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Lymph nodes (LNs) are crucial for the orchestration of immune responses. LN reactions

depend on interactions between incoming and local immune cells, and stromal cells. To

mediate these cellular interactions an organized vascular network within the LN exists.

In general, the LN vasculature can be divided into two components: blood vessels,

which include the specialized high endothelial venules that recruit lymphocytes from

the bloodstream, and lymphatic vessels. Signaling via TNF receptor (R) superfamily (SF)

members has been implicated as crucial for the development and function of LNs and the

LN vasculature. In recent years the role of cell-specific signaling of TNFRSF members in

different endothelial cell (EC) subsets and their roles in development and maintenance of

lymphoid organs has been elucidated. Here, we discuss recent insights into EC-specific

TNFRSF member signaling and highlight its importance in different EC subsets in LN

organogenesis and function during health, and in lymphocyte activation and tertiary

lymphoid structure formation during inflammation.

Keywords: LN development, TLS, inflammation, LN vasculature, endothelial cell, TNFR superfamily, NF-κB

signaling

INTRODUCTION

Lymph nodes (LNs) are positioned at strategic sites throughout the body where they are essential
for initiating and shaping immune responses. Via the vascular system soluble factors and cells are
transported from peripheral tissues into the LNs, which is crucial for the initiation of (adaptive)
immune responses (1, 2). Lymph node reactions are tightly regulated and depend on interactions
between incoming immune cells, local immune cells and LN stromal cells (3, 4).

Generally, LNs can be divided into three areas; the cortex containing B cell follicles, the
paracortex consisting predominantly of T cells, and the medulla representing the primary
maturation site of antibody producing plasmablasts (1, 2). This spatial organization is orchestrated
by LN stromal cells, that include distinct fibroblastic reticular cell subsets (FRCs) and endothelial
cells (EC) (4, 5). The FRCs generate the highly organized scaffold network and comprises distinct
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stromal subsets such as T cell zone reticular cells (TRCs),
marginal reticular cells (MRCs), follicular dendritic cells (FDCs),
medullary reticular cells (MedRCs) and perivascular reticular
cells (PRCs), reviewed elsewhere (5). Endothelial stromal cells
can be divided into blood endothelial cells (BECs) and lymphatic
endothelial cells (LECs). Importantly, the LN blood vessels
include two main components: regular BVs and specialized high
endothelial venules (HEVs) (Figure 1).

Arterial blood that enters the LN flows into capillaries
which proceed into the network of HEVs. High endothelial
venules located within the T cell areas are the sites were
naïve lymphocytes leave the bloodstream to enter the LN
and interact with local cells. After passing through the HEVs
venous blood exits the LN via the efferent blood vessels (4,
6). Afferent lymphatic vessels (LVs) enter the LN and proceed
into subcapsular sinuses (SCSs) that ultimately exit via the
medullary LVs and efferent vessels (3, 7). Via the LVs, lymph
fluid containing both soluble factors and cells is distributed
by the SCSs to mediate interaction with local immune cells
or stromal cells (3). Over the past years increasing attention
has been paid to the role of endothelial cells (ECs) in LN
development and function. More specifically, knowledge is being
gained on EC-specific pathways necessary for LN organogenesis
and function.

Among the signaling cascades that have been recognized
as essential for LN development is signaling via the tumor
necrosis factor receptor (TNFR) superfamily (SF). It is well-
established that signaling of TNFRSFmembers in many cell types
is required for proper LN development and function, including
LN EC subsets.

Here, we present an overview of the EC-specific TNFRSF
member signaling cascades that are important for LN
organogenesis and development and maintenance of the
different LN EC subsets. In addition, the importance of these
cells and signaling pathways during inflammation are discussed,
focusing on LN inflammatory reactions and development of
tertiary lymphoid structures (TLSs). Lastly, we will discuss
whether targeting of EC-specific TNFRSF member signaling
may hold potential as a therapeutic target in the treatment of
inflammatory diseases.

DEVELOPMENT OF LYMPH NODES

Development of LNs starts around embryonic day (E) 9 at the
same time that ECs start budding from the anterior cardinal
vein and begin to express the lymphatic EC (LEC) marker
lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1).
Between E12.5-14.5, CD45+CD4+CD3−α4β

+

7 RORγt+IL-7Rα+

lymphoid tissue inducer (LTi) cells are recruited into the LN
anlagen (8, 9) a process that is dependent on interactions with
local stromal cells (10). Recently, it was demonstrated that CD4−

pre-LTi cells egress from venous vessels at locations where there
is low coverage of smooth muscle cells (SMCs) (11). These
pre-LTi cells then mature locally into CD4+ LTi cells that are

transported to and retained at the site of LN development by the
LVs (11).

