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In this work, cerium-doped LaF3 nanoparticles (LaF3:Ce NPs) were successfully

synthesized and characterized. Its chemiluminescence (CL) property was studied, and it

was amazingly found that it intensely enhanced the ultra-weak CL of the NaNO2-H2O2

system. The CL mechanism was systematically investigated and suggested to be the

recombination of electron-injected and hole-injected LaF3:Ce NPs. The new CL system

was developed to be a facile, original, and direct method for nitrite analysis. Experimental

conditions were optimized and then a satisfactory linear relationship between CL intensity

and nitrite concentration was obtained. This work introduced a new pathway for the

research and application of traditional fluoride NPs doped with RE3+.

Keywords: chemiluminescence, cerium, fluoride, nitrite, nanoparticles

INTRODUCTION

Fluoride is utilized as an ideal and appealing host for phosphors doped with rare earth ions (RE3+)
owing to its adequate thermal and environmental stability as well as large solubility for RE3+ ions
(Li et al., 2012). Compared with oxide systems, vibrational energies in fluorides is low and therefore
trigger scarce quenching of the excited states of the RE3+ ions (Bender et al., 2000). Furthermore,
RE3+-doped fluorides exhibit characteristic properties, such as high ionicity, low refractive index,
wide band gap, and low phonon energy. KMgF3 (Schuyt and Williams, 2018), NaYF4 (Wu et al.,
2019, 2020), NaGdF4 (Yi et al., 2019), and LaF3 (Bekah et al., 2016; Nampoothiri et al., 2017) have
been investigated and exhibit high quantum yields and long luminescent lifetimes. RE3+-doped
fluorides have been attracting attentions for several years due to the wide variety of technological
applications including biomedical researches (All et al., 2019; Yan et al., 2019), biosensors (Vijayan
et al., 2019), bioimaging (Hu et al., 2016; Han et al., 2017; Zeng et al., 2019), radiation detection
(Ju et al., 2017), optoelectronic devices (Wu et al., 2018), and so on. However, to the best of our
knowledge, the performance of RE3+-doped fluorides toward chemiluminescence (CL) has not
been explored.

Nitrite is widely used in food manufacture as preservatives and fertilizing reagents. As
an essential precursor of carcinogenic N-nitrosamine, excess intake of nitrite is harmful for
human beings. Nitrite can cause irreversible conversion of hemoglobin to methemoglobin in
the bloodstream and then bring detrimental effect for the oxygen transport in the whole body.
In addition, nitrogen-based fertilizers and industrial wastewater pollute groundwater resources
by nitrites. Thus, nitrite detection is of significant importance for food safety, public health,
and environment protection (Wang et al., 2017; Zhang Y. et al., 2018; Cao et al., 2019).
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Various principle-based analytical methods have been devised
for nitrite detection, such as electrochemical sensors (Ma et al.,
2018; Wang et al., 2018; Zhou et al., 2019; Madhuvilakku et al.,
2020), microplasma emission (Zheng et al., 2018), absorption
spectrophotometry (Zhang L. et al., 2018), fluorescence (Dai
et al., 2017; Jana et al., 2019; Pires et al., 2019), and CL (Lu
et al., 2002, 2004; Lin et al., 2011; Wu et al., 2016). Electrodes
are modified with complex strategies in electrochemical analysis.
Special molecules need to be designed for spectrophotometric
detections in order to amplify signal and reduce the background
interferences. CL detections require simple instruments, interfere
with low background, and are compatible with gas or aqueous
phases. CL intensity was reported to be significantly enhanced
by nanomaterials that gave promise for developing sensitive
and convenient CL analytical methods. In 2011, carbon dots
were firstly demonstrated to enhance the CL signal of the
NaNO2-H2O2 system because of peroxynitrous acid generation
(Lin et al., 2011). Nitrogen-rich quantum dots (QDs) were facilely
synthesized and intensely enhanced the ultra-weak CL reaction
of the NaIO4-H2O2 system through electron hole injection and
CL resonance energy transfer (Zheng et al., 2017). In particular,
molybdenum sulfide QDs were proved to give rise to the
generation of reactive oxygen species from hydrogen peroxide
(H2O2) in alkaline solution and gave a promise for CL emission
(Dou et al., 2019). However, fluoride-based nanomaterials were
scarcely utilized and the developed CL analysis was rarely applied
in nitrite detection. Original CL detections for nitrites are worth
giving research to pursue better performance.

