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Simple Summary: Raman microscopy is an inexpensive and label-free method. The literature
describes many attempts to use this method for cancer diagnosis. In this study, we used it to
differentiate the lipid profile of cervical epithelial cells depending on the severity of pathological
changes and the presence of HPVhr infection. Using molecular methods, we also determined the
degree of methylation of the gene encoding the prolipidogenic protein SREBP1, as well as the number
of copies of the mitochondrial genome in the tested samples. This multimethodological approach
allowed not only to determine the differences between samples with different advancement of
pathological changes, but also enabled to shed light on the molecular mechanism behind them, as
well as gave hope for the possibility of using our approach for early detection of cervical dysplasia in
the future.

Abstract: Cellular lipid metabolism is significantly transformed during oncogenesis. To assess how
dysplasia development influences lipid cellular metabolisms and what is the molecular background
behind it, cervical epithelial cells of 63 patients assigned to seven groups (based on the cytological
examination and HPVhr test results) were studied using a multimethodological approach including
Raman microscopy and molecular methods. The consistent picture obtained studying the lipid
content, cell inflammation, SREBF1 gene methylation (hence SREBP1 inhibition) and level of mi-
tochondrial DNA copies (indirectly the number of mitochondria) showed that changes in lipid
metabolism were multidirectional. Cells from patients classified as mildly dysplastic (LSIL) exhibited
a unique behavior (the highest level of inflammation and SREBF1 methylation, the lowest lipid con-
tent and mitochondrial DNA). On the contrary, cells from severe dysplastic (HSIL) and cancer (SCC)
groups showed the opposite characteristics including the lowest SREBF1 gene methylation as well as
the highest level of mitochondrial DNA and lipid cellular concentration (for HSIL/HPVhr+ and SCC
groups). Following dysplastic progression, the lipid content decreases significantly (compared to
the control) for mildly abnormal cells, but then increases for HSIL/HPVhr+ and SCC groups. This
intriguing dual switch in lipid metabolism (reflected also in other studied parameters) on the way
from normal to squamous carcinoma cells is of potential diagnostic interest.

Keywords: HPVhr; lipid droplets; cervical cancer; cervical dysplasia; Raman microscopy; mitochon-
drial DNA; methylation; SREBF1
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1. Introduction

In 2019, cervical cancer was the second leading cause of cancer death among women
in the 20–39 age group around the world [1]. Cervical cancer is caused by the sexually
transmitted human papillomavirus (HPV)—it is estimated that 99% of cervical cancers
develop as a result of infection with this virus [2]. HPV infection also causes a significant
percentage of cancers of the mouth and throat, vulva, and anus [3,4]. However, among HPV
there are over 200 types that differ in their oncogenic potential [5,6]. The most oncogenic
types of HPV are 16 and 18 and these types are present in 70–75% of cervical cancers [7].

The HPV genome has six early genes (E1, E2, E4–E7), two late genes (L1, L2), and a
long control region [8]. The integration of the viral genome into the host genome plays a
very important role in the process of oncogenesis—the gene encoding the viral E2 protein
may be damaged, which leads to an increase in the expression of the oncogenic proteins
E6 and E7 [9]. The E6 protein forms a complex with the p53 protein, the product of a cell
suppressor gene, which leads to its ubiquitination and degradation, creating an open path
to uncontrolled cell division. In turn, the E7 protein binds to the active domains of the Rb
protein, which prevents Rb from interacting with the transcription factor E2F, leading to
the stimulation of cell division [10].

In the case of cervical cancer, the incidence and mortality rates can be significantly
improved by extensive prevention—it is believed to be the most suitable neoplasm for
primary and secondary prevention [11]. The primary prevention is vaccination against
HPV [12]. The secondary prevention is cytology and HPV infection testing [13].

Lipids play a very important role in cancer, not only because the lipid signaling is
crucial in processes such as invasion, migration, or metastasis [14]. In the process of
carcinogenesis, the entire cellular metabolism is reprogrammed so that it is beneficial for a
rapidly dividing cell [15]. Neoplastic cells activate the phosphatidylinositol 3-phosphate
kinase (PI3K) pathway, which is normally activated in response to binding to cell surface
receptors [16]. Activation of PI3K leads to the activation of the Akt kinase (protein kinase B),
which is responsible for increasing glucose uptake, by incorporation of GLUT-1 and GLUT-
4 transporters into the cell membrane [17]. Activation of Akt kinase also increases the
level of glycolysis, by stimulating the activity of two glycolytic enzymes: hexokinase and
phosphofructokinase [15]. Additionally, in cancer cells, the tricarboxylic acid (TCA) cycle is
significantly lowered [15]. The metabolism of the cell is switched over to aerobic glycolysis,
because the cell key metabolic needs of proliferating cells are nucleotides, amino acids and
lipids, necessary for rapidly dividing cells and not energy as the nutrients are constantly
supplied in circulating blood [15]. The change in carbohydrate metabolism is closely related
to the change in lipid metabolism—activation of the Akt/Pi3K pathway causes an increase
in the expression of sterol regulatory element-binding proteins (SREBPs) [18,19]. SREBPs
stimulate the synthesis of two key enzymes that are involved in the formation of fatty acids:
acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN) [20]. ACC is responsible
for the synthesis of malonyl-CoA, while FASN catalyzes the reaction of fatty acid chain
extension [20,21]. Thus, in cancer cells, due to the activation of Akt/PI3K, carbohydrate
breakdown and lipid synthesis are promoted. Cancer is also usually associated with
high levels of unsaturated fatty acids, important signal transducers in cancer stimulating
proliferation and preventing apoptosis [22–25]. Increased lipid levels in neoplastic cells
are related to increased stearoyl-CoA desaturase (SCD1) activity [25]. It is an enzyme that
converts saturated fatty acids (SFAs) into monounsaturated fatty acids (MUFAs). However,
this trend is reversed in human liver cancer—cancer cells have statistically lower levels of
unsaturated fatty acids than healthy cells [26], although an increase in SCD levels has also
been demonstrated [25].

Changes in gene expression in tumors, including genes related to cellular metabolism,
are also associated with epigenetic changes [27]. DNA methylation, which is an epigenetic
modification, plays a key role in gene expression [28]. Altered methylation patterns were
found in all types of cancer [29]. Most often it is hypermethylation of the promoter region,
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which reduces gene expression, or intra-gene hypomethylation, which usually increases its
expression [29].

Mitochondria play a critical role in the metabolism of cancer cells [30]. They are not
only the cellular energy generators but also a biosynthesis site of compounds necessary
for the cell, such as Krebs cycle intermediates. Two key but opposing processes in lipid
metabolism are β-oxidation and synthesis. Both of these processes take place with the
participation of mitochondria: beta-oxidation entirely in the mitochondria, herein there is
also a preliminary step enabling the synthesis of lipids in the cytosol: the conversion of
acetyl-CoA from pyruvate [31,32]. A key regulatory point between both processes is acetyl-
CoA carboxylase (ACC), which is activated or deactivated depending on the accumulation
of specific compounds in the cell [33]. Fatty acid synthesis can also be regulated by the
activation and deactivation of the pyruvate dehydrogenase complex (PDHC) [34]. Many
cancers also show changes in the mitochondrial DNA (mtDNA) itself, including specific
mutations or a greater amount of the mitochondrial genome in the cell, which indirectