedded into
an augmented model that allows for specific forms of local
dependency. The need for the extension is then tested. The score
test of Glas (1999), for example, tests whether the item difficulty
in one item depends on the response to another item. One can
also test for local violations of conditional independence with the
help of a bifactor logistic model that assumes an additional latent
trait for a pair of items (Liu and Thissen, 2012) or by testing for

omitted cross loadings (Falk and Monroe, 2018). This is similar
to testing for correlated residuals in structural equation models,
an approach, that has also been suggested for item response
models (Edwards et al., 2018). Model comparisons do not have
to be limited to such standard models. In fact, any model that
allows for local dependencies – as for example the model of Ip
(2002) – could be employed, although such models were not
explicitly developed for the analysis of model fit and have not
been used for this purpose so far. A new approach that can not
be assigned to one of the two classes was suggested by Edwards
et al. (2018), who evaluated how item parameters change when
items are removed. Basis of this approach is the conjecture that
local dependency inflates the item discrimination parameters of
items from correlated item clusters.

The assumption about the distribution of the latent trait
that is needed for marginal maximum likelihood estimation is
rarely verified, probably because marginal maximum likelihood
estimation is claimed to be robust against a misspecified trait
distribution. Nevertheless, there are tests that can be used for
this purpose. The limited information tests of Glas (2016) and
Li and Cai (2018) test whether the observed distribution of the
sum score corresponds to the distribution implied by the model.
An alternative approach is to compare models, by testing the
marginal item response model against an augmented one with a
more flexible trait distribution. Such tests have been used in linear
mixed models and could easily be adapted; see Caffo et al. (2007),
Alonso et al. (2008) or Efendi et al. (2017) for examples.

This short overview illustrates that one already has several
good tests of model fit at hand. The test for global fit of Maydeu-
Olivares and Joe (2005) and the item specific test of Orlando
and Thissen (2003) usually work very well. The tests of Glas
(1999) and Ranger and Kuhn (2012) can also be recommended.
Nevertheless, in this manuscript, a new test is proposed. The test
is an implementation of the general specification test of Hausman
(1978). The test has several advantageous properties. The test
is easy to implement for the two-parameter logistic model (in
contrast to the information matrix test, for example). The test
rests on a sound asymptotic theory (in contrast to the Q1-test,
for example). It provides a general framework for the test of
global and item fit and can readily be generalized to polytomous
or multidimensional models (in contrast to the S− X2-test, for
example). Furthermore, the test does neither require estimates of
the latent trait nor the grouping of test takers.

THE SPECIFICATION TEST OF
HAUSMAN

In 1978, Hausman proposed a general specification test that
is based on the following simple, but ingenious idea: In case
a model is specified correctly, two different estimators of
the model parameters should result in similar estimates. This
can be stated more formally as follows. Denote by β̂ the
estimates from a first estimator of the model’s parameters. This
first estimator is required to be consistent and asymptotically
normally distributed. Denote by α̂ the estimates from a second
estimator that is also consistent and asymptotically normally
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distributed. The idea of Hausman (1978) was to use the difference
vector d = α̂− β̂ as an indicator of model misspecification.
In case of a correctly specified model, the distribution of
the difference vector d converges to a multivariate normal
distribution with expectation of zero. Large absolute values of
d therefore indicate the misfit of the model. The covariance
matrix 6d of the difference vector d, which is needed for a
formal test of model fit, has a simple expression in case the
first estimator is efficient and the second estimator is inefficient
(that is, does not reach the Cramer-Rao bound). Under these
conditions, the covariance matrix 6d is just the difference
6α̂ −6

β̂
of the covariance matrix of the inefficient estimator

6α̂ and the covariance matrix of the efficient estimator 6
β̂
. This

simple relation follows from the fact that the efficient estimator
β̂ is not correlated with the differences in d. The efficient
estimator and the differences are uncorrelated as otherwise a
linear combination of β̂ and d would yield a consistent estimator
with lower asymptotic variance (Hausman, 1978). The Hausman
test can easily be implemented for item response models. For this
purpose, we focus on the two-parameter logistic model, although
a polytomous or a multidimensional item response model could
be used as well.

The two-parameter logistic model has two parameters per
item g, the intercept parameter β0g and the discrimination
parameter β1g. These item parameters are usually estimated
with marginal maximum likelihood estimation by determining
those parameter values that maximize the marginal likelihood
of the observed response patterns in a calibration sample
(Bock and Aitkin, 1981; Baker and Kim, 2004). The marginal
maximum likelihood estimator is consistent, asymptotically
efficient and normally distributed in the limit. Thus, the
estimator can act as the first component of the Hausman
test. Alternatively, the item parameters can be estimated via
limited information estimation (Maydeu-Olivares and Joe, 2005).
Limited information estimation is based on item pairs. For each
item pair, the frequency of a positive response to both items
is determined. The observed frequencies are stacked to vector
o. Then, those values of the item parameters are determined
that make the corresponding expected frequencies e as similar
to the observed frequencies o as possible. In the simplest
version, this boils down to choosing those parameter values that
minimize the sum of the squared differences (o− e)′ (o− e).
The limited information estimator is consistent and has a
normal distribution in the limit (Maydeu-Olivares and Joe, 2005).
Its asymptotic covariance matrix can be determined with the
asymptotic covariance matrix of the observed frequencies and the
delta method. In contrast to the marginal maximum likelihood
estimator, the limited information estimator is not efficient.
Hence, the limited information estimator can serve as the second
component of the Hausman test. The Hausman test can be
implemented as a test of item fit or as a test of model fit by
selecting appropriate elements from the difference vector.

For the Hausman test of item fit, the items are analyzed
separately. Denote by β̂g

′
=

(
β̂0g, β̂1g

)
the marginal maximum

likelihood estimates of the intercept parameter and the
discrimination parameter in item g. Denote likewise by

α̂
′

g =
(
α̂0g, α̂1g

)
the corresponding limited information

estimates. As an item specific indicator of misspecification, we
suggest using the difference dg = α̂g − β̂g. This misspecification
indicator is asymptotically distributed as a bivariate normal
random variate with expectation of zero and covariance
matrix 6dg = 6α̂g −6

β̂g
(Hausman, 1978). Here, the matrix

6
β̂g

denotes the covariance matrix of the marginal maximum
likelihood estimator and the matrix 6α̂g the covariance matrix of
the limited information estimator. These are the corresponding
2 × 2–submatrices that are taken from the covariance matrix of
all item parameters. The fit of the item can be assessed with the
test statistic

Hg = d
′

gdg, (1)

which should be small in case the model fits. Due to the
bivariate normality of dg, the asymptotic distribution of Hg is
a mixture of chi-square distributions. This follows from the
fact that d

′

gdg can be represented as
∑2

i=1 λiz2
i , where the

summands zi are independent and standard normally distributed
random variates and the coefficients λi the eigenvalues
of 6dg (Yuan and Bentler, 2010). This distribution can
be approximated as follows: Denote by λ1 and λ2 the
first and second eigenvalue of 6dg and define the quantities

a =
∑2

i=1 λ2
i /
∑2

i=1 λi and b =
(∑2

i=1 λi

)2
/
∑2

i=1 λ2
i . Then,

the test statistic Hg is approximately distributed as

Hg ∼ a · χ2
b, (2)

where χ2
b is a chi-square random variate with b degrees of

freedom. This approximation is of wide use in categorical data
analysis and structural equation modeling and dates back to
Welch (1938). The transformation in Equation 2 equalizes the
moments of the chi-square distribution to the moments of the
test statistic; see Yuan and Bentler (2010) for more details. Using
the approximation in Equation 2 instead of a standard Wald test
has the advantage that one avoids inverting the covariance matrix
6dg , which is often close to singularity. The approximation is also
simple to implement as the sum of the eigenvalues equals the sum
of the diagonal elements of the covariance matrix.