In this work, cerium-doped LaF3 nanoparticles (LaF3:Ce NPs)
were synthesized and firstly demonstrated to enhance the CL
signal of the NaNO2-H2O2 system. Reactive oxygen species
generation that was triggered by LaF3:Ce NPs was proved to
be the main reason for CL enhancement. A linear relationship
between the CL signal and nitrite concentration was found and
implied that the LaF3:Ce NPs-NaNO2-H2O2 system could be
applied in the determination of nitrite.

MATERIALS AND METHODS

Reagents and Materials
Sodium nitrite (NaNO2) was purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). Sulfuric acid
(H2SO4, 98%), H2O2 (35%), hydrochloric acid, and ethanol
(98%) were brought from Beijing Chemical Reagent Co. (Beijing,
China). Sodium fluoride (NaF, >98%), heptahydrate lanthanum
chloride (LaCl3·7H2O, 99.9%), heptahydrate cerium chloride
(CeCl3·7H2O, 99.9%), oleic acid (90%), 5,5-dimethyl-1-pyrroline
N-oxide (DMPO), and ascorbic acid (AA) were all purchased
from Sigma-Aldrich. Unless otherwise noted, all the chemicals
were used without further purification.

Abbreviations: AA, ascorbic acid; LaF3:Ce NPs, cerium-doped LaF3
nanoparticles; CL, chemiluminescence; EPR, electron paramagnetic resonance;

FT-IR, Fourier transform infrared; PL, photoluminescent; PMT, photomultiplier

tube; QDs, quantum dots; RE3+, rare earth ions.

Apparatus
UV-vis absorption spectra were performed on a PerkinElmer
Lambda 950 spectrophotometer. The photoluminescent
(PL) spectra were collected on an Agilent Cary Eclipse
spectrofluorometer. Fourier transform infrared (FT-IR) spectra
were obtained on a PerkinElmer Frontier FT-IR spectrometer.
CL experiments were conducted with an ultra-weak CL analyzer
(IFFM-E, Xi’an Remex Analytical Instrument Co., Ltd, China).
Transmission electron microscopy images were obtained on a
JEOL-1400 transmission electron microscope (JEOL, Tokyo,
Japan). Electron paramagnetic resonance (EPR) spectra were
measured on a Bruker E500 spectrometer.

LaF3:Ce NPs Synthesis
Hydrothermal reaction was utilized to synthesize LaF3:Ce NPs.
2.25ml of LaCl3 solution (0.20M), 1.00ml of CeCl3 solution
(0.05M), 2.00ml of NaF solution (1.00M), 20ml of ethanol,
and 10ml of oleic acid were mixed and stirred for 0.5 h in
reaction kettle. The mixture was heated in an oven and kept at
200◦C for 8 h. After reaction, the supernatant was removed. The
remnant suspension was centrifuged at 6,000 rpm for 5min and
then the supernatant was also removed. The resultant solid was
dispersed in 2.00M hydrochloric acid. After ethanol addition, the
mixture was centrifuged at 6,000 rpm for 5min to remove the
supernatant. The product was stored in 4ml H2O for further use.
The exact doping percentage of cerium was calculated to be 10%.