Only once enough LTi cells appear and are retained at
the site of the LN anlagen, definitive formation of LNs is
started (12). Clustering of LTi cells that express both receptor
activator of nuclear factor kappa B (RANK, also known as TNF-
related activation-induced cytokine (TRANCE) receptor, and
TNFRSF11A) and RANK ligand (RANKL, TRANCE, TNFSF11)
leads to autocrine production of lymphotoxin α1β2 (LTα1β2,
TNF-C) on LTi cells that engages the LTβ receptor (LTβR,
TNFRSF3) on the surrounding stromal cells (13). Signaling via
the RANKL-RANK and LTα1β2-LTβR axes creates a positive
feedback loop, which leads to the recruitment of more LTi cells
and expression of adhesion molecules by stromal cells. The
differentiation of these mesenchymal lymphoid tissue organizer
(LTo) cells is necessary to further support retention of LTi
cells at the LN anlage (8, 14, 15). Next, the stromal LTo cells
start to produce chemokines and cytokines that are necessary
for definitive formation of LNs (8, 9, 15–18). Key molecules
expressed by the LTo cells via the LTα1β2-LTβR signaling axis
at this point include mucosal addressin cell adhesion molecule
(MAdCAM)-1, vascular cell adhesion molecule (VCAM)-1, and
intercellular adhesion molecule (ICAM)-1, and the chemokines
C-X-C motif ligand (CXCL)13, C-C motif ligand (CCL) 19 and
CCL21 (14, 19, 20). As the interactions between incoming (LTi)
cells and local stromal (LTo) cells continue, a premature LN is
formed that will ultimately develop into a fully functional LN a
process that largely relies on TNFRSF member signaling.

TNFR Superfamily Signaling in LN
Development
Recently, more insights have been obtained into the importance
of TNFRSF member signaling in ECs in the context of LN
development. Ligation of TNFRSF members, including TNFRI,
LTβR and RANK, predominantly activates nuclear factor kappa
B (NF-κB) signaling (Figure 2). This signaling cascade can be
divided into two distinct routes, the canonical and noncanonical
NF-κB pathways (21). Canonical NF-κB signaling is dependent
on activity of the IκB kinase (IKK) complex which is comprised
of three subunits; IKKα, IKKβ and the regulatory subunit NF-κB
essential modulator (NEMO, IKKγ). Activation of this complex
leads to phosphorylation-induced degradation of IκBα resulting
in the rapid nuclear translocation of the dimers p65(RelA)/p50
(22). Non-canonical NF-κB signaling is dependent on NF-κB
inducing kinase (NIK) activity. Under homeostatic conditions,
TNFR associated factor (TRAF) 2 and 3 (for LTβR and RANK
signaling) or (for TNFRI signaling) 5 act as negative regulators
of NIK by mediating its ubiquitination. Upon receptor ligation
TRAF2 and TRAF3/5 are degraded by cellular inhibitor of
apoptosis protein 1 and−2 (cIAP1/2), resulting in stabilization
and accumulation of NIK, which enables its complex formation
with IKKα (23). Activity of the NIK-IKKα complex leads to
phosphorylation and degradation of p100 into p52 which can
form dimers with RelB that are able to translocate to the
nucleus. Although canonical and noncanonical NF-κB signaling
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FIGURE 1 | The lymph node vascular structure. Organization of the LN vasculature (right). The LN vasculature consists of BVs, HEVs and LVs. BVs can be found

throughout the whole LN, with specialized HEVs located within the T cell areas. Afferent LVs enter the LN where they transit into sinuses that ultimately exit via the

efferent LV. HEVs are characterized by cuboidal ECs, pericyte coverage and a network of FRCs. HEV are specialized BVs that orchestrate extravasation of lymphocytes

into the LN (top left). In contrast to HEVs, normal BVs are lined by flat ECs and have minimal pericyte coverage (middle left). LVs are characterized by overlapping

lymphatic ECs that allow influx of (dendritic) cells and soluble factors into the vessel. Within the LN the LVs transit into sinuses that allow exit of the lymph fluid and its

cells and soluble factors into the LN (lower left). LN, lymph node; BV, blood vessel; HEV, high endothelial venule; LV, lymphatic vessels; FRC, fibroblastic reticular cell.

are thought to follow two distinct routes, it has been shown
that crosstalk exists between the two pathways. Recently, it was
demonstrated that NIK can also drive canonical NF-κB signaling
in EC (21), indicating that the effects of NIK are not solely
restricted to the noncanonical pathway.