The Hausman test can also be used to assess the global fit of the
model. Denote by β̂T

′
=

(
β̂11, ..., β̂1G

)
the marginal maximum

likelihood estimates of the discrimination parameters in the G
items of the test and by α̂T

′
=
(
α̂11, ..., α̂1G

)
the corresponding

limited information estimates. The global model fit can be tested
with the difference vector dT = α̂T − β̂T. The covariance matrix
6dT of dT is the difference of the covariance matrices of the
two estimators 6α̂T −6

β̂T
. These matrices are the g × g–

submatrices of the discrimination parameters that are taken from
the complete covariance matrix of all parameter estimates. The
global fit of the model can be tested with the test statistic

HT = d
′

TdT, (3)

which is distributed as a mixture of chi-square distributions. The
distribution can be approximated as in Equation 2. The global test
of model fit is based on the discrimination parameters exclusively
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in order to avoid numerical problems. When including the
intercept parameters, the test becomes numerically instable due
to rank deficiencies of the covariance matrix 6dT .

When determining the covariance matrix 6dg or 6dT of
the misspecification indicator, one has to exercise caution that
the resulting covariance matrix is positive definite. First, it
is recommendable to evaluate the covariance matrices of the
two estimators at the same parameter values, for example,
the marginal maximum likelihood estimates (Ruud, 1984).
Additionally, one has to use the expected information matrix and
not the observed one when determining the covariance matrix of
the marginal maximum likelihood estimator. Alternatively, one
can determine the required covariance matrix 6dg or 6dT via
a parametric bootstrap. For this purpose, one generates several
bootstrap samples with the assumed model and the estimated
item parameters. In each bootstrap sample, the parameters
are estimated with the two estimators and the difference is
calculated. The covariance matrix can then be estimated as the
sample covariance matrix of the differences from the bootstrap
samples. White (1982) proposed an alternative estimator of the
covariance matrix that guarantees positive semi-definiteness, but
this estimator requires additional implementation effort. Here,
we focus on the versions that can be implemented with standard
software and do not require advanced statistical skills.

SIMULATION STUDY

In order to assess the performance of the proposed tests, two
simulation studies were conducted. In the first simulation study,
the focus was on the size of the tests. In the second simulation
study, the focus was on their power.

Simulation Study I
In the first simulation study, the size of the Hausman tests was
investigated. Special attention was paid to its dependency on
factors such as the length of the test, the size of the sample and
the values of the item parameters. The simulation study consisted
of three scenarios. In the first scenario, we explored the size
of the tests for different values of the item parameters, but left
the number of items and the size of the sample fixed. In the
second scenario, we systematically varied the length of the test
and the sample size. In the third scenario, we investigated the
performance of the Hausman test in a multidimensional item
response theory model. The simulation study was conducted with
the statistical environment R (R Development Core Team, 2009).
All scripts are available from the authors on request.

First Scenario: Effect of Parameter Values
In the first scenario, the data were generated for a test of 20
items and 1000 test takers according to the two-parameter
logistic model. The item parameters of the test were determined
by fully crossing five levels (−1.50, −0.75, 0.00, 0.75, 1.50)
of the intercept parameter with four levels (0.6, 1.0, 1.4, 1.8)
of the discrimination parameter. These values should cover
the typical values the parameters have in real data. Having
generated the data, the item parameters were estimated with the

marginal maximum likelihood estimator via the package ltm
(Rizopoulos, 2006). Then, the item parameters were re-estimated
with the limited information estimator described in the previous
section. This estimator was implemented in R by the authors.
The item specific variant (Hg-test) and the global variant
(HT-test) of the Hausman test were performed. Both variants
were implemented in two versions. In the first version, we
determined the covariance matrix of the misspecification
indicator by subtracting the covariance matrices of the
two estimators; see the previous section. The covariance
matrix of the marginal maximum likelihood estimator was
determined by inverting the expected information matrix.
The covariance matrix of the limited information estimator
was determined as described by Maydeu-Olivares and Joe
(2005). In the second version, we approximated the covariance
matrix of the misspecification indicators by a parametric
bootstrap. For that purpose, we generated 200 bootstrap samples
with the two-parameter logistic model using the marginal
maximum likelihood estimates. For each bootstrap sample,
the misspecification indicator was calculated. The covariance
matrix of the bootstrap estimates was then used as a proxy of
the true covariance matrix. We included the bootstrap version
as this version is easier to implement and therefore might
be the preferred approach of practitioners. The sequence of
data generation, parameter estimation and fit assessment was
repeated 250 times.

The results for the first simulation scenario can be found in
Table 1. There, the empirical rejection rates are reported for the
two versions of the item specific variant of the Hausman test and
different nominal Type-I error rates α. As no misspecification
was present, the empirical rejection rates should be close to the
nominal Type-I error rate.

The results in Table 1 suggest that the two versions of the
item specific Hg-test adhere to the nominal Type-I error rate
well. An analysis of the relation between the values of the item
parameters and the empirical rejection rates in Table 1 with
a generalized estimating equation model did not reveal effects
that have importance in practice. This implies that the good
performance of the item specific tests is not bound to favorable
combinations of the item parameters. The versions of the global
HT-test were slightly too liberal. The empirical rejection rates of
the original version were 0.14, 0.10 and 0.04 for nominal Type-
I error rates α of 0.10, 0.05 and 0.01. The rejection rates of the
bootstrap version were 0.10, 0.05 and 0.03.

Second Scenario: Effect of Test Length and Sample
Size
In the second scenario, we explored the performance of the
Hausman test in different lengths of the test and different sizes
of the sample. We used the two-parameter logistic model for
data generation and data analysis. The item parameters were
determined by fully crossing two levels of the discrimination
parameter (0.8, 1.2) with ten levels of the intercept parameter that
were equally spaced between −1.5 and 1.5. Data were generated
for 3× 3 simulation conditions that were defined by fully crossing
three sample sizes (250 subjects/1000 subjects/10000 subjects)
with three lengths of the test (10 items/20 items/40 items). Sample
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TABLE 1 | Empirical rejection rates of the item specific variant of the Hausman
test (Hg-test) for two versions (original/bootstrap), different combinations of item
parameters (β1g/β0g) and different nominal type-I error rates α (0.10/0.05/0.01) in
the first simulation scenario without misfit.

β1g β0g Original Bootstrap

α α

0.10 0.05 0.01 0.10 0.05 0.01

−1.50 0.10 0.05 0.01 0.10 0.04 0.00

−0.75 0.08 0.05 0.02 0.07 0.04 0.01

0.6 0.00 0.10 0.04 0.01 0.10 0.04 0.01

0.75 0.11 0.06 0.02 0.09 0.06 0.02

1.50 0.15 0.09 0.02 0.16 0.08 0.01

−1.50 0.13 0.08 0.01 0.11 0.07 0.01

−0.75 0.14 0.07 0.02 0.12 0.06 0.02

1.0 0.00 0.12 0.06 0.02 0.11 0.05 0.00

0.75 0.15 0.09 0.01 0.16 0.07 0.01

1.50 0.09 0.04 0.01 0.08 0.03 0.00

−1.50 0.10 0.04 0.01 0.09 0.04 0.01

−0.75 0.14 0.06 0.02 0.13 0.06 0.01

1.4 0.00 0.14 0.08 0.02 0.14 0.08 0.02

0.75 0.11 0.08 0.02 0.10 0.06 0.01

1.50 0.10 0.04 0.01 0.09 0.04 0.01

−1.50 0.14 0.08 0.04 0.12 0.08 0.03

−0.75 0.12 0.06 0.02 0.10 0.05 0.02

1.8 0.00 0.15 0.07 0.01 0.13 0.06 0.01

0.75 0.15 0.06 0.03 0.11 0.06 0.03

1.50 0.09 0.06 0.02 0.09 0.04 0.01

Results based on 250 replications.

sizes from 250 to 10000 subjects were considered as this range
covers the typical sample sizes in practice. A length from 10
to 40 items was chosen as we regarded this as representative

for psychological tests. Conditions with more items were not
included (e.g., in order to simulate an application to item banks
in adaptive testing) as already the limited study gave a clear
picture of the effects. Besides, limited information estimation
is computationally intensive in very long tests (>100 items).
For each simulation condition, 250 simulation samples were
analyzed. The results can be found in Table 2. There, the
empirical rejection rates are given for the 3 × 3 simulation
conditions and different nominal Type-I error rates α. As the
empirical rejection rates did not depend on the values of the
item parameters, the results have been averaged over the items.
The empirical rejection rates should be close to the nominal
Type-I error rates.