CL Study of the LaF3:Ce NPs-NaNO2-H2O2

System
At first, CL intensities of the NaNO2-H2O2 system with and
without LaF3:Ce NPs were compared. Fifty microliters of H2O2

(3.00M), which was acidified by 0.04M H2SO4, was injected
into the mixture of 50 µl of LaF3:Ce NPs and 50 µl of NaNO2

(10µM). In the control experiment, 50 µl of LaF3:Ce NPs
was replaced by 50 µl of H2O. CL intensities of both the
two conditions were recorded and compared. CL profiles were
integrated at intervals of 0.1 s. Voltage of the photomultiplier
tube (PMT) was set at 1.2 kV. CL spectrum was measured with
high-energy cutoff filters (400–640 nm), which were set between
the quartz cuvette and PMT as described in Cui et al. (2003).
Additional orders of the reagents were investigated to collect CL
kinetic curves. EPR measurements were operated at an X-band
frequency of 9.85 GHz. Irradiation was performed by using a
300-W Xe lamp (300 nm < λ < 1,100 nm) with the output
radiation focused on the samples in the cavity by an optical fiber
(50 cm length, 0.3 cm diameter). All spectra were acquired at
298K. DMPO (12.4 µl in 1ml of H2O) was taken as the specific
detection reagent for ·OH. AA (0.1mM) was used as a scavenger
for O·−

2 . CL intensities of the LaF3:Ce NPs-NaNO2-H2O2 system
with and without AA were recorded.

Nitrite Analysis
Experimental conditions were optimized with different H2SO4

concentrations (0, 0.02, 0.03, 0.04, 0.05, and 0.06M), H2O2

concentrations (0.00, 1.00, 2.00, 3.00, 4.00, and 5.00M), and
additional volumes of LaF3:Ce NPs (0, 10, 20, 30, 40, 50, 60,
and 70 µl). The univariate method was adopted in systematically
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optimizing experimental parameters through changing one
parameter at a time while keeping others constant. At the
optimal experimental conditions, calibration curve was recorded
by detecting CL intensities vs. different nitrite concentrations.

RESULTS

Characterization of LaF3:Ce NPs
LaF3:Ce NPs obtained in this work exhibited hexagonal phase
and their average sizes were about 80 × 20 nm (Figure 1A). 4f
shells of lanthanides are partially filled and are effectively shielded
by outer 5s and 5p shells leading to satisfactory emissions. The
prepared LaF3:Ce NPs gave a bright blue color under ultraviolet
radiation (λex = 254 nm) (Figure 1B, inset). The emission of
LaF3:Ce NPs shifted to longer wavelength with the increase
of excitation wavelength revealing the distribution of different
surface energy traps of the LaF3:Ce NPs (Figure 1B). UV-vis
absorption spectra of the LaF3:Ce NPs-NaNO2-H2O2 system
were collected and are shown in Figure 1C. NaNO2 gave an
absorption peak at 354 nm, which decreased when acidified

H2O2 was added. Another absorption peak located at 301 nm
appeared due to the isomerization of ONOOH, which was
generated in the mixture of acidified H2O2 and NaNO2 (Lin
et al., 2011), while no new absorption peaks were found when
acidified H2O2 mixed with LaF3:Ce NPs. Except the absorption
peak of ONOOH, no other new absorption peak was found in
the LaF3:Ce NPs-NaNO2-H2O2 system, indicating that no new
compound was formed. UV-vis absorption spectra gave some
indications for the CL mechanism of this system, which was
illustrated in detail in the subsequent section. FT-IR spectrum of
LaF3:Ce NPs indicated that there were O-H groups on the surface
of LaF3:Ce NPs (Figure 1D).

CL of the LaF3:Ce NPs-NaNO2-H2O2

System
CL intensities of the NaNO2-H2O2 system with and without
LaF3:Ce NPs were sharply different. LaF3:Ce NPs addition
intensely enhanced CL intensity (Figure 2A). As shown in
Figure 2B, the CL spectrum for the LaF3:Ce NPs-NaNO2-H2O2

system was wide ranging from 375 to 500 nm and was centered

FIGURE 1 | Characterization of LaF3:Ce NPs. (A) Transmission electron microscopy images of LaF3:Ce NPs. (B) PL spectra of LaF3:Ce NPs. The inset is the

photograph of LaF3:Ce NPs under a UV lamp (λex = 254 nm). (C) UV-vis absorption spectra of the reagent in the CL reaction. (D) FT-IR spectra of LaF3:Ce NPs.
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FIGURE 2 | CL profiles of the LaF3:Ce NPs-NaNO2-H2O2 system. (A) Comparison of CL intensities of the NaNO2-H2O2 system with and without LaF3:Ce NPs.