The importance of TNFRSF signaling in LN development

and function is underlined by many studies in animal models

with altered function of different components of the TNFR-

NF-κB signaling cascades (Table 1). It has for instance been

demonstrated that LTβR signaling is essential for viability,
expansion and differentiation of LTo cells, as well as for
recruitment of LTi cells (14, 19, 46). In addition, treating

pregnant mice with anti-RANKL antibodies blocks LN formation
in the offspring (47) and Rankl−/− (43) and Rank−/− (48) mice
lack all LNs (25). Although early studies into TNFRSF member
signaling were largely facilitated by global knock out (KO)
models, the importance of EC-specific signaling via TNFRSF
members in LN formation and function has recently been
demonstrated with the aid of cell-specific KO models. For
example, EC-specific Ltbr or Nik ablation impairs LN formation
and function (12, 44, 45) and LEC-specific RANK signaling is
shown to be essential for interaction with LTi cells (12). Thus,

EC-specific signaling via members of the TNFRSF is crucial for
LN development and function.

TNFR Superfamily Members in High
Endothelial Venule Development and
Function
Recruitment of lymphocytes from the blood into the LNs occurs
via a network of post-capillary venules, the HEVs (6, 49). These
specialized vessels that are largely restricted to lymphoid organs
differ from regular BVs in that they are lined by cuboidal ECs,
that express molecules critical for recruitment of immune cells
(6, 50). Many of these key HEV markers are controlled via
NF-κB signaling, including peripheral node addressin (PNAd),
MadCAM-1, and other adhesion molecules (i.e., VCAM-1 and
ICAM-1) and chemokines (i.e., CCL19 and CCL21) (51). In PLN,
the most defining HEV marker is the adhesion molecule PNAd,
which is a ligand for L-selectin+ lymphocytes. PNAd mediates
rolling and tethering of lymphocytes on HEVs thereby allowing
interaction of CCR7, expressed by lymphocytes, with CCL21 on
HEVs (52). PNAd can be detected by binding of the MECA-79
antibody that binds to 6-sulpho sialyl Lewisx on extended core-
1 branched O-linked sugars on CD34, glycosylation-dependent
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FIGURE 2 | Role of EC-specific TNFRSF member signaling in LN development. Signaling via TNFRSF members leads to NF-κB signaling. In response to receptor

ligation TRAF2 and−5 are degraded via activity of ciAPl/2 leading to activation of NF-κB signaling. Canonical NF-κB signaling is dependent on activity of the IKK

complex. Activation of IKKleads to phosphorylation-induced degradation of Iκβα, allowing nuclear translocation of p65/p50 dimers and transcription of canonical

NF-κB target genes. Non-canonical NF-κB signaling is dependent on accumulation of NIK which forms a complex with IKKα. Activity of the NIK/IKKα complex leads

to phosphorylation-induced degradation of plOO into p52 and p52/ReiB dimer translocation to the nucleus resulting in transcription of non-canonical NF-κB target

genes. In EC, NIK/IKKα complex activity can also induce canonical NF-κB signaling. For each TNFR its role in the different LN EC subsets is shown. HEC, high

endothelial cell; LEC, lymphatic endothelial cell; TNFRI, tumor necrosis factor receptor I; LTβR, lymphotoxin beta receptor; RANK, receptor activator of nuclear factor

kappa B; LIGHT, TNFSF 14; TRAF, TNFR associated factor; clap, cellular inhibitor of apoptosis protein; NEMO, NF-κB essential modulator; IKK, IKB kinase; NIK;

NF-κB inducing kinase.

adhesion molecule (GlyCAM)-1, podocalyxin, endomucin and
nepmucin (53, 54). Expression of PNAd is considered to be an
exclusive feature of HEVs, whereas other markers expressed by
HEV, such as MAdCAM-1 and CCL21, can also be expressed
by other stromal cells, including LECs (55). Interestingly, it has
recently been shown that expression of these markers by HEV
can be relatively heterogeneous during LN homeostasis (56).

