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Obesity is a growing public health challenge across the globe. It is associated with

increased morbidity and mortality. Cardiovascular disease (CVD) is the leading cause

of mortality for people with obesity. Current strategies to reduce CVD are largely focused

on addressing traditional risk factors such as dyslipidemia, type 2 diabetes (T2D) and

hypertension. Although this approach is proven to reduce CVD, substantial residual

risk remains for people with obesity. This necessitates a better understanding of the

etiology of CVD in people with obesity and alternate therapeutic approaches. Reducing

inflammation may be one such strategy. A wealth of animal and human data indicates

that obesity is associated with adipose tissue and systemic inflammation. Inflammation is

a known contributor to CVD in humans and can be successfully targeted to reduce CVD.

Here we will review the etiology and pathogenesis of inflammation in obesity associated

metabolic disease as well as CVD. We will review to what extent these associations are

causal based on human genetic studies and pharmacological studies. The available data

suggests that anti-inflammatory treatments can be used to reduce CVD, but off-target

effects such as increased infection have precluded its broad therapeutic application

to date. The role of anti-inflammatory therapies in improving glycaemia and metabolic

parameters is less established. A number of clinical trials are currently ongoing which

are evaluating anti-inflammatory agents to lower CVD. These studies will further clarify

whether anti-inflammatory agents can safely reduce CVD.

Keywords: obesity, cardiovascular disease(s), inflammation, atherosclerosis, genetic pathway

INTRODUCTION

Obesity is a chronic disease which increases mortality and morbidity and has reached epidemic
proportions (1, 2). Recent data estimates that roughly 604 million adults and 108 million
children worldwide are obese (3). This has led to an increase in obesity-related comorbidities
including cardiovascular disease, type 2 diabetes (T2D), fatty liver disease, dementia, osteoarthritis,
obstructive sleep apnea, and several cancers (3–5). Cardiovascular disease (CVD) is of particular
concern due to its significant mortality, strain on healthcare systems, and loss of labor productivity
(6). Despite therapeutic progress, CVD is the leading cause of mortality in people with obesity,
accounting for∼70% of deaths in people with obesity (5, 6).

The increased risk of CVD, and in particular atherosclerotic CVD (ACVD), in people with
obesity is to a large extent mediated by traditional established risk factors such as insulin resistance,
dyslipidemia, T2D, hypertension, and obstructive sleep apnea (OSA) (7). Despite improved
treatments to target these traditional risk factors, people with obesity remain at risk of ACVD,
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suggesting that additional factors play a role (7). Recent data
indicates that inflammation is an important contributor to
ACVD (8, 9).

Notably, obesity is associated with chronic low-grade
inflammation, which is a plausible mediator of the increased
CVD seen in people with obesity (10–14). Here we will review
the association between inflammation, obesity and ACVD. As
genetically validated therapeutic targets have increased likelihood
of success, we will specifically focus on the genetic evidence
for a causal association between inflammation and cardio-
metabolic disease.

THE ASSOCIATION BETWEEN OBESITY
AND ESTABLISHED CVD RISK FACTORS

Obesity is a chronic disease in which excess adiposity impairs
health (15). It is associated with insulin resistance, dyslipidemia,
T2D, hypertension, and OSA, which are established CVD risk
factors (7, 14). Although conventionally defined by a body
mass index (BMI; weight in kilograms divided by square of
height in meters) >30, this does not uniformly stratify patients
at risk of cardiometabolic disease (16, 17). In contrast, waist-
to-hip ratio (WHR) is a better predictor of both metabolic
disease and myocardial infarction compared to BMI (16, 17).
In a recent observational study from Holland which included
participants from multiple ethnic groups (African Surinamese,
South Asian Surinamese, Turkish, Moroccan, Ghanaian, and
Dutch Caucasian), WHR was the most reliable predictor of
T2D, overall and across ethnic groups, in both men and
women (18). The receiver operated curves (ROC) for WHR
was 0.78 in men and 0.81 for women (18). The ROC for
BMI was 0.68 and 0.74 in men and women, respectively
(18). Observational data also indicates that the odds ratio for
myocardial infarction significantly increased for every successive
WHR quintile (1.15, 1.39, 1.9, and 2.52, respectively) (17). Risk
of myocardial infarction for those in the top two quintiles of
BMI was 7.7%, compared to 24.3% for the top two quintiles
of WHR (17). For each 1 standard deviation increase in WHR,
the odds ratio of myocardial infarction increased by 1.37,
even following adjustment for BMI (17). In contrast, the odds
ratio increased by 1.10 for BMI and 1.02 when adjusted for
WHR (17).