(B) CL spectrum of the LaF3:Ce NPs-NaNO2-H2O2 system. The standard error bars mean the variation of three individual experiments. Conditions: 3.00M H2O2 in

0.04M H2SO4, 50 µl of LaF3:Ce NPs and 10µM NaNO2 solution. Voltage of the PMT was set at 1.2 kV.

at 450 nm. The fluorescent emission of LaF3:Ce NPs is also wide,
which is similar to the CL spectrum of the LaF3:Ce NPs-NaNO2-
H2O2 system. As a result, it is reasonable to refer that the CL
originates from the various surface energy traps existing on the
LaF3:Ce NPs. Compared with the PL peak of LaF3:Ce NPs, the
CL spectrum is red-shifted due to the energy separations of
LaF3:Ce NPs surface states. PL was generated through excitation
and emission within the core of the LaF3:Ce NPs and the energy
gap between them is larger than the energy separations on NPs
surface (Ding et al., 2002; Myung et al., 2002).

CL Kinetic Study
As described in UV-vis absorption spectra, ONOOH was
generated when NaNO2 was mixed with acidified H2O2

(Equation 1) (Anbar and Taube, 1954). ONOOH easily
transforms to be nitrate via the stage of HOONO∗ and
give emissions during the process (Equation 2) (Houk et al.,
1996). The emission locates at 350–450 nm, which overlaps the
absorption spectrum of LaF3:Ce NPs. Hence, LaF3:Ce NPs can be
excited by the energy of transformation and cause CL emission.
However, the maximum of the transformation-derived CL was
obtained at the pH value of 6.5–7.0 while the maximum CL of
the LaF3:Ce NPs-NaNO2-H2O2 system was recorded in a severe
acidic solution (Starodubtseva et al., 1999). As a consequence,
the transformation energy only partially contributed to the CL of
the LaF3:Ce NPs-NaNO2-H2O2 system. Various mixing orders
of reagents influenced the reactions between LaF3:Ce NPs and
ONOOH and then affected the CL intensities (Figure 3A). The
highest CL was obtained when acidified H2O2 was injected into
the mixture of LaF3:Ce NPs and NaNO2. At this condition,
the generated ONOOH adequately reacted with LaF3:Ce NPs
and gave enhanced CL. Mixing of NaNO2 with acidified H2O2

without LaF3:Ce NPs gave weak and lasting CL while mixing of
LaF3:Ce NPs with acidified H2O2 without NaNO2 gave weak and

rapid CL (Figure 3B).

HNO2+H2O2→ ONOOH+H2O (1)

ONOOH →ONOOH∗
→ NO−

3 +H+ (2)

CL Mechanism
According to the CL kinetic study, it demonstrated that the
reactions between LaF3:Ce NPs and ONOOH or its related
species were the main cause accounting for the enhanced CL.
ONOOH was reported to be capable of producing reactive
oxygen species (Equations 3–5) (Alvarez et al., 1995; Gunaydin
and Houk, 2008; Lin et al., 2011). It was obvious that ONOOH-
produced reactive oxygen species include ·OH, O·−

2 , and 1O2

in this system. EPR was performed and DMPO was utilized
as the specific detection reagent for ·OH to directly examine
the variation of ·OH after LaF3:Ce NPs addition. Although CL
intensity of the LaF3:Ce NPs-NaNO2-H2O2 system was greatly
enhanced, the production of ·OH was almost not increased
(Figure 4A). 1O2 was derived from ·OH so it could refer that
there was no increase in 1O2 quantity. Ethanol was reported to
react with ·OH and yield an octet spectrum that was completely
distinct from the DMPO-OH spectrum (Finkelstein et al., 1980).
The octet spectrum in the LaF3:Ce NPs-NaNO2-H2O2 system
rooted in the reaction between ·OH and residual ethanol from
treatment process of LaF3:Ce NPs. Furthermore, AA, which
was a scavenger for O·−