True HEVs are not present until birth when EC begin to form
a network in the T cell areas surrounding the B cell follicles,
which is critical for completion of the LN infrastructure and
function (12). Initiation of HEV development occurs by ligation
of the TNFRs on blood ECs (BECs) leading to vasculature
growth and HEV formation, followed by entry of lymphocytes
into the LN (44, 57, 58) and completion of the HEV network
around postnatal day (P) 4 (19). It has been proposed that initial
canonical NF-κB signaling via LTα (TNF-β)-TNFRI interaction
generates MadCAM-1+PNAd+ flat HEVs, and that sustained

LTβR and downstream non-canonical NF-κB signaling induces
development of MadCAM-1−PNAd+ cuboidal HECs (6). A
key event in the maturation of HEVs is the simultaneous
upregulation of PNAd and downregulation of MadCAM-1 a
process known as the vascular addressin switch (9, 50, 59). Until
time of birth HEVs express both MAdCAM-1 and PNAd (59).
Next, over a period of 4 weeks there is a change in addressing
expression, eventually leading to MAdCAM-1−PNAd+ HEV
(59). It is suggested that this switch is induced by LTα1β2
expressing DCs originating from the gut (60, 61). These DCs
engage the LTβR on immature HEVs resulting in a decrease of
MAdCAM-1 expression and an increase in PNAd expression
and subsequent homing of lymphocytes (60, 61). Of note, while
MAdCAM-1 expression is completely downregulated in PLN
HEVs, HEVs in LN associated with mucosal tissues continue to
express MAdCAM-1 alongside PNAd (6, 51). Once the switch
from MadCAM-1+PNAd− to MadCAM-1−PNAd+ HEVs is
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TABLE 1 | Overview of LN deficiencies in TNFRSF member or TNFRSF member ligand KO mice.

Transgene Peripheral LN Mesenteric LN References

Global KO

Receptors

Ltbr−/− Absent Absent (24)

Rank−/− Absent Absent (25)

aly/aly Absent Absent (26, 27)

Nik−/− Absent Absent (28)

Ikka−/− Smaller Smaller (29–31)

Relb−/− Present, mild lymphoid depletion NR* (32, 33)

Nfkb2−/− Reduced iln Present (34, 35)

Nfkb1−/− Reduced iln Present (35)

Nfkb1−/−Nfkb2−/− Absent Absent (35)

Rela−/−Tnfr−/− Absent Absent (30)

Tnfr1−/− Similar to WT Similar to WT (29–31)

Ligands

Ltb−/− Absent Present (29, 36–38)

Lta−/− Absent Largerly absent (36, 38–42)

Light−/− Present NR* (37)

Ltb−/−Light−/− Absent Reduced compared to Ltb-/- mice (37)

Rankl−/− Absent Absent (43)

Tnfa−/− Present Present (31, 41)

EC-specific KO

Cdh5creNikfl/fl Reduced, smaller NR* (12)

Cdh5creLtbrfl/fl Reduced, smaller Present (12, 44, 45)

Cdh5creLtbrfl/flNikfl/fl Almost absent NR* (12)

TekcreLtbrfl/fl Smaller Smaller (45)

TekcreLyve1creLtbrfl/fl Smaller Smaller (45)

Lyve1creNikfl/fl Present NR* (12)

Lyve1creLtbrfl/fl Present similar to WT (12, 45)

Lyve1creLtbrfl/flNikfl/fl Reduced NR* (12)

Lyve1creRankfl/fl Reduced NR* (12)

Prox1creRankfl/fl NR NR* (12)

*NR, not reported.

completed, the LTβR needs to be frequently, if not constantly,
engaged in order to maintain a mature HEV phenotype (44,
57, 62). It has been shown that CD11c+ DC can fulfill this
function as they make frequent contact with the HEVs to
establish the LTα1β2-LTβR interaction and downstream NF-κB
signaling that is essential to control PNAd andMAdCAM-1 levels
(57, 60, 63). It is thought that LTβR signaling is the dominant
receptor in maintaining the HEV phenotype since LTβR, but
not TNFRI, blockade leads to the loss of several HEV-specific
markers (57). For instance, interfering with LTβR signaling
during PLN homeostasis influences expression of several genes
involved in cell adhesion and expression of HEV markers
such as Glycam-1 while having no effect on others, including
CCL21 (56).

Although true HEVs only start to develop after birth, a

recent study identified a small subset of EC with characteristics
of HECs already present during embryonic development (45).

These ECs express genes, including Madcam-1, Cxcl13, and
Ccl21, which are also expressed by HECs present after birth

(45). Targeting these embryonic HECs in a TekcreLtbrfl/fl model
resulted in a reduction of LTi cell accumulation and subsequent
defects in LN maturation suggesting that LTβR signaling in
embryonic HECs may play a role in LN formation during
embryogenesis (45).