The findings in Table 2 suggest that the bootstrap versions of
the two Hausman test variants adhere to the nominal Type-I error
rate rather well, irrespective of the test length and the sample size.
The global test tends to be slightly too liberal in small samples.
The performance of the original version of the two Hausman test
variants depends on the sample size. The item specific version
already works well in moderate samples, but the global version
of the test requires samples of at least 10000 subjects. In smaller
samples, the tests are too liberal.

Third Scenario: Application to a Two-Dimensional
Model
In the third scenario, we explored the performance of the
Hausman test in a two-dimensional version of the two-parameter
logistic model. The two-dimensional version relates the solution
probability to the linear combination β0g + β1gθ+ β2gω of two
latent traits, θ and ω. The intercept parameters β0g and the
discrimination parameters β1g of the first trait were set to the
same values as in the second simulation scenario (see section
“Second Scenario: Effect of Test Length and Sample Size”). The
discrimination parameters β2g of the second latent trait were set
to zero in half of the items and to 0.8 or 1.2 in the remaining

TABLE 2 | Empirical rejection rates of the two versions (original/bootstrap) of the two Hausman test variants Hg and HT for different sample sizes N, test lengths G and
nominal type-I error rates α (0.10/0.05/0.01) in the second simulation scenario without misfit.

Original Bootstrap

Hg-test HT-test Hg-test HT-test

α α α α

G N 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

250 0.21 0.14 0.06 0.35 0.28 0.18 0.08 0.05 0.02 0.11 0.07 0.04

10 1000 0.12 0.07 0.02 0.14 0.08 0.04 0.10 0.05 0.01 0.09 0.05 0.01

10000 0.10 0.05 0.01 0.06 0.03 0.01 0.10 0.05 0.01 0.06 0.03 0.01

250 0.17 0.10 0.04 0.39 0.32 0.20 0.09 0.05 0.01 0.11 0.08 0.02

20 1000 0.12 0.07 0.02 0.19 0.12 0.04 0.10 0.06 0.01 0.12 0.07 0.03

10000 0.11 0.06 0.01 0.12 0.06 0.01 0.10 0.06 0.01 0.10 0.06 0.01

250 0.16 0.10 0.03 0.52 0.42 0.26 0.10 0.05 0.01 0.14 0.08 0.04

40 1000 0.11 0.06 0.01 0.19 0.13 0.01 0.10 0.05 0.01 0.11 0.03 0.00

10000 0.10 0.05 0.01 0.12 0.05 0.01 0.10 0.05 0.01 0.08 0.04 0.00

Results based on 250 replications. Results for item specific tests have been averaged over the items. Hg-test: Hausman test of item fit; HT-test: Hausman test of global fit.
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ones. Data were generated for a test of 20 items and a calibration
sample of 1000 test takers. This condition was chosen in order
to assess whether the minimal requirements of the Hausman test
with respect to the sample size and the test length are similar
for unidimensional and multidimensional models. Samples of
250 subjects were not considered as multidimensional models are
difficult to fit with small samples. Having generated the data, the
item parameters of the two-dimensional model were estimated
with the marginal maximum likelihood estimator and the limited
information estimator. The discrimination parameter of the first
item and the second latent trait (β21) was fixed to zero in order
to identify the model. Having fit the model, the two variants of
the Hausman test were performed. The first variant was the item
specific Hg-test based on the item parameters of a single item. For
this test, the misspecification indicator was formed by subtracting
the different estimates of the item parameters. The second
variant was the global HT-test. For this test, the misspecification
indicator was formed by subtracting the different estimates of
all 2 × 20 discrimination parameters. Only the original versions
of the tests were performed. The bootstrap versions of the tests
were not implemented as estimating the two-dimensional model
was computationally too expensive. Altogether, 250 simulation
samples were analyzed. The results can be found in Table 3.
Table 3 contains the empirical rejection rates of the two test
variants for different nominal Type-I error rates α. Note that
the results of the item specific tests have been averaged over the
items. The findings in Table 3 illustrate that the tests adhere to
the nominal Type-I error rate rather well and imply that the
Hausman test can be extended to multidimensional models.

Simulation Study II
In the second simulation study, the power of the Hausman
tests to detect several forms of misspecification was explored.
The proceeding was similar to Orlando and Thissen (2003) and
Ranger and Kuhn (2012). The study consisted of three scenarios
with different forms of misspecification. In all scenarios, the data
were analyzed as in the first simulation study on the size of
the Hausman test (see section “Simulation Study I”). All scripts
that are necessary to reproduce the study are available from the
authors on request.

In addition to the different Hausman tests, several alternative
tests of local and global fit were performed. The first alternative
test of local fit was the χ2-test of item fit provided by the
package ltm (Rizopoulos, 2006). This test is similar to the
Q1-test of Yen (1981). The test takers are grouped according to

TABLE 3 | Empirical rejection rates p of the two variants (Hg-test/HT-test) of the
Hausman test for different nominal type-I error rates α (0.10/0.05/0.01) in the third
simulation scenario without misfit.

Hg-test HT-test

α 0.10 0.05 0.01 0.10 0.05 0.01

p 0.09 0.05 0.02 0.08 0.05 0.03

Results based on 250 replications. Item specific results have been averaged over
the items. Hg-test: Hausman test of item fit; HT-test: Hausman test of global fit.

their estimated trait level. The observed responses in each group
are then compared to the expected responses via a χ2-statistic.
The distribution of the test statistic is determined by a parametric
bootstrap. The second test of local fit was the S− X2-test of item
fit suggested by Orlando and Thissen (2003) that is implemented
in the package mirt (Chalmers, 2012). The third test of local fit
was the score test proposed by Ranger and Kuhn (2012). In this
test, the item characteristic function of the two-parameter logistic
model is embedded into a more flexible one with two additional
parameters that modify its shape in the left and right tail. Setting
both parameters to zero results in the item characteristic function
of the two-parameter logistic model. The test was implemented
by the authors. The global fit of the model was analyzed with the
M2-test of Maydeu-Olivares and Joe (2005); for a description of
this test see the overview given in the introduction. The M2-test
is part of the package mirt (Chalmers, 2012).

First Scenario: Detection of Misspecified Item
Characteristic Functions
The first scenario was concerned with the power of the Hausman
tests to detect a misspecification of the item characteristic
function. Simulation data sets were generated for a test with
20 items. As in the second scenario of the first simulation
study (see section “Second Scenario: Effect of Test Length and
Sample Size”), we used a two-parameter logistic model with
discrimination parameters of 0.8 or 1.2 and intercept parameters
equally spaced between −1.5 to 1.5. In four items, the item
characteristic function of the two-parameter logistic model was
replaced by an alternative item characteristic function. The
alternative item characteristic functions were identical to the ones
used in the study of Orlando and Thissen (2003) and Ranger
and Kuhn (2012). In a first simulation condition (Condition ICC
1), the responses to the four misspecified items were generated
according to the item characteristic function

P
(
xg = 1|θ

)
=

cg

1+ exp
[
ag
(
θ− (bg − lg)

)] + 1
exp

[
−ag

(
θ− bg

)] , (4)

where the item parameters had the values of ag = 4.25, bg =

1.00, cg = 0.25 and lg = 1.50. The item characteristic function
decreases from 0.25 to 0.04 for θ ∈ (−∞, 0], but then increases
monotonously to 1 for θ ∈ (0,∞) according to an S-shape. Such
a function could, for example, reflect that moderately gifted test
takers are seduced to choose a wrong distractor that taps half
knowledge. As the fundamental assumption of monotonicity is
violated, this violation should be easy to detect.

In a second simulation condition (Condition ICC 2), the four
misspecified items had the item characteristic function of the
four-parameter logistic model

P
(
xg = 1|θ

)
= cg +

(
1− cg

)
· lg ·

1
exp

[
−ag

(
θ− bg

)] , (5)

with item parameter values of ag = 3.40, bg = 0.50, cg = 0.00
and lg = 0.70. The item characteristic function is S-shaped, with a
lower asymptote of 0.00 and an upper asymptote of 0.70. Such an
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item characteristic function accounts for the loss of concentration
or careless mistakes. As the four-parameter logistic model can
be approximated by the two-parameter logistic model quite well,
this form of misspecification is difficult to detect.

Data were generated for samples with 250 and 1000 subjects.
Samples with 10000 subjects were not considered anymore.
Fully crossing both factors (2 sample sizes × 2 forms of
misspecification) defined four simulation conditions. For each
simulation condition, we generated 250 simulation samples.
Each simulation sample was analyzed as in the first simulation
study on the size of the Hausman test (see section “Simulation
Study I”). Additionally, the alternative tests of model fit were
performed. The empirical rejection rates of the tests can be found
in Table 4 for different nominal Type-I error rates α. In Table 4,
we distinguish between the items with correctly specified item
characteristic function, where the rejection rate should be close
to the nominal Type-I error rate, and the items with misspecified

item characteristic function, where the rejection rate should be as
high as possible.

The findings in Table 4 suggest that misspecification caused
by the non-monotone item characteristic function (ICC 1) is
easy to detect. The global tests of model fit all have a rejection
rate near 1.00. The item specific tests are capable to detect the
misspecified items with high probability. The score test and the
two versions of the Hausman test have the highest rejection
rates in the affected items. The item specific variants of the
Hausman tests, however, also have a rather high rate of false
alarms in the items without misspecification. The original version
of the Hausman test is worst in this respect, probably because
the test is liberal. The score test, on the other hand, has a
very low rate of false alarms. Misspecification in the form of
an upper boundary (ICC 2) is much harder to detect. The
global variants of the Hausman test, for example, detect the
misspecification in only half of the samples with 1000 subjects.

TABLE 4 | Empirical rejection rates of several tests of model fit for different sample sizes N and different nominal type-I error rates α (0.10/0.05/0.01) in the first simulation
scenario where the item characteristic function was misspecified in some items.

Global fit

ICC ICC 1 ICC 2

N 250 1000 250 1000

α 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

HT-test (O) 1.00 1.00 1.00 1.00 1.00 1.00 0.16 0.09 0.04 0.53 0.39 0.18

HT-test (B) 0.98 0.97 0.95 1.00 1.00 1.00 0.04 0.02 0.00 0.47 0.30 0.13

M2-test 0.94 0.90 0.78 1.00 1.00 1.00 0.12 0.05 0.01 0.10 0.04 0.00

Item Fit: Correctly specified items

ICC ICC 1 ICC 2

N 250 1000 250 1000

α 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

Hg-test (O) 0.40 0.30 0.16 0.62 0.54 0.40 0.13 0.08 0.02 0.14 0.08 0.02

Hg-test (B) 0.27 0.18 0.07 0.60 0.52 0.38 0.08 0.04 0.01 0.13 0.07 0.02

S−X2-test 0.13 0.06 0.01 0.27 0.17 0.06 0.10 0.05 0.01 0.11 0.05 0.01

χ2-test 0.16 0.09 0.02 0.30 0.20 0.07 0.10 0.05 0.01 0.12 0.06 0.01

SC-test 0.12 0.07 0.02 0.14 0.08 0.03 0.09 0.04 0.01 0.08 0.04 0.01

Item Fit: Misspecified items

ICC ICC 1 ICC 2

N 250 1000 250 1000

α 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

Hg-test (O) 1.00 0.99 0.98 1.00 1.00 1.00 0.13 0.06 0.02 0.33 0.20 0.05

Hg-test (B) 0.99 0.98 0.94 1.00 1.00 1.00 0.06 0.02 0.00 0.30 0.18 0.05

S−X2-test 0.87 0.80 0.61 1.00 1.00 1.00 0.19 0.11 0.04 0.44 0.31 0.14

χ2-test 0.85 0.76 0.51 1.00 1.00 0.99 0.11 0.04 0.01 0.25 0.14 0.04

SC-test 1.00 0.99 0.96 1.00 1.00 1.00 0.35 0.25 0.11 0.86 0.78 0.57

Results based on 250 replications. Results for item specific tests have been averaged over the items. HT-test: Hausman test of global fit (O: original/B: bootstrap); M2-test:
test of Maydeu-Olivares and Joe (2005); Hg-test: Hausman test of item fit (O: original/B: bootstrap); S− X2-test: test of Orlando and Thissen (2003); χ2-test of Rizopoulos
(2006); SC-test: score test of Ranger and Kuhn (2012); ICC 1: Non-monotone item characteristic function, ICC 2: bounded item characteristic function.
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The M2-test has no power at all. The item specific test with
the highest power is again the score test. This test also has
a very low rate of false alarms. The other tests of item fit
clearly fall behind.

Second Scenario: Detection of Local Dependencies
In the second scenario, the power of the Hausman test to detect
local violations of the conditional independence assumption
was investigated. The process of data generation was similar
to the one used in the first simulation scenario (see section
“First Scenario: Detection of Misspecified Item Characteristic
Functions”). That is, the responses were generated for a test of
20 items with the two-parameter logistic model. The same item
parameters were used as before. When generating the data, the
conditional independence assumption was violated locally. This
was achieved by coupling the responses in single item pairs via
a bivariate normal copula with a copula parameter of ρ = 0.50
(Joe, 1997). This limits the misspecification of the model to
the conditional independence assumption as the copula will not
affect the item characteristic function. Conditional independence
was violated in 10 of the 190 item pairs, namely in pair (1–
2), (4–5), (6–7), (9–10), (11–12), (14–15), (16–17) and (19–20).
Local violations of the conditional independence assumption
occur, for example, in case some items share the same content
or depend on the same knowledge. Two simulation conditions
were considered that were defined by the sample size (250
subjects/1000 subjects). For each condition, 250 samples were
generated. The data were analyzed as before. In addition to
the two variants of the Hausman test, the alternative tests of
model fit were performed; see section “First Scenario: Detection
of Misspecified Item Characteristic Functions.” The results can
be found in Table 5 for different nominal Type-I error rates
α. The results for the item specific tests are reported separately
for the correctly specified and the misspecified items with
local dependencies.

Table 5 corroborates that the global tests of model fit are
capable to detect the additional association with high probability.
The M2-test of Maydeu-Olivares and Joe (2005) performs best,
a fact that is hardly surprising when one considers how the test
is constructed. The item specific variants of the Hausman test
are moderately successful in identifying the affected items. The
Hausman tests, on the other hand, also have an elevated rate
of false alarms in the correctly specified items such that the
separation of correctly specified items from misspecified items is
not easy. The alternative tests of item fit have no power to detect
the local dependencies at all.

Third Scenario: Application to Multidimensional
Models
The third simulation scenario was a replication of the first
simulation scenario (misspecification of the item characteristic
function) with a two-dimensional item response model. The
model used for data generation and data analysis was the
two-dimensional version of the two-parameter logistic model
described in section “Third Scenario: Application to a Two-
Dimensional Model.” Misspecification was created in four items
by replacing the logit link between the response probability and

TABLE 5 | Empirical rejection rates of several tests of model fit for different sample
sizes N and different nominal type-I error rates α (0.10/0.05/0.01) in the second
simulation scenario with local dependencies in some item pairs.

Global fit

N 250 1000

α 0.10 0.05 0.01 0.10 0.05 0.01

HT-test (O) 0.90 0.87 0.78 1.00 1.00 1.00

HT-test (B) 0.67 0.58 0.48 1.00 1.00 1.00

M2-test 1.00 1.00 1.00 1.00 1.00 1.00

Item fit: correctly specified items

N 250 1000

α 0.10 0.05 0.01 0.10 0.05 0.01

Hg-test (O) 0.21 0.13 0.05 0.22 0.14 0.06

Hg-test (B) 0.13 0.07 0.02 0.20 0.13 0.05

S− X2-test 0.10 0.05 0.01 0.08 0.04 0.00

χ2-test 0.09 0.05 0.01 0.08 0.04 0.00

SC-test 0.10 0.05 0.01 0.10 0.05 0.01

Item fit: misspecified items

N 250 1000

α 0.10 0.05 0.01 0.10 0.05 0.01

Hg-test (O) 0.41 0.33 0.21 0.52 0.45 0.32

Hg-test (B) 0.31 0.24 0.12 0.51 0.43 0.30

S− X2-test 0.10 0.05 0.01 0.10 0.06 0.01

χ2-test 0.10 0.05 0.01 0.11 0.06 0.01

SC-test 0.11 0.05 0.01 0.13 0.07 0.02

Results based on 250 replications. Results for item specific tests have been
averaged over the items. HT-test: Hausman test of global fit (O: original/B:
bootstrap); M2-test: test of Maydeu-Olivares and Joe (2005); Hg-test: Hausman
test of item fit (O: original/B: bootstrap); S− X2-test: test of Orlando and Thissen
(2003); χ2-test of Rizopoulos (2006); SC-test: score test of Ranger and Kuhn
(2012).

the linear predictor with an alternative link function. In the first
simulation condition (Condition ICC 1), the misspecification
was of the form given in Equation 4, whereby the linear
predictor ag

(
θ− bg

)
was replaced by the two-dimensional

version β0g + β1gθ+ β2gω. In the second simulation condition
(Condition ICC 2), the response probability was bounded as in
Equation 5. In doing so, the one-dimensional linear predictor
was replaced by the corresponding two-dimensional linear
predictor. Data were generated for a test of 20 items and a sample
of 1000 subjects. Samples with 250 subjects were not considered
anymore, as the two estimators (marginal maximum likelihood
estimator/limited information estimator) have difficulties
to converge in small samples. Having estimated the item
parameters, the multidimensional variants of the Hausman test
(see section “Third Scenario: Application to a Two-Dimensional
Model”) were performed as well as the alternative tests. Bootstrap
versions of the Hausman tests were not implemented as this was
computationally too demanding. We also did not perform the
χ2-test of Rizopoulos (2006) as this test has not been
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implemented for two-dimensional models. The empirical
rejection rates of the tests can be found in Table 6 for different
nominal Type-I error rates α. Again, the results are presented
separately for items that are affected by misspecification and
items that are not.

The findings in Table 6 suggest that in comparison to the first
scenario, the power of the global tests is lower. The global tests
have low rejection rates especially in the case of a bounded item
characteristic function. The item specific variant of the Hausman
test also has little power. The score test performs best and is
capable to detect the affected items with high probability without
having an elevated rate of false alarms.

EMPIRICAL APPLICATION

In addition to the simulation study, we compared the different
tests in a real data set. For this purpose, we analyzed the Scored
data set provided by the package irtoys (Partchev, 2014). The
data set contains the real-life responses of 472 subjects to 18
multiple choice items scored as true or false. As the irtoys package
has been intended for those teaching or learning item response
theory, the data should be in close agreement with the two-
parameter logistic model. The data were analyzed as follows.

TABLE 6 | Empirical rejection rates of several tests of item fit for different nominal
type-I error rates α (0.10/0.05/0.01) in the third simulation scenario where the item
characteristic function was misspecified in some items.

Global fit

ICC ICC 1 ICC 2

α 0.10 0.05 0.01 0.10 0.05 0.01

HT-test 0.34 0.24 0.10 0.16 0.08 0.03

M2-test 0.32 0.20 0.07 0.16 0.12 0.02

Item fit: correctly specified items

ICC ICC 1 ICC 2

α 0.10 0.05 0.01 0.10 0.05 0.01

Hg-test 0.17 0.10 0.04 0.12 0.07 0.03

S− X2-test 0.17 0.09 0.02 0.13 0.07 0.02

SC-test 0.11 0.06 0.01 0.10 0.05 0.01

Item fit: misspecified items

ICC ICC 1 ICC 2

α 0.10 0.05 0.01 0.10 0.05 0.01

Hg-test 0.29 0.21 0.10 0.19 0.12 0.04

S− X2-test 0.72 0.68 0.60 0.42 0.30 0.14

SC-test 0.96 0.94 0.88 0.72 0.66 0.48

Results based on 250 replications. Item specific results have been averaged over
the items. HT-test: Hausman test of global fit; M2-test: test of Maydeu-Olivares
and Joe (2005); Hg-test: Hausman test of item fit; S− X2-test: test of Orlando
and Thissen (2003); SC-test: score test of Ranger and Kuhn (2012); ICC 1: non-
monotone item characteristic function; ICC 2: bounded item characteristic function.

First, we fitted the two-parameter logistic model to the data using
the marginal maximum likelihood estimator and the limited
information estimator. Then, we performed all tests considered
in the second simulation study. Neither the M2-test of global
model fit (M2 = 134.5, df = 135, p = 0.49), nor the original
version of the global Hausman test (HT = 0.28, p = 0.14) or its
bootstrap version (HT = 0.28, p = 0.37) did reveal any signs of
misspecification. Given the results from the second simulation
study, this excludes local dependencies and grossly misspecified
item characteristic functions. However, as global tests of model
fit sometimes have low power to detect local misspecifications, we
also performed the tests of item fit. The p-values of the different
tests in the 18 items can be found in Table 7. All p-values lower
than 0.05 have been highlighted.

In general, the results of the different tests agree insofar as
most of the items do not seem to be in conflict with the two-
parameter logistic model. There are, however, differences with
respect to which items are flagged. The score test flags item 3
and item 16. Item 16 is also flagged by the two versions of the
Hausman test. Somewhat surprising, the item is not flagged by the
χ2-test and the S− X2-test, which on the other hand flag item 11
and 13. In order to identify the reasons for the different results, we
estimated the item characteristic functions non-parametrically
with the package KernSmoothIRT (Mazza et al., 2014). This
analysis suggested that the item characteristic functions of item
3 and item 16 have a lower boundary of about 0.2. The item
characteristic function of item 13 on the other hand seems to
have some non-monotonicity around an average trait level of 0.
The score test is by construction capable to detect deviations in
the tail area. This might explain the significant results in item

TABLE 7 | Overview over p-values of several tests of item fit in the 18 items of
the scored data.

Item Hg-test (O) Hg-test (B) χ2-test SC-test S− X2-test

1 0.09 0.12 0.82 0.69 0.84

2 0.22 0.24 0.85 0.36 0.37

3 0.89 0.91 0.31 0.01 0.35

4 0.53 0.56 0.72 0.27 0.66

5 0.78 0.81 0.91 0.94 0.95

6 0.06 0.10 0.05 0.69 0.21

7 0.59 0.61 0.25 0.74 0.96

8 0.46 0.53 0.34 0.93 0.82

9 0.32 0.43 0.25 0.67 0.88

10 0.93 0.94 0.55 0.33 0.21

11 0.57 0.62 0.05 0.12 0.01

12 0.87 0.87 0.66 0.82 0.93

13 0.90 0.92 0.02 0.63 0.07

14 0.21 0.30 0.90 0.17 0.51

15 0.42 0.49 0.85 0.11 0.24

16 0.00 0.01 0.64 0.01 0.18

17 0.28 0.36 0.19 0.93 1.00

18 0.25 0.31 0.10 0.24 0.29

p-values lower than α = 0.05 are highlighted. Hg-test: Hausman test of item fit (O:
original/B: bootstrap); χ2-test of Rizopoulos (2006); SC-test: score test of Ranger
and Kuhn (2012); S− X2-test: test of Orlando and Thissen (2003).
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3 and 16 and the insignificant result in item 13. The χ2-test
and the S− X2-test on the other hand might be less sensitive
to deviations in the tail area. The tests require the grouping of
the data, either into trait groups or into groups defined by the
sum score. In case the grouping is too coarse or the number
of subjects in the extreme groups is rather small, the power to
detect misspecifications in the tails might be low. This speculation
is supported by the observation that increasing the number of
groups from the default value of 10 to 14 reduced the p-value of
the χ2-test in item 16 from 0.64 to 0.06. The Hausman test of
item fit might also be more sensitive to a misspecification in the
tail area than to misspecifications in the center as this probably
affects the parameter estimates to a larger extent.

DISCUSSION

The analysis of model fit is a necessary prerequisite for the
application of an item response model. According to Standard
3.9 of the Standards for Educational and Psychological Testing,
evidence has to be given for the adequateness of an item
response model before it can be used for psychological assessment
(Sinharay and Haberman, 2014). This requires the application
of tests that evaluate the fit of the model on a global level and
a local level. Several such tests have been proposed since the
beginning of item response modeling. Nowadays test takers can
choose between tests that closely adhere to the nominal Type-I
error rate and have high power to detect model misspecifications.
Nevertheless, there is still need for further research in this area.
Not all tests that work well in simple item response models can
be generalized to polytomous or multidimensional models or to
tests that mix categorical and continuous response formats. Other
tests are computationally intensive and hard to implement in
long scales with many response options. And some tests of global
fit cannot be implemented as tests of item fit that can be used
for item selection.

In a seminal paper, Hausman (1978) proposed a general
specification test. The test is not bound to a specific statistical
model and can be applied quite generally, among other things to
item response models. The Hausman test has several attractive
features. It is easy to implement in case an efficient and an
inefficient estimator is available. Due to its generality, it can be
used for models where the standard tests are hard to implement.
Models for mixed response formats or the recently developed
models for responses and response times (e.g., van der Linden,
2007) can be mentioned here. The Hausman test does not
require the grouping of the data, which sometimes conceals
misspecification. The test is also powerful provided that the
parameter estimates of the different estimation approaches differ
(Hausman and Taylor, 1980; White, 1982).

Despite its virtues, the Hausman test has never been
implemented for item response models. This might be due to
numerical difficulties that are caused by covariance matrices
near singularity. In this manuscript, a novel implementation
of the test was proposed that avoids these complications. The
implementation can be used in order to test the global fit or
the item specific fit. The performance of the implementations

was investigated in a simulation study. The simulation study
revealed that the tests adhere to the nominal Type-I error
rate in samples of 1000 subjects and more. In smaller samples
it is recommendable to resort to a bootstrap version of the
tests. The simulation study also indicated that the tests have
power to detect some, but not all forms of misspecification.
The global variant of the Hausman test was on par with the
M2-test in misspecified item characteristic functions in both a
unidimensional and a multidimensional model, but had little
power to detect local dependencies. The item specific variant was
inferior to the score test, but similar to the S− X2-test when
misspecified item characteristic functions had to be detected, at
least in the one-dimensional two-parameter logistic model. It had
the highest power to detect local dependencies. This suggests that
the Hausman test is useful. The findings also imply that using
several tests provides more informative about the exact cause of
misspecification than the single tests on their own.

The simulation study was limited in scope, as every simulation
study has to be. We did not analyze the performance of the
test under unfavorable conditions, such as conditions with a
considerable proportion of missing data. We did, however,
consider conditions that are known to cause problems for tests of
model fit, namely long tests and small discrimination coefficients
(Shi et al., 2018). The performance of the Hausman test should
also be analyzed for the three-parameter logistic model where
some tests of model fit are known to become erratic (Chon
et al., 2010) or for cognitive diagnosis models (Hu et al., 2016).
More simulation studies are needed to get a better picture of the
performance of the Hausman test.

More work could also be invested in the improvement of the
small sample behavior of the test. Using the alternative estimate of
the covariance matrix proposed by White (1982) might be a point
to start. Alternatively, one could derive the covariance matrix
within the estimation framework outlined by Maydeu-Olivares
and Joe (2005). Equation 15 in their paper would be the point to
start. This is topic of future research.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

We acknowledge the financial support of the Open
Access Publication Fund of the Martin-Luther-University
Halle-Wittenberg.

Frontiers in Psychology | www.frontiersin.org 11 February 2020 | Volume 11 | Article 149

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00149 February 7, 2020 Time: 15:19 # 12

Ranger and Much Hausman Test for IRT Models

REFERENCES
Alonso, A., Litière, S., and Molenberghs, G. (2008). A family of tests to detect

misspecifications in the random-effects structure of generalized linear mixed
models. Comput. Stat. Data Anal. 52, 4474–4486. doi: 10.1016/j.csda.2008.02.
033

Baker, F., and Kim, S.-H. (2004). Item Response Theory: Parameter Estimation
Techniques. New York, NY: Marcel Dekker.

Bartholomew, D., and Tzamourani, P. (1999). The goodness-of-fit of latent trait
models in attitude measurement. Sociol. Methods Res. 27, 525–546. doi: 10.1177/
0049124199027004003

Bock, R. (1972). Estimating item parameters and latent ability when responses
are scored in two or more nominal categories. Psychometrika 37, 29–51. doi:
10.1007/BF02291411

Bock, R., and Aitkin, M. (1981). Marginal maximum likelihood estimation of
item parameters: application of an EM algorithm. Psychometrika 46, 443–459.
doi: 10.1007/BF02293801

Caffo, B., An, M., and Rohde, C. (2007). Flexible random intercept models for
binary outcomes using mixtures of normals. Comput. Stat. Data Anal. 51,
5220–5235. doi: 10.1016/j.csda.2006.09.031

Cagnone, S. (2012). A note on goodness-of-fit test in latent variable models with
categorical variables. Commun. Stat. Theory Methods 41, 2983–2990. doi: 10.
1080/03610926.2011.622424

Cai, L., and Hansen, M. (2013). Limited-information goodness-of-fit testing of
hierarchical item factor models. Br. J. Math. Stat. Psychol. 66, 245–276. doi:
10.1111/j.2044-8317.2012.02050.x

Cai, L., Maydeu-Olivares, A., Coffman, D., and Thissen, D. (2006). Limited-
information goodness-of-fit testing of item response theory models for sparse
2p tables. Br. J. Math. Stat. Psychol. 59, 173–194. doi: 10.1348/000711005X6641

Cai, L., and Monroe, S. (2014). A New Statistic for Evaluating Item Response Theory
Models for Ordinal Data. CRESST Report No. 839. Los Angeles, CA: University
of California.

Chalmers, R. (2012). mirt: a multidimensional item response theory package for
the R environment. J. Stat. Softw. 48:i06. doi: 10.18637/jss.v048.i06

Chen, W., and Thissen, D. (1997). Local dependence indexes for item pairs
using item response theory. J. Educ. Behav. Stat. 22, 265–289. doi: 10.3102/
10769986022003265

Chesher, A., Dhaene, G., Gourieroux, C., and Scaillet, O. (1999). Bartlett Identities
Tests. CORE Discussion Papers No. 9039. Louvain-la-Neuve: Universite
Catholique de Louvain.

Chon, K., Lee, W., and Dunbar, S. (2010). A comparison of item fit statistics for
mixed IRT models. J. Educ. Meas. 47, 318–338. doi: 10.1111/j.1745-3984.2010.
00116.x

Czado, C. (1994). Parametric link modification of both tails in binary regression.
Stat. Pap. 35, 189–201. doi: 10.1007/BF02926413

Douglas, J., and Cohen, A. (2001). Nonparametric item response function
estimation for assessing parametric model fit. Appl. Psychol. Meas. 25, 234–243.
doi: 10.1177/01466210122032046

Drasgow, F., Levine, M., Tsien, S., Williams, B., and Mead, A. (1995). Fitting
polytomous item response theory models to multiple-choice tests. Appl. Psychol.
Meas. 19, 143–166. doi: 10.1177/014662169501900203

Edwards, M., Houts, C., and Cai, L. (2018). A diagnostic procedure to detect
departures from local independence in item response theory models. Psychol.
Methods 23, 138–149. doi: 10.1037/met0000121

Efendi, A., Drikvandi, R., Verbeke, G., and Molenberghs, G. (2017). A goodness-
of-fit test for the random-effects distribution in mixed models. Stat. Methods
Med. Res. 26, 970–983. doi: 10.1177/0962280214564721

Falk, C., and Monroe, S. (2018). On Lagrange multiplier tests in multidimensional
item response theory: information matrices and model misspecification. Educ.
Psychol. Meas. 78, 653–678. doi: 10.1177/0013164417714506

Glas, C. (1999). Modification indices for the 2-PL and the nominal response model.
Psychometrika 64, 273–294. doi: 10.1007/BF02294296

Glas, C. (2016). “Frequentist model-fit tests,” in Handbook of Item Response Theory
Statistical Tools, Vol. 2, ed. W. van der Linden, (Boca Raton, FL: Chapman and
Hall), 343–361.