2 , obviously inhibited the CL of the
LaF3:Ce NPs-NaNO2-H2O2 system (Figure 4B). All the results
indicated that O·−

2 was the critical reason for the enhanced
CL instead of ·OH and 1O2. O

·−

2 acting as an electron donor
reacted with LaF3:Ce NPs to produce LaF3:Ce NPs

·− (Equation
6) (Poznyak et al., 2004). ONOOH serving as a hole injector
converted LaF3:Ce NPs to LaF3:Ce NPs

·+ (Equation 7). Electron–
hole annihilation between LaF3:Ce NPs·− and LaF3:Ce NPs·+

resulted in CL emission (Equation 8) (Figure 5; Ding et al., 2002;
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FIGURE 3 | CL kinetic study of the LaF3:Ce NPs-NaNO2-H2O2 system. (A) CL kinetic curves of the LaF3:Ce NPs-NaNO2-H2O2 system with different reagent mixing

orders: 1. injecting LaF3:Ce NPs into the mixture of NaNO2 and acidified H2O2; 2. injecting NaNO2 into the mixture of LaF3:Ce NPs and acidified H2O2; 3. injecting

acidified H2O2 into the mixture of LaF3:Ce NPs and NaNO2. CL signals of three repeated experiments were given. (B) CL kinetic curves of the NaNO2-H2O2 system

and the LaF3:Ce NPs-H2O2 system. Conditions: 3.00M H2O2 in 0.04M H2SO4, 50 µl of LaF3:Ce NPs and 10µM NaNO2 solution. Voltage of the PMT was set

at 1.2 kV.

FIGURE 4 | CL mechanism study of the LaF3:Ce NPs-NaNO2-H2O2 system. (A) EPR spectra of ·OH generated via the reaction of DMPO probe in the LaF3:Ce

NPs-NaNO2-H2O2 and NaNO2-H2O2 systems. (B) CL profiles of the LaF3:Ce NPs-NaNO2-H2O2 system with and without AA. Conditions: 3.00M H2O2 in 0.04M

H2SO4, 50 µl of LaF3:Ce NPs, 10µM NaNO2 solution, 12.4 µl of DMPO in 1ml of H2O, and 0.1mM AA. Voltage of the PMT was set at 1.2 kV.

Poznyak et al., 2004; Zheng et al., 2009; Dong et al., 2010).

ONOOH → ·NO2+ ·OH (3)

ONOOH+H2O2→O·−

2 + ·NO2+H+
+H2O (4)

O·−

2 + ·OH →
1O2+OH− (5)

LaF3:Ce NPs+O·−

2 →LaF3:Ce NPs
·−
+O2 (6)

LaF3:Ce NPs+ONOOH →LaF3:Ce NPs
·+
+·NO2+H2O (7)

LaF3:Ce NPs
·+
+LaF3:Ce NPs

·−
→LaF3:Ce NPs

∗

+LaF3:Ce NPs→ 2LaF3:Ce NPs+hv (8)

Nitrite Analysis
To establish the optimal conditions for nitrite analysis,
the volume of LaF3:Ce NPs added into the CL system
and concentrations of H2SO4 and H2O2 were investigated,
respectively. As shown in Figure 6A, 50 µl of LaF3:Ce NPs was
added into the CL system and provided the highest CL emission.
Less LaF3:Ce NPs inadequately reacted with ONOOH while
surplus LaF3:Ce NPs also consumed energy. Reactive substance
ONOOH was the product of NaNO2 and H2O2 in acid medium,
so H2SO4 was indispensable for the CL system. No CL signals
could be observed in the absence of H2SO4. The most intense
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CL signal was obtained with the H2SO4 concentration of 0.04M
(Figure 6B). CL signal increased with the concentration of H2O2

in the range from 0 to 3.00M (Figure 6C). Hence, the optimal
analytical conditions for nitrite analysis were 3.00M H2O2 in
0.04M H2SO4 injected into the mixture of 50 µl of LaF3:Ce NPs
and nitrite solution.