OBESITY AND INSULIN RESISTANCE IN
T2D

Increased WHR, a predictor of insulin resistance and T2D, is
associated with increased centripetal adiposity and/or lack of
femoro-gluteal adiposity (16, 19). Genetic analyses suggest that
these are causal associationsmediated by reduced adipose storage
capacity (7, 20). Weight gain in the presence of reduced adipose
storage capacity leads to ectopic lipid deposition in the liver,
skeletal muscle, and pancreas and increase in visceral adipose
tissue (Figure 1) (13, 14). The BMI threshold at which this occurs
is variable and influenced by age, ethnicity, sex, and genetic
factors (13, 14). Although obesity rates are higher in women,

pre-menopausal women are protected from metabolic disease
(21–26). Conversely, men develop metabolic disease at lower
BMI (21–26).

Ectopic lipid in liver and skeletal muscle has been causally
implicated in insulin resistance via lipid intermediaries such as
diacylglycerol and ceramides (27, 28). Pancreatic lipid deposition
likely impairs beta cell function (29). Weight loss of 5–10%
can reduce ectopic lipid, thus improving insulin sensitivity and
glycemica (30). Greater weight loss of ∼15% or more, either
through reduced caloric intake or bariatric surgery (the most
efficacious weight loss treatment), can reverse ectopic lipid
deposition and potentially reverse insulin resistance and T2D
(29, 31–33).

OBESITY AND INSULIN RESISTANCE
IN DYSLIPIDEMIA

Patients with obesity and insulin resistance frequently have
elevated triglyceride (TG), triglyceride rich lipoproteins (TRL),
low high density lipoproteins (HDL), and increased small dense
low density lipoproteins (LDL) (34). The increase in TG and
TRL is likely mediated by compensatory hyperinsulinaemia,
secondary to insulin resistance in the presence of increased
lipid flux to liver and intetsine (34). Consequently, hepatic
lipogenesis, and production of TRL from liver (very low-
density lipoprotein secreted in the fasted and post-prandial
state) and intestine (chylomicrons secreted after meals) increases
(34). Increased TG/TRL results in triglyceride enriched HDL
which has enhanced hepatic clearance which reduces reverse
cholesterol transport and lowers HDL. Increased TRL also yields
smaller dense LDL particles (13). TRL undergo lipolysis to yield
remnant particles. Both TRL remnants and small dense LDL
likely have atherogenic properties (13). Human genetic studies
have consistently implicated TRL as a causative risk factor for
CVD (35–39).

Weight loss improves dyslipidemia in patients with insulin
resistance (13). Weight loss through lifestyle intervention,
pharmacotherapy, and bariatric surgery have been shown to
lower plasma triglycerides (TG) and increase plasma HDL
but whether this translates to lower CVD is not conclusively
established (40–42) Pharmacotherapy to reduce plasma TG,
which does not always result in reduced TRL/TRL remnant
particle number, has not consistently translated to reduced
CVD (13).

OBESITY AND INSULIN RESISTANCE IN
HYPERTENSION

Obesity is estimated to contribute to ∼70% of the risk for
primary/essential hypertension (14, 16). Mechanical effects
of visceral fat on natriuresis, leptin-mediated sympathetic
nervous system activation as well as increased renin-
aldosterone action likely contribute to obesity-associated
hypertension (43–45).

Obesity is associated with a 2-fold increased risk in OSA
and prevalence of OSA in those with obesity has been
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FIGURE 1 | Proposed mechanisms linking obesity, inflammation and cardiovascular disease. When adipose storage capacity is exceeded, increased lipid flux, and

ectopic lipid in liver, skeletal muscle, and pancreas reduce insulin sensitivity and beta cell function. Compromised adipose storage is also associated with adipose and

systemic inflammation, which can potentially potentiate atheroma development. Increased TRL and FFA, which are features of insulin resistance, may also increase

inflammation and atheroma development. FFA, free fatty acids; IR, insulin resistance; TRL, triglyceride rich lipoproteins.

reported to be ∼45% (46, 47). Treatment of OSA with
continuous positive airway pressure (CPAP) therapy induces
small but significant improvement in hypertension (48). Weight
loss through lifestyle changes, the medication liraglutide and
bariatric surgery attenuates many of the underlying pathological
processes contributing to hypertension and improves/resolves
hypertension, especially early in the course of the disease before
end organ damage (40, 41, 43, 49).

OBESITY, INSULIN RESISTANCE AND
INFLAMMATION

As alluded to earlier, compromised adipose storage capacity
in the setting of weight gain is causally associated with
cardiometabolic disease. WHR is a better predictor of
compromised adipose storage and cardiometabolic disease than
BMI (16, 19). Compromised adipose storage is associated with
adipose hyperplasia and hypertrophy and hypoxia with apoptosis
(50, 51). This is associated with recruitment of inflammatory
cells including macrophages, neutrophils, and lymphocytes (50).
Compromised adipose storage is also associated with increased
visceral adipose tissue and visceral adipose inflammation
(50). Adipose tissue macrophages in insulin resistant states
are polarized to a more inflammatory phenotype and secrete
inflammatory cytokines including tumor necrosis factor-alpha
(TNF-alpha), interleukin-1beta and interleukin-6 (Table 1)
(50, 52). Administration of TNF-alpha in mice induces insulin
resistance, while attenuation of TNF-alpha with genetic
or pharmacologic manipulation protects against metabolic
dysfunction (52). TNF-alpha has been shown to increase the
activity of kinases such as c-Jun N-terminal kinases (JNK 1 and
2) and I kappa B Kinase (IKK), which phosphorylate insulin
receptor substrate at serine residues to impair insulin action

(52). Adipose inflammation is also associated with recruitment
of neutrophils which release neutrophil elastase, promoting
further increase in adipose tissue macrophage infiltration (52).
Innate lymphoid cells, CD4+ helper T cells, cytotoxic CD8+
cells and innate-like T cells further propagate inflammation with
secretion of inflammatory cytokines including, TNF-alpha and
gamma-interferon (50). In animal models, gamma-interferon
has been implicated in impaired insulin signaling, reduced
adipogenesis, and adipose storage via JAK-STAT signaling (50).
Depleting these sub-populations of lymphocytes in obesity in
mouse models is associated with protection against metabolic
disease (50).

Free fatty acids, which are increased in obesity and insulin
resistance, can directly impact inflammation. Palmitate, which
is increased in high fat fed mice, activates the NACHT, LRR,
and PYD domain-containing protein 3 (NLRP3) inflammasome
protein complex which secretes caspase-1 (52). This results
in cleavage and secretion of active IL-1beta and Il-18 from
macrophages (52, 53). In addition to insulin resistance, IL-1 beta
has been implicated in impaired insulin secretion and T2D (53).
Fatty acid can also promote inflammation via activating TLR4
(toll like receptor 4), which in turn can activate macrophages and
TNF-alpha production (52).

IMPACT OF INFLAMMATION ON
ATHEROMA DEVELOPMENT

Inflammation plays an important role in the development
of an atheroma (8, 9). Blood vessels have three layers:
tunica intima (facing the lumen), tunica media, and tunica
adventitia. Vessel wall damage in the tunica intima layer and
endothelial dysfunction are early steps in the pathogenesis of
atherosclerosis (8). Under these circumstances, endothelial
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TABLE 1 | Critical regulators of inflammation in obesity and CVD (50, 52).

Impact on metabolic function Impact on atherosclerosis

Free fatty acid - Contributes ectopic lipid

deposition and insulin

resistance and type 2 diabetes

- Activates NLRP3

inflammasome and TLR4 in

macrophages

IL-6 - Impairs insulin sensitivity and

increases T2D risk in genetic

analyses

- Secreted by macrophages to

further increase inflammation in

atheromas

PAI-1 - FFA increases production

- Elevated levels found in

individuals with abdominal

fat accumulation

- Increases risk of intravascular

thrombus and CVD by

inhibiting tPA and contributing

to fibrinolysis and

atherothrombosis

TNF-alpha - Secreted by macrophages in

adipose tissue. Implicated in

reduced insulin signaling in

animal models

- Secreted by macrophages and

inflammatory cells in atheromas

to further increase inflammation

- Causally implicated in CVD in

Mendelian randomization

analysis

FFA, free fatty acid; IL, interleukin; IR, insulin resistance; PAI-1, plasminogen activator

inhibitor-1; T2D, type 2 diabetes; TG, triglycerides; TNF, tumor necrosis factor; tPA, tissue

plasminogen activator; WC, waist circumference.

express adhesion molecules such as vascular cell adhesion
molecule-1 (VCAM-1) and chemoattractant proteins such as of
monocyte chemoattractant protein 1 (MCP-1), which recruit
inflammatory cells including monocytes and lymphocytes to
the endothelium and can further propagate inflammation by
secretion of cytokines such as interleukin-1, interleukin-6,
TNF-alpha, and colony stimulating factor 1 (8). Monocytes
recruited to vessel mature into macrophages and take up
cholesterol particles to form foam cells (8). The cytokine milieu
promotes vascular smooth cell proliferation within the intima,
which with the secretion of extracellular matrix gives further
propagates atheroma development (8). Animal data indicates
that vascular smooth muscle cells from the tunica media can
migrate to the intima and undergo metaplasia and acquire
foam cell markers (8, 9). Apoptosis and ineffective clearance
of phagocytes and other inflammatory entities promotes the
development of a necrotic core in the atherosclerotic lesion
(8, 9). Superficial erosion of the plaque due to loss of the
endothelial monolayer can result in entrapped neutrophils
releasing “neutrophil extracellular traps,” which further
propagate inflammation and thrombus formation with healing
leading to stenosis of the vessel (8, 9). Plaque rupture activates
a coagulation cascade and thrombus formation with acute
ischemia/infarction (8).

Obesity and associated inflammatory processes can potentially
modulate these steps in atheroma development. Vessel wall
damage and recruitment of inflammatory cells is likely enhanced
under conditions of systemic inflammation (8). TRL, which
are increased with insulin resistance, promote inflammation
directly given their apolipoprotein CIII content and by delivering
cholesterol to macrophages in the atheroma (8). In in vitro
studies, TRL remnant particles upregulate the expression MCP-
1, a key step in the recruitment of monocytes to vascular

endothelial cells (54). It also upregulates a number of cellular
adhesion molecules such as VCAM-1 (vascular cell adhesion
molecule-1) and ICAM-1 (intracellular adhesion molecule-1).
These processes facilitate retention of monocytes and formation
of foam cells (54). TRL particles promote vascular smooth
muscle cell proliferation in vitro, a key step in plaque
progression. In animal models, insulin resistance, and associated
hyperinsulinemia is associated with selective insulin resistance
in the vasculature; insulin signaling via Phosphoinositide 3-
kinase (PI3K) is impaired but insulin signaling via mitogen-
activated protein kinase (MAPK) signaling is increased (13).
The increasedMAPK signaling promotes vasoconstriction due to
endothelin-1 secretion, proliferation of vascular smooth muscle
cells, secretion of pro-coagulant factors such as Plasminogen
activator inhibitor-1 (PAI-1) and secretion of chemo-attractant
proteins and cell adhesion molecules which promote recruitment
of macrophages (13).

To what extent obesity associated inflammation modulates
atheroma development in people with established CVD is
not established. Circulating C-reactive protein, a marker of
inflammation, is a predictor of CVD and is higher in people
with obesity, in particular centripetal adiposity (55). Among
individuals with high CRP free of CVD, those with obesity
have higher CRP and higher coronary artery calcium scores and
carotid artery intima thickness (55). However, this association
appeared to be independent of CRP (55). Data on other
inflammatory markers were unavailable—notably Mendelian
randomization indicates that raised CRP per se does not cause
CVD (56).

CLONAL HEMATOPOIESIS OF
INDETERMINATE POTENTIAL

Somatic mutations in hematopoietic stem cells leads to clonal
expansion of hematopoietic cells and has been implicated in
various hematological malignancies (54, 57, 58). The majority of
patients with clonal hematopoiesis do not develop malignancy
(clonal hematopoiesis of indeterminate potential) (54, 57, 58).
This is however associated with increased risk of CVD in part due
to increased secretion of pro-inflammatory cytokines, including
IL-6, with greater recruitment and retention of macrophages
in plaques and increased vascular smooth muscle proliferation
contributing to ACVD and heart failure (54, 57, 58).

GENETIC EVIDENCE FOR A POTENTIAL
ROLE FOR OBESITY ASSOCIATED
INFLAMMATION IN ACVD

Circulating cytokines: As alluded to above, obesity and insulin
resistance are associated with increased circulating concentration
of inflammatory cytokines including TNF-alpha, IL-1beta, IL-6,
and Il-18 (54, 57, 58).Mendelian randomization studies assess the
genetic association between a trait and a downstream outcome.
Such associations are suggestive of a causal link, providing the
genetic instrument does not affect an intermediary trait that can
influence the downstream outcome (59). Genetically-determined
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increase in TNF have been associated with ACVD, suggesting
a causal link (60). However, it also protects against malignancy
(60). Whether this impacts insulin resistance or T2D is not
established. Genetically-determined increase in IL-6 action is
associated with both increased risk for T2D and CVD, suggesting
shared underlying etiology (61, 62). Data from genetic and
pharmacologic studies of IL-1 receptormodulation have not been
consistent. Genetically-determined IL-1 receptor antagonist was
surprisingly has been associated with increased CVD; whether
this is due to dual IL-1 alpha and beta reduction is not clear (62).
Genetically modulated IL-1 receptor activity does not impact
T2D risk (63). Notably, pharmacological IL-1beta blockade has
been shown to reduce CVD in a large randomized control trial
with no effect on progression of glycemia (64). Genetically-
determined IL-18 is not associated with either T2D or CVD
(62, 63).

CHIP: In the Women’s Health Initiative study, CHIP
increased with increased BMI in post-menopausal women
(highest in those with BMI>30 vs. BMI 27–30 kg/m2 compared
to normal weight women) (65). This suggests obesity may be
associated with increased CHIP. CHIP may also be increased in
patients with T2D (66). A potential contributor to CHIP in T2D
and obesity may be the adipokine leptin (67). Circulating leptin
concentration is proportional to fat mass and increase/decrease
with fat gain/loss (68). Leptin increases haematopoiesis and
activates Janus kinase 2 (JAK2), a critical node for CHIP (66, 69).
In mice, reduction in leptin via exercise-induced weight loss
reduced CHIP (67).

In summary, the available evidence suggests increased
circulating IL-6 and TNF-alpha, which are features of obesity
associated insulin resistance, likely causally increase risk of
CVD. CHIP, a more recently reported CVD risk factor, may be
increased in T2D and obesity.

PHARMACOLOGICAL EVIDENCE
SUPPORTING A ROLE OF INFLAMMATION
IN T2D AND CVD

Recently, there has been pharmacologic evidence for the
association between inflammation and CVD (Table 2). The
JUPITER trial concluded that individuals with increased levels of
the inflammatory biomarker C-reactive protein (CRP) responded
to rosuvastatin pharmacotherapy and had significant decreases
in major cardiovascular events, regardless of presence of
dyslipidemia (71). Statins are known to lower cholesterol, as
well as high-sensitivity CRP (71). Healthy adults with a high
CRP treated with rosuvastatin were found to have, on average,
a 47% lower risk of myocardial infarction, stroke, or death
from cardiovascular causes compared to those who did not
receive statin therapy (71). This confirms that CVD is an
inflammatory disorder and that inflammatory markers can be
utilized to stratify patients, independent of traditional risk factors
such as LDL. ∼40% of patients in the trial had evidence of
metabolic syndrome; to what extent centripetal adiposity/obesity

modulated atherosclerosis and the response to statin treatment is
not known (71).

A number of anti-inflammatory agents have been evaluated
in CVD outcomes trials. These agents are not known to
affect weight or metabolic disease and thus any effects are
independent of weight loss and metabolic status (64, 74,
78–81). The CANTOS trial evaluated the role of IL-1 beta
antagonism on the incidence of T2D and CVD. CVD decreased
by ∼15% in patients with elevated hsCRP, an effect seen with
and without T2D (64, 78). These finding are scientifically
important as they represent the first convincing evidence that
a strategy that targets a specific inflammatory pathway reduces
CVD. The long term feasibility of this therapy remains to
be determined given potential side effects, including sepsis,
and cost (64). Intriguingly, although canakinumab reduced
CVD in patients with T2D, it did not affect glycaemia in
the long term (78). It did not prevent incident T2D in
normoglycaemic patients and those with pre-T2D. Furthermore,
the magnitude of reduction in CVD risk in patients with T2D
compared to those without (78). These results suggest that
IL-1b contributes to CVD risk in patients with inflammation
but likely does not play a major role in the etiology
of T2D.