Glas, C., and Suárez Falcón, J. (2003). A comparison of item-fit statistics for the
three-parameter logistic model. Appl. Psychol. Meas. 27, 87–106. doi: 10.1177/
0146621602250530

Glas, C., and Verhelst, N. (1995). “Testing the Rasch model,” in Rasch Models:
Foundations, Recent Developments and Applications, eds G. Fischer, and I.
Molenaar, (New York, NY: Springer), 69–96. doi: 10.1007/978-1-4612-4230-7

Haberman, S. (2009). Use of generalized residuals to examine goodness of fit of
item response models. ETS Res. Rep. Ser. 1, 1–17. doi: 10.1002/j.2333-8504.2009.
tb02172.x

Haberman, S., and Sinharay, S. (2013). Generalized residuals for general models for
contingency tables with application to item response theory. J. Am. Stat. Assoc.
108, 1435–1444. doi: 10.1080/01621459.2013.835660

Haberman, S., Sinharay, S., and Chon, K. (2013). Assessing item fit for
unidimensional item response theory models using residuals from estimated
item response functions. Psychometrika 78, 417–440. doi: 10.1007/s11336-012-
9305-1

Hausman, J. (1978). Specification tests in econometrics. Econometrica 46,
1251–1271. doi: 10.2307/1913827

Hausman, J., and Taylor, W. (1980). Comparing Specification Tests and Classical
Tests. Department of Economics Working Paper No. 266. Cambridge, MA:
MIT.

Hosmer, D., and Lemeshow, S. (2000). Applied Logistic Regression. New York, NY:
Wiley. doi: 10.1002/0471722146

Hu, J., Miller, D., Huggins-Manley, A., and Chen, Y. (2016). Evaluation of model fit
in cognitive diagnosis models. Int. J. Test. 16, 119–141. doi: 10.1080/15305058.
2015.1133627

Ip, E. (2001). Testing for local dependency in dichotomous and polytomous item
response models. Psychometrika 66, 109–132. doi: 10.1007/BF02295736

Ip, E. (2002). Locally dependent latent trait model and the Dutch identity revisited.
Psychometrika 67, 367–386. doi: 10.1007/BF02294990

Joe, H. (1997). Multivariate Models and Dependence Concepts. London: Chapman
& Hall.

Kraus, K. (2009). “A new goodness-of-fit test for categorical data analysis,” in Paper
Presented at the Annual Meeting of the Psychometric Society, Cambridge.

Li, Z., and Cai, L. (2018). Summed score likelihood-based indices for testing
latent variable distribution fit in item response theory. Educ. Psychol. Meas. 78,
857–886. doi: 10.1177/0013164417717024

Liu, Y., and Maydeu-Olivares, A. (2012). Local dependence diagnostics in IRT
modeling of binary data. Educ. Psychol. Meas. 73, 254–274. doi: 10.1177/
0013164412453841

Liu, Y., and Maydeu-Olivares, A. (2014). Identifying the source of misfit in item
response theory models. Multivariate Behav. Res. 49, 354–371. doi: 10.1080/
00273171.2014.910744

Liu, Y., and Thissen, D. (2012). Identifying local dependence with a score test
statistic based on the bifactor logistic model. Appl. Psychol. Meas. 36, 670–688.
doi: 10.1177/0146621612458174

Magis, D., Beland, S., Tuerlinckx, F., and DeBoeck, P. (2010). A general
framework and an R package for the detection of dichotomous differential item
functioning. Behav. Res. Methods 42, 847–862. doi: 10.3758/BRM.42.3.847

Mavridis, D., Moustaki, I., and Knott, M. (2007). “Goodness-of-fit measures for
latent variable models for binary data,” in Handbook of Latent Variable and
Related Models, ed. S.-Y. Lee, (Amsterdam: Elsevier), 135–161. doi: 10.1016/
B978-0-444-52044-9.X5000-9

Maydeu-Olivares, A. (2013). Goodness-of-fit assessment of item response theory
models. Measurement 11, 71–101. doi: 10.1080/15366367.2013.831680

Maydeu-Olivares, A., and Joe, H. (2005). Limited- and full-information estimation
and goodness-of-fit testing in contingency tables: a unified framework. J. Am.
Stat. Assoc. 100, 1009–1020. doi: 10.1198/016214504000002069

Maydeu-Olivares, A., and Joe, H. (2006). Limited information goodness-of-fit
testing in multidimensional contingency tables. Psychometrika 71, 713–732.
doi: 10.1007/s11336-005-1295-9

Maydeu-Olivares, A., and Joe, H. (2014). Assessing approximate fit in categorical
data analysis. Multivariate Behav. Res. 49, 305–328. doi: 10.1080/00273171.
2014.911075

Maydeu-Olivares, A., and Montaño, R. (2013). How should we test the fit of
Rasch-type models? Approximating the power of goodness-of-fit statistics in
categorical data analysis. Psychometrika 78, 116–133. doi: 10.1007/S11336-012-
9293-1

Mazza, A., Punzo, A., and McGuire, B. (2014). KernSmoothIRT: an R package for
kernelsmoothing in item response theory. J. Stat. Softw. 58, 1–34. doi: 10.18637/
jss.v058.i06

Frontiers in Psychology | www.frontiersin.org 12 February 2020 | Volume 11 | Article 149

https://doi.org/10.1016/j.csda.2008.02.033
https://doi.org/10.1016/j.csda.2008.02.033
https://doi.org/10.1177/0049124199027004003
https://doi.org/10.1177/0049124199027004003
https://doi.org/10.1007/BF02291411
https://doi.org/10.1007/BF02291411
https://doi.org/10.1007/BF02293801
https://doi.org/10.1016/j.csda.2006.09.031
https://doi.org/10.1080/03610926.2011.622424
https://doi.org/10.1080/03610926.2011.622424
https://doi.org/10.1111/j.2044-8317.2012.02050.x
https://doi.org/10.1111/j.2044-8317.2012.02050.x
https://doi.org/10.1348/000711005X6641
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.3102/10769986022003265
https://doi.org/10.3102/10769986022003265
https://doi.org/10.1111/j.1745-3984.2010.00116.x
https://doi.org/10.1111/j.1745-3984.2010.00116.x
https://doi.org/10.1007/BF02926413
https://doi.org/10.1177/01466210122032046
https://doi.org/10.1177/014662169501900203
https://doi.org/10.1037/met0000121
https://doi.org/10.1177/0962280214564721
https://doi.org/10.1177/0013164417714506
https://doi.org/10.1007/BF02294296
https://doi.org/10.1177/0146621602250530
https://doi.org/10.1177/0146621602250530
https://doi.org/10.1007/978-1-4612-4230-7
https://doi.org/10.1002/j.2333-8504.2009.tb02172.x
https://doi.org/10.1002/j.2333-8504.2009.tb02172.x
https://doi.org/10.1080/01621459.2013.835660
https://doi.org/10.1007/s11336-012-9305-1
https://doi.org/10.1007/s11336-012-9305-1
https://doi.org/10.2307/1913827
https://doi.org/10.1002/0471722146
https://doi.org/10.1080/15305058.2015.1133627
https://doi.org/10.1080/15305058.2015.1133627
https://doi.org/10.1007/BF02295736
https://doi.org/10.1007/BF02294990
https://doi.org/10.1177/0013164417717024
https://doi.org/10.1177/0013164412453841
https://doi.org/10.1177/0013164412453841
https://doi.org/10.1080/00273171.2014.910744
https://doi.org/10.1080/00273171.2014.910744
https://doi.org/10.1177/0146621612458174
https://doi.org/10.3758/BRM.42.3.847
https://doi.org/10.1016/B978-0-444-52044-9.X5000-9
https://doi.org/10.1016/B978-0-444-52044-9.X5000-9
https://doi.org/10.1080/15366367.2013.831680
https://doi.org/10.1198/016214504000002069
https://doi.org/10.1007/s11336-005-1295-9
https://doi.org/10.1080/00273171.2014.911075
https://doi.org/10.1080/00273171.2014.911075
https://doi.org/10.1007/S11336-012-9293-1
https://doi.org/10.1007/S11336-012-9293-1
https://doi.org/10.18637/jss.v058.i06
https://doi.org/10.18637/jss.v058.i06
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00149 February 7, 2020 Time: 15:19 # 13