Under the optimal conditions, CL signals for different
nitrite concentrations were recorded and shown in Figure 7.
Good linear relationship between CL intensity and nitrite
concentration was obtained in the range from 1 to 100µM with
a correlation coefficient of 0.9981 (y = 256.3x + 42.72). The
relative standard deviation values of the analysis were 8.7, 1.2, and
4.8% for nitrite concentrations of 1, 10, and 100µM, respectively.
Relative standard deviation values demonstrated the satisfactory
reproducibility. The limit of detection (S/N = 3) for nitrite was
0.33 µM.

DISCUSSION

The eternal goals and challenges of analytical chemistry are
developing accurate, automated, selective, stable, sensitive,
high-speed, high-throughput, and in situ analytical methods
and protocols (Ju, 2013). The combination of analytical

FIGURE 5 | Schematic illustration of the CL mechanism of the LaF3:Ce

NPs-NaNO2-H2O2 system.

chemistry with new materials, especially nanomaterials, is the
current frontier research topics and exhibits greatly improved
analytical capacities. CL analysis is a traditional analytical
technology and possesses outstanding advantages, such as low
cost, simple instrument, fast response, and high compatibility.
The application of nanomaterials in CL analysis leads to
new CL sensing disciplines and offers a broad palette of
opportunities for analytical chemists. In 2004, Poznyak et al.
(2004) firstly reported the nanocrystal band gap CL derived
from CdSe/CdS core-shell QDs that acted as a novel class
of luminophores with the emission state originated from
quantum-confined orbitals. Superior emission properties in QDs
gave promises for developing QD-based nanoprobes for CL
analysis. Besides traditional semiconductor QDs, some novel
nanomaterials, such as carbon nanodots (Lin et al., 2011),
graphene QDs (Hassanzadeh and Khataee, 2018), graphitic
carbon nitride QDs (Zhu et al., 2019), and N-dots (Zheng
et al., 2017), were developed to be potential platforms for CL

FIGURE 7 | Calibration curve for nitrite analysis based on the LaF3:Ce

NPs-enhanced CL. The standard error bars mean the variation of three

individual experiments. Conditions: 3.00M H2O2 in 0.04M H2SO4 and 50 µl

of LaF3:Ce NPs. Voltage of the PMT was set at 1.2 kV.

FIGURE 6 | Optimization of experimental conditions for nitrite analysis. (A) Volume of LaF3:Ce NPs added into the CL system was optimized. (B) Concentration of

H2SO4 used to acidify H2O2 was optimized. (C) Concentration of H2O2 was optimized. The standard error bars mean the variation of three individual experiments.
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sensing. These nanomaterials are superior in terms of robust
chemical inertness, low toxicity, good aqueous solubility, high
resistance to photobleaching, and satisfactory biocompatibility.
Our work is an endeavor step during the development process
of nanomaterial-sensitized CL analysis methods. In this study,
LaF3:Ce NPs were successfully synthesized and applied in
nitrite detection based on CL signals. The synthetic process
of LaF3:Ce NPs was simple and the products were fully
characterized to give indications for the CL mechanism study.
The enhancement of LaF3:Ce NPs for the NaNO2-H2O2 CL
system was efficient and the mechanism was systematically
and scientifically explained. The linear relationship between CL
intensity and nitrite concentration was found, although there
were spaces for improving the limit of detection. This work tried
to explore new CL nanoprobes and gave a new route for fluoride
applications. In the future, there is still a great demand for
developing novel CL nanoprobes especially metal-free QDs and
two-dimensional QDs.

CONCLUSIONS

In summary, LaF3:Ce NPs were successfully synthesized and
demonstrated to intensely enhance ultra-weak CL of the
NaNO2-H2O2 system. The CL mechanism was suggested
to be the electron–hole annihilation between hole-injected
and electron-injected LaF3:Ce NPs. The new CL system was
developed to be a novel, simple, and straightforward analytical
method for nitrite. All the experimental conditions were
optimized and a satisfactory linear relationship between CL
intensity and nitrite concentration was obtained. This work shed
a new light on the research and application of traditional fluoride
NPs doped with RE3+.
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