TNFR Superfamily Members in Lymphatic
Vasculature Development and Function
Lymphatic vessels are blind ending, thin walled, vessels that
are the first entry points for antigen and antigen presenting
cells (APC) from tissues into the LNs (64). Characteristic LV
markers include LYVE-1, prospero homeobox protein 1 (PROX-
1), podoplanin (PDPN), CCL21 and vascular endothelial growth
factor (VEGF) receptors (R)−2 and−3 (55, 65). Via extensions
into the T and B cell areas LVs are able to centralize antigen
presentation, as well as lymphocyte distribution and migration
within the LN, either by simply delivering soluble factors or cells,
or by acting as APCs themselves (1, 66–69).
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Afferent LVs originating from the peripheral tissue branch
into the SCSs located directly underneath the LN capsule, extend
into the T and B cell areas, and exit as efferent vessels (7, 70). Via
these extensions LVs are able to centralize antigen presentation,
as well as lymphocyte distribution and migration within the LN,
either by simply delivering soluble factors or cells, or by acting as
APCs themselves (1, 66–69).

Unlike formation of HEVs, LV formation is already
initiated within the same timeframe as LN formation (8, 9,
11). Details for LV formation have mostly been studied in
inguinal (i) LN as these can already be found prenatally.
In iLN the first event in the development of LVs is the
formation of a capillary-like plexus (11, 71) which matures
into LYVE-1lowVEGFR+ collecting LVs between E15.5-E16.5
(11, 72) ultimately forming a lymphatic cup that surrounds the
developing LN anlagen by E20.5 (11). Remodeling of initial LVs
is dependent on engagement of VEGFR-3 on LECs by VEGF-
C produced by surrounding stromal cells in a LTβR-dependent
manner (20, 73). While the mechanisms underlying VEGFR-3
expression by LECs are not fully understood, at least one study
identified VEGFR-3 as downstream target of canonical NF-κB
signaling (74).

Recently, the details of the sequence of events and the
importance of LECs during iLN development have become
clear (11). Although starting within the same timeframe,
initial formation of the LN anlagen is independent of LEC
differentiation (11, 75). Differentiation of LECs into collecting
LVs is important for uptake and transport of mature CD4+ LTi
cells into the iLN anlagen. In addition, iLN size is also defined by
the number of cells that can be retained a process that depends on
CXCR5-CXCL13 mediated interaction between LTα1β

+

2 LTi cells
and LTβR expressing LTo cells (10, 11). CXCL13 expression by
LTo cells is known to be indispensable for LTi cell retention and
it is now clear that LTβR signaling together with interstitial fluid
flow regulated by collecting LVs can induce LTo cell CXCL13
expression (11).

Recently, the functions of LECs in LN development have
become more clear, aided by studies focusing on the role of LEC-
specific TNFRSF member signaling (12, 45, 76). It was shown
that more than half of LYVE-1CreLtbrfl/flNikfl/fl mice have a loss
of PLNs due to incapacity to attract sufficient LTi cells to expand
the LN anlagen (12). Interestingly, single deletion of either Ltbr or
Nik in LECs does not affect the number of PLN formed (12, 45),
indicating that compensatory mechanisms may take over when
either LTβR or NIK is not functional. In addition, it was shown
that LEC-specific NIK deletion impairs the recruitment of B cells
into the PLN and it is suggested that this might be due to reduced
CXCL13 expression (77). Consequently, LTβR-NIK signaling in
LEC may be crucial for the expansion and maturation of fully
functional LNs. In addition to LTβR signaling, LEC-specific
RANK signaling is involved in LN formation. It is suggested that
interfering with RANK signaling reduces expression of ICAM-1
and VCAM-1 on LECs, leading to impaired LTi cell retention in
the developing LN anlagen (12).

For a long time, the exact role for LECs in LN development
was not completely clear. A recent study using LYVE-1creRankfl/fl

mice suggests that recruitment of LTi cells by LECs is the first
step leading to formation of the LN anlagen (12, 78), whereas

it has also been shown that formation of the LN anlagen can
be initiated in absence of LECs (11, 75). The recent findings by
Bovay et al. provide evidence that although LTi cells may form an
initial LN anlage independently of LECs, LECs are crucial for the
formation of definitive LNs by transporting CD4+ LTi cells that
have egressed from venous locations to the LN anlagen (11).

THE LYMPH NODE VASCULATURE
DURING INFLAMMATION

Blood Vessels
During inflammation soluble factors, antigens, DCs and/or
lymphocytes are drained from the site of insult into the LNs
(79). The inflammatory response that follows leads to an
increase in LN size which mostly relies on remodeling of the
blood vasculature (80–82) and expansion of the LV (83). Once
inflammation is resolved, the vasculature and with that the
complete LN, returns to its homeostatic condition (79).