The CALCOT trial evaluated the use of colchicine in
individuals with a recent myocardial infarction (79). It concluded
that low-dose colchicine resulted in a significantly lower risk
of cardiovascular events compared to placebo post-myocardial
infarction (79). However, there was an increase in incidence of
pneumonia in the treatment group (79). These CVD benefits
of colchicine were confirmed in the Low Dose Colchicine 2
(LoDoCo2) study, although there was a trend toward increased
non-CVD death (82). Colchicine inhibits tubulin polymerization
and microtubule generation and its role in CVD is linked to
inhibition of the NLRP3 inflammasome (79). Although initial
data suggested colchicine may be beneficial for improving
insulin sensitivity and glycemia, this has not been subsequently
confirmed (79–81).

In the CIRT study, low-dose methotrexate, an anti-
inflammatory agent, did not reduce levels of interleukin-1b,
interleukin-6 or CRP, nor did it result in a difference in
cardiovascular events compared to placebo (74). Methotrexate
inhibits dihydrofolate reductase which may not be of relevance
in CVD (9, 74). Darapladib, an lp-PLA2 (Lipoprotein-associated
phospholipase A2) inhibitor, and varespladib, an sPLA2
(secretory phospholipase A2) inhibitor, have not been promising
either in clinical trials (9). They target phospholipase A2 which
are secreted by inflammatory cells and postulated to contribute
to atherosclerosis. Notably genetic studies of this pathway
in humans have not consistently showed an association with
CVD (9).

There is considerable interest in utilizing tocilizumab, an IL-
6 receptor antagonist, for treating CVD and T2D as this is a
genetically validated target as discussed above (9). However, a
potential concern with IL-6 inhibition is an increase in LDL due
to reduced clearance (83).

In summary, there is growing evidence that reducing
inflammation can lower incident CVD but off-target effects,
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TABLE 2 | Pharmacologic therapies for CVD targeting inflammatory pathway.

Drug Trial (Author) Mechanism Study findings Comments

Anakinra VCU-ART3 Abbate

et al. (70)

Decrease IL-1 receptor CRP AUC decreased with

treatment in patients with STEMI

(median 67 vs. 214; p < 0.001)

Significantly decreased death,

new onset HF or

death/hospitalization for HF as

well; effets short-term (rebound

CRP and IL-6 upon stopping);

not supported by genetic studies

Canakinumab CANTOS Ridker et al.

(64)

Decreasing IL-1b Nonfatal MI, stroke or CV death

decreased with the 150mg dose

(HR 0.83; p = 0.005)

Independent of dyslipidemia;

patients had high CRP at

baseline; higher incidence of fatal

infection compared to placebo;

no significant impact on

all-cause mortality

Colchicine CALCOT Tardif et al.

(71)

Decrease CRP, NLRP3

inflammasome inhibitor

CV death, resuscitated cardiac

arrest, MI, stroke, or urgent

hsopitalization for angina

requiring coronary

revascularization decreased with

treatment (HR 0.77; p = 0.02)

Significant GI side effects

Darapladib SOLID-TIMI 52

O’Donoghue et al. (72)

Decrease lp-PLA2 No significant difference in major

coronary events with treatment

(HR 0.99; p = 0.78)

Genetic studies inconsistent;

lp-PLA2 did not decrease

inflammatory markers

Low dose IL-2 LILACS Zhao et al. (73) Promotes regulatory T-cells Results pending Effective in preclinical data; more

selective T-cell regulators than

Aldesleukin being developed

Methotrexate CIRT Ridker et al. (74) Dihydrofolate reducatase

inhibitor

Nonfatal MI, stroke or CV death

not significantly changed with

treatment (HR 0.96; p = 0.91)

Treatment did not decrease

inflammatory markers; pathway

may not be relevant

Rosuvastatin JUPITER Ridker et al.

(71)

Decrease high-sensitivity

CRP

MI, stroke or death from CV

causes decreased with

treatment (HR 0.56; p<0.00001)

Independent of dyslipidemia

Tocilizumab ASSAIL-MI Broch et al.

(75)

Anti-IL-6 receptor antibody Myocardial salvage in acute

STEMI larger with treatment

(difference 5.6; p = 0.04)

No significant difference in infarct

size between treatment and

placebo; non-specific blocker of

IL-6 signalling

Varespladib VISTA-16 Nicholls et al.

(76)

Decrease sPLA2 CV death, nonfatal MI, nonfatal

stroke and unstable angina did

not significantly decrease with

treatment (HR 1.25; p = 0.08)

Trial stopped early for greater risk

of MI with treatment;

non-specific treatment; pathway

not supported by Mendelian

randomization

Xilonix El Sayed et al. (77) Anti-IL-1a antibody MACE did not significantly

change with treatment (9% vs.