Ranger and Much Hausman Test for IRT Models

McKinley, R., and Mills, C. (1985). A comparison of several goodness-of-fit
statistics. Appl. Psychol. Meas. 9, 49–57. doi: 10.1177/014662168500900105

Orlando, M., and Thissen, D. (2000). Likelihood-based item-fit indices for
dichotomous item response theory models. Appl. Psychol. Meas. 24, 50–64.
doi: 10.1177/01466216000241003

Orlando, M., and Thissen, D. (2003). Further investigation of the performance of:
an item fit index for use with dichotomous item response theory models. Appl.
Psychol. Meas. 27, 289–298. doi: 10.1177/0146621603027004004

Partchev, I. (2014). irtoys: Simple Interface to the Estimation and Plotting of IRT
Models. R package version 0.2.1.

R Development Core Team, (2009). R: A Language and Environment for Statistical
Computing [Computer Software Manual]. Vienna: R Foundation for statistical
computing.

Ranger, J., and Kuhn, J. (2012). Assessing fit of item response models using the
information matrix test. J. Educ. Meas. 49, 247–268. doi: 10.1111/j.1745-3984.
2012.00174.x

Reiser, M. (1996). Analysis of residuals for the multinomial item response model.
Psychometrika 61, 509–528. doi: 10.1007/BF02294552

Reiser, M. (2008). Goodness-of-fit testing using components based on marginal
frequencies of multinomial data. Br. J. Math. Stat. Psychol. 61, 331–360. doi:
10.1348/000711007X204215

Rizopoulos, D. (2006). ltm: an R package for latent variable modeling and item
response theory analysis. J. Stat. Softw. 17:i05. doi: 10.18637/jss.v017.i05

Ruud, P. (1984). Tests of specification in econometrics. Econom. Rev. 3, 211–242.
doi: 10.1080/07474938408800065

Shi, D., DiStefano, C., McDaniel, H., and Jiang, Z. (2018). Examining chi-square
test statistics under conditions of large model size and ordinal data. Struct. Equ.
Modeling 25, 924–945. doi: 10.1080/10705511.2018.1449653

Sijtsma, K. (1998). Methodological review: nonparametric IRT approaches to the
analysis of dichotomous item scores. Appl. Psychol. Meas. 22, 3–31. doi: 10.1177/
01466216980221001

Sinharay, S. (2016). “Bayesian model fit and model comparison,” in Handbook of
Item Response Theory Statistical Tools, Vol. 2, ed. W. van der Linden, (Boca
Raton, FL: Chapman and Hall), 379–394.

Sinharay, S., and Haberman, S. (2014). How often is the misfit of item response
theory models practically significant? Educ. Meas. Issues Pract. 33, 23–35.
doi: 10.1111/emip.12024

Stone, C. (2000). Monte Carlo based null distribution for an alternative goodness-
of-fit test statistic in IRT models. J. Educ. Meas. 37, 58–75. doi: 10.1111/j.1745-
3984.2000.tb01076.x

Stone, C., and Zhang, B. (2003). Assessing goodness of fit of item
response theory models: a comparison of traditional and alternative
procedures. J. Educ. Meas. 40, 331–352. doi: 10.1111/j.1745-3984.2003.
tb01150.x

Suaréz Falcón, J., and Glas, C. (2003). Evaluation of global testing procedures
for item fit to the Rasch model. Br. J. Math. Stat. Psychol. 56, 127–143. doi:
10.1348/000711003321645395

Swaminathan, H., Hambleton, R., and Rogers, H. (2006). “Assessing the fit of item
response theory models,” in Handbook of Statistics: Psychometrics, Vol. 26, eds
C. Rao, and S. Sinharay, (Amsterdam: Elsevier), 683–718. doi: 10.1016/s0169-
7161(06)26021-8

Tollenaar, N., and Mooijaart, A. (2003). Type-I errors and power of the parametric
bootstrap goodness-of-fit test: full and limited information. Br. J. Math. Stat.
Psychol. 56, 271–288. doi: 10.1348/000711003770480048

van der Linden, W. (2007). A hierarchical framework for modeling speed and
accuracy on test items. Psychometrika 72, 287–308. doi: 10.1007/s11336-006-
1478-z

Welch, B. (1938). The significance of the difference between two means when
the population variances are unequal. Biometrika 29, 350–362. doi: 10.2307/
2332010

White, H. (1982). Maximum likelihood estimation of misspecified models.
Econometrica 50, 1–25. doi: 10.2307/1912526

Wirth, R., and Edwards, M. (2007). Item factor analysis: current approaches and
future directions. Psychol. Methods 12, 58–79. doi: 10.1037/1082-989X.12.1.58

Yen, W. (1981). Using simulation results to choose a latent trait model. Appl.
Psychol. Meas. 5, 245–262. doi: 10.1177/014662168100500212

Yuan, K.-H., and Bentler, P. (2010). Two simple approximations to the
distributions of quadratic forms. Br. J. Math. Stat. Psychol. 63, 273–291. doi:
10.1348/000711009X449771

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Ranger and Much. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 13 February 2020 | Volume 11 | Article 149

https://doi.org/10.1177/014662168500900105
https://doi.org/10.1177/01466216000241003
https://doi.org/10.1177/0146621603027004004
https://doi.org/10.1111/j.1745-3984.2012.00174.x
https://doi.org/10.1111/j.1745-3984.2012.00174.x
https://doi.org/10.1007/BF02294552
https://doi.org/10.1348/000711007X204215
https://doi.org/10.1348/000711007X204215
https://doi.org/10.18637/jss.v017.i05
https://doi.org/10.1080/07474938408800065
https://doi.org/10.1080/10705511.2018.1449653
https://doi.org/10.1177/01466216980221001
https://doi.org/10.1177/01466216980221001
https://doi.org/10.1111/emip.12024
https://doi.org/10.1111/j.1745-3984.2000.tb01076.x
https://doi.org/10.1111/j.1745-3984.2000.tb01076.x
https://doi.org/10.1111/j.1745-3984.2003.tb01150.x
https://doi.org/10.1111/j.1745-3984.2003.tb01150.x
https://doi.org/10.1348/000711003321645395
https://doi.org/10.1348/000711003321645395
https://doi.org/10.1016/s0169-7161(06)26021-8
https://doi.org/10.1016/s0169-7161(06)26021-8
https://doi.org/10.1348/000711003770480048
https://doi.org/10.1007/s11336-006-1478-z
https://doi.org/10.1007/s11336-006-1478-z
https://doi.org/10.2307/2332010
https://doi.org/10.2307/2332010
https://doi.org/10.2307/1912526
https://doi.org/10.1037/1082-989X.12.1.58
https://doi.org/10.1177/014662168100500212
https://doi.org/10.1348/000711009X449771
https://doi.org/10.1348/000711009X449771
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	Analyzing the Fit of IRT Models With the Hausman Test
	Analyzing the Fit of Irt Models With the Hausman Test
	Tests of Model Fit
	The Specification Test of Hausman
	Simulation Study
	Simulation Study I
	First Scenario: Effect of Parameter Values
	Second Scenario: Effect of Test Length and Sample Size
	Third Scenario: Application to a Two-Dimensional Model

	Simulation Study II
	First Scenario: Detection of Misspecified Item Characteristic Functions
	Second Scenario: Detection of Local Dependencies
	Third Scenario: Application to Multidimensional Models


	Empirical Application
	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References