Under inflammatory conditions the number and
characteristics of the immune cells infiltrating the draining LN
is altered, which triggers changes in the local vasculature. These
changes include general expansion of the LN blood vasculature
to increase blood supply and influx of lymphocytes. Expansion
of the HEV network is regulated by DCs producing VEGF-A,
which directly stimulates HEV growth, and LTα1β2 which ligates
LTβR fibroblastic stromal cells leading to production of more
VEGF-A (57, 81, 84). In addition to alterations in the volume of
lymphocyte influx, the composition of the influx is also changed
which is predominantly caused by a change in the expression
of homing associated molecules and inflammatory chemokines,
that enable recruitment of (activated) immune cells that are not
recruited under homeostatic conditions (50, 85).

Several studies showed that phenotypic changes occur in
HEVs during inflammation without compromising their ability
to recruit naïve lymphocytes (56, 82, 86). These changes suggest
a reversal toward a more immature state, where downregulation
of mature HEVs genes coincides with temporary upregulation of
more immature HEVs genes like MAdCAM-1 (56, 57, 62, 87). It
is proposed that this change in gene expression aids the entry of
LTi and other innate lymphoid cells (ILC) which are necessary
for eventual restoration of the homeostatic architecture (87).
More recently, using single-cell analysis, detailed insights into the
temporary changes occurring in PLNHECs during inflammation
were obtained. Generally, it was shown that temporary changes
include downregulation of several mature HEV genes like
Glycam-1 and Ccl21 during the first few days after immunization,
with a restoration in expression by day 7 post immunization.
However, expression of other HEV markers, including MECA-
79 is maintained, most likely because these are essential for
recruitment of naïve lymphocytes into PLNs. In addition, there
is a temporal upregulation of other adhesion molecules, like
MAdCAM-1 and E- and P-selectin (56).

This remodeling of HEVs and thereby the entire composition
of the LN during inflammatory responses is largely dependent
on engagement of LTβR mediated by LTα1β2-expressing B cells,
among others, and to a lesser extent on classical growth factors
like VEGF-A (57, 81, 88).
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Importantly, during inflammation LTα1β2-LTβR mediated
crosstalk between HEVs and LVs exists: HEVs are demonstrated
to locate around LV, and in some cases HECs that express
LYVE-1 are observed, indicating that during inflammation HEVs
might adopt certain features of LVs (56, 62). These double
positive vessels are mainly found during the first few days after
immunization and eventually disappear. Interestingly, changes
in the LV network seem to occur in parallel with changes in
HEVs, since during the first days following immunization there is
a temporary decrease in LV function, which is restored in parallel
with HEV recovery (62).

Lymphatic Vessels
Lymphatic ECs are among the first cells to react to
inflammatory insults and expansion of the local LVs via
lymphangiogenesis plays an important role during inflammation.
Lymphangiogenesis enables increased transport of fluid, immune
cells and APCs from the site of inflammation into the LN to
initiate the first immune response (62, 89). Lymphatic vessel
remodeling is not only apparent at the site of insult, but also in
the draining LNs (90).

Interestingly, during inflammation there seems to be a strict
spatial and temporal regulation of LN lymphangiogenesis that is
thought to regulate the sequential regulation of DCs and T cells
(90, 91); lymphangiogenesis is first observed in the SCSs, and only
later in the cortical and medullary sinuses (91). In addition to
morphological changes, LECs also alter gene expression during
inflammatory responses including upregulation of many NF-
κB related genes including Icam-1, Vcam-1, Cxcl12 and Ccl21
(55). Of these chemokines, CCL21 is best characterized: it
is upregulated under inflammatory conditions and known to
mediate migration of CCR7+ immune cells (92). Together, this
suggests that LVs are important for initiation and shaping of
immune responses within the LN. Similar to HEV remodeling,
lymphangiogenesis can be reduced by interfering with LTβR
signaling or by depleting (LTα1β2-expressing) B cells, suggesting
concerted action of the LTβR and B cells in lymphangiogenesis
and HEVs plasticity (62, 93).

Once inflammation is resolved there is a return to normal LN
homeostasis, including reversal of the vasculature. However, if
inflammation persists, the inflammatory phenotype of the LN is
maintained, contributing to persistence of inflammation (94, 95).