24%; p = 0.22)

Limited clinical data available; did

not lower CRP

AUC, area under the curve; CRP, C-reactive protein; CV, cardiovascular; GI, gastrointestinal; HF, heart failure; HR, hazard ratio; IL, interleukin; Lp-PLA2, lipoprotein-associated

phospholipase A2; MACE, major adverse cardiovascular events; MI, myocardial infarction; S-PLA2, secretory phospholipase A2; STEMI, ST-segment elevation myocardial infarction.

in particular infection/sepsis, are a concern. In contrast, we
do not have convincing evidence yet that anti-inflammatory
therapies lead to sustained reduction in T2D and metabolic
disease (72, 73, 75–77, 84).

IMPACT OF WEIGHT LOSS

Weight loss can potentially reduce inflammation and improve
multiple CVD risk factors. In the LOOK-AHEAD trial, modest
weight loss associated with intensive lifestyle changes was
associated with improvement in cardiometabolic parameters in
patients with T2D but overall no CVD benefit was seen (42).
Post-hoc analyses suggest that those who achieved sustained

weight loss of 10% or more had a reduction in CVD
(85). Similarly, weight loss through pharmacotherapy improves
cardiometabolic parameters, but whether this translates to
benefits in major CVD outcomes is unknown (40, 86). GLP-
1 receptor agonists (GLP-1RA) have beneficial cardiovascular
outcomes in patients with T2D (86). The exact mechanisms
have not been delineated but are likely independent of glucose
lowering as not all glucose lowering drugs prevent CVD (87).
Further, the effects are likely independent of blood pressure
lowering and weight loss as the GLP-1RA albiglutide reduces
CVD despite no significant reduction in weight or blood pressure
(88). Animal models suggest that GLP-1 may have beneficial
effects on vascular inflammation (89). Higher doses of GLP-1
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analogs are now being used and evaluated as weight loss agents
(40, 90). Whether these agents will improve cardiovascular
outcomes remains to be seen. The SELECT study will evaluate
the effect of 2.4mg once weekly of semaglutide on heart disease
and stroke in patients with obesity and CVD (NCT03574597).

To date, bariatric surgery remains the most efficacious weight
loss treatment and improves multiple metabolic parameters,
including adipose tissue and systemic inflammation (51, 70,
91, 92). Retrospective data analysis suggests that bariatric
surgery is associated with reduced major adverse cardiovascular
outcomes in patients with obesity both with and without T2D
(70, 91–93). The extent to which this is mediated by reduced
inflammation secondary to weight loss will require more detailed
mechanistic studies.

EFFECT OF WEIGHT LOSS ON
INFLAMMATORY MARKERS

As discussed earlier, increased WHR is likely causally associated
with increased adipose and systemic inflammation. Consistent
with that weight loss is associated with reduced adipose and
systemic inflammation. Bariatric surgery is associated with
decreases in CRP and interleukin-6 concentrations in proportion
to weight less, however, TNF-alpha levels did not change (51, 94)
Despite this, insulin resistance was not normalized and some
adipose pathology remained post-surgery (51). Lifestyle weight
loss interventions, with or without statins, have also been found
to decrease CRP but whether this translates to reduced CVD
is not established (95). Liraglutide treatment, which is known
to reduce CVD in people with T2D, has been associated with
reductions in inflammatory markers, but to what extent this is
mediated by weight loss is unknown (40).

CONCLUSION

Although considerable progress has been made in reducing
the burden of CVD, it remains the leading cause of mortality
in people with obesity. Thus, further therapies are needed
to reduce the burden of CVD. Inflammation is a key
mediator of atherosclerosis and can potentially be targeted for
reduction in CVD; its role in treating T2D and metabolic
disease is less established. However, to date, lack of efficacy,
and off-target effects have limited the broad utility of anti-
inflammatory treatments. The emergence of more “omics” data
will likely identify further anti-inflammatory targets. Whether
this translates to reduced cardiometabolic disease remains to be
seen. In the interim, we await more data from current clinical
trials evaluating anti-inflammatory agents to reduce CVD. There
is emerging observational data that substantial weight loss,
through bariatric surgery, may reduce CVD. The extent to
which this is mediated by reduction in inflammation remains to
be determined.
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