TERTIARY LYMPHOID STRUCTURE
FORMATION

In addition to changes in LNs, persistent inflammation and
antigen stimulation can lead to local formation of lymphoid
like tissues, which can vary from unorganized cellular infiltrates
to highly organized tertiary lymphoid structures (TLSs) (96).
TLSs resemble LNs, in that they are characterized by a network
of activated stromal cells and FDCs, as well as the presence
of PNAd+ ECs that represent the HECs in LN. In addition,
TLSs are composed of distinct B and T cell areas. But in
contrast to LNs, TLSs lack a capsule and independent afferent
LVs (96, 97). Emerging evidence suggests that, in addition to
structural similarities, there is also overlap between the cells and

molecules directing LN and TLS development. TLSs have ectopic
expression of lymphoid chemokines and cytokines, including
LTα, LTβ, CXCL13, CXCL12, CCL21, and CCL19 (98–100). The
development and function of TLSs, as well as the cellular players
involved have been extensively reviewed elsewhere (96, 97, 99–
101) and therefore we will mainly focus on the role of TNFRSF
members in TLSs and their associated vessels.

Many animal studies have shown that overexpression of
a single inflammatory cytokine or homeostatic chemokine is
sufficient to initiate TLS development and TNFRSF members
and their ligands are among the main players [reviewed in (97)].
More than 20 years ago, the group of Ruddle showed that mice
overexpressing LTα1β2 or TNFα under the rat insulin promotor
(RIP-LTα1β2 and RIP-TNFα transgenic (tg) mice, respectively)
spontaneously develop infiltrates consisting of T and B cells in
the pancreas (102). Additional studies further investigated the
role of TNFRSF members in TLS development and function.
Overall, these studies demonstrated that signaling through
TNFRSF members plays a critical role in the development of
TLSs. Signaling through the LTα/TNF-TNFRI axis is sufficient
to initiate TLS formation, but LTα1β2-LTβR signaling leads to
larger and more organized TLS with higher expression of TLS
associated cytokines and chemokines (i.e., CXCL13, CCL19,
CCL21) (98, 102, 103). It is thought that LTα1β2 and other
cytokines and chemokines produced by immune cells acting
like LTi cells, ligate receptors on local stromal cells which are
then stimulated to differentiate into a lymphoid stromal cell-
like phenotype that can drive TLS formation (97, 104–106).
So, interaction between immune cells acting like LTi cells and
stromal cells acting like LTo is crucial for the development of
TLSs. Together, this suggests that the signaling pathways and
players involved in TLS and LN development largely overlap.

Tertiary Lymphoid Structure Associated
High Endothelial Venules
As already mentioned, one of the characteristics of TLSs
is the presence of PNAd+ HEC-like cells. During chronic
inflammation the blood vasculature undergoes remodeling in
order to recruit immune cells into the inflamed tissue. This
remodeling involves upregulation of adhesion molecules and
production of chemoattractants by BECs (107–109). Ultimately,
as inflammation persists, these BECs can differentiate into
PNAd+ HEC-like cells that orchestrate extravasation of L-
selectin+ and CCR7+ immune cells into the TLSs (97).

In general, TLS associated PNAd+ BVs have the same function
as LN HEVs, namely recruitment of (naïve) immune cells into
the tissue to mediate interaction with cognate antigens leading to
immune cell activation andmemory cell formation (98, 102, 110–
112). Interestingly, in TLSs the consequences of these interactions
may be different depending on the pathology. For example,
in autoimmune diseases like rheumatoid arthritis, recruitment
and local activation of autoreactive B and plasma cells is likely
to exacerbate disease (113, 114). In contrast, in infections
recruitment of immune cells to the site of infection might aid
in its resolution by limiting spreading of the microorganisms
and confining the immune reaction (6, 96). In the case of
cancer, PNAd+ BVs may act anti-tumoral via recruitment of
naïve and memory T cells (115–117), but they can also facilitate
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immune evasion by recruitment of immunosuppressive cells, like
regulatory T cells (50).

Similar to LN HEVs, formation of PNAd+ BVs in TLSs
seems to be LTβR dependent. It has been shown that initiation
of TLS-PNAd+ BVs occurs via the LTα-TNFRI-canonical NF-
κB axis leading to MAdCAM-1+ BVs and that LTα1β2-LTβR-
noncanonical NF-κB signaling generates PNAd+ BVs (29, 98,
118). This is underlined by the finding that TLS PNAd+ BVs
located in the synovial tissue of rheumatoid arthritis patients
are NIK+ comparable to LN HEVs (119). In addition, in the
synovial tissue of these patients ILC3s were found, and although
present in very small numbers, they might act similar to LTi
cells in the formation of PNAd+ BVs (119). Although LTβR
signaling is typically required for the formation of mature HEVs,
when PNAd+ BVs are formed in absence of real TLSs, PNAd+

BVs can also develop via LTα-TNFRI signaling, independent of
LTβR signaling (120). Together, these data suggest that the same
mechanisms that lead to formation of LN HEVs are involved
in the formation of TLS associated PNAd+ BVs. However, the
function of these vessels is shown to vary between pathologies,
making it hard to predict the outcome of targeting HEVs
during disease.

Tertiary Lymphoid Structure Associated
Lymphatic Vessels
The role of LVs in inflammation has long been recognized;
i.e., LVs play an immunoregulatory role in inflammation via
fluid drainage, scavenging of inflammatory chemokines and
suppression of DC maturation (121, 122). During chronic
inflammation, it is thought that the lymphangiogenic process
is altered and that the amount of infiltrating immune cells
exceeds the draining capacity of LVs. Lack of efficient draining
might lead to local persistence of antigens and immune cells,
and non-functional LVs might compete with functional LVs
leading to trapping of immune cells at the site of insult, favoring
development or maintenance of TLSs (123, 124).

Although LYVE-1+ Prox-1+, PDPN+CCL21+ vessels are
found in TLSs of many pathologies, their exact role and function
is not well-understood (125, 126). They often contain cells,
implying that they have a role as transporters. On the other hand,
these vessels can be so crowded with cells that their drainage
and efferent functions are likely impaired (127). In contrast to
LN LVs, it seems less probable that TLS LVs are necessary for
antigen transport since TLSs are already characterized by local
presence of antigens. The source of these antigens may be the LVs
itself, since it has been shown that LECs are capable of antigen
archiving and –presentation (69). It has also been proposed that
within TLS, LECs might act as APCs to induce tolerance or T cell
activation (125).

In mice lacking LTβR, TNFRI or LTα, the development of
LVs in the inflamed area is impaired, while the surrounding
LVs remain largely unaffected (128, 129). It was shown that
LTα is sufficient to induce lymphangiogenesis even before the
onset of organized TLSs, whereas LTα1β2 is not required (129).
Of note, it was shown that LTα1β2 might even negatively
regulate lymphangiogenesis since Ltb−/− mice exhibit increased

lymphangiogenesis, which may be due to the fact that mice
lacking LTα1β2 havemore LTα available to form trimers that bind
to TNFRI (129). Together this indicates that TNFRSF member
signaling is involved in inflammatory development of LVs, but
not for the maintenance of the existing lymphatic vasculature.

The role of RANK signaling in TLS associated LVs has not yet
been fully addressed, but with the recent evidence demonstrating
an important role for that RANK signaling in LECs in the
development of mature functional LNs (12), it will be of great
interest to investigate the importance of RANK signaling in the
formation and function of TLS.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

It is clear that signaling through TNFRSF members is crucial for
development and functioning of LNs and TLSs, both in health
and disease. Here, we emphasized the importance of EC-specific
TNFRSF member signaling cascades in these processes.

It is clear that TNFRSF signaling, mainly via the LTβR,
in BECs is crucial for their differentiation into HECs, which
subsequently regulate recruitment of lymphocytes into the
LNs. In addition, the same TNFRSF-mediated mechanisms are
involved in formation of TLS associated PNAd+ BVs.

Although considerably less is known about TNFRSF member
signaling in LVs, recent data does point toward an important
role for these pathways in LEC function in LN development
and function. A prominent role seems to be reserved for
signaling via RANK, although LTβR signaling is also likely to be
involved. Interestingly, different mechanisms may be involved in
functioning of LECs in LNs and TLSs.

The currently available studies aimed at unraveling the role
of signaling pathways in LN EC subsets already prompt possible
refinements of the existing models for LN development and the
role of TNFRSF member signaling in ECs within this process,
but there are still several outstanding questions. One of these
questions is to what extent the timing of TNFRSF signaling is
important, since it is not fully understood at what exact time
point signaling events in specific EC subsets are crucial for the
development of fully functional lymphoid organs. In this respect,
the development of EC-specific conditional KO mice is very
promising and aid tremendously in addressing this issue.

In line with this, it will also be interesting to see if interfering
with specific signaling pathways in EC subsets holds therapeutic
potential in treatment of chronic inflammatory diseases and
other pathologies. Several clues point toward this, for example
the finding that NIK can be detected in TLS associated PNAd+

BVs and other blood vessels in inflamed tissues, but not in
healthy tissues (130). Here, conditional EC-specific KO models
in combination with disease models will allow to dissect the
importance of TNFRSF members and their ligands in EC both
in LN and target tissues before onset and during active disease.

It is likely to assume that in the near future many outstanding
questions will be answered. With the current possibilities in
animal models and advanced techniques to compare patients
with healthy individuals, it is only a matter of time until
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deeper insights into the cell specific signaling pathways in
development and maintenance of LNs and TLSs are gained.
More importantly, it will be of great interest to uncover how
these pathways contribute to disease and whether they hold
therapeutic potential.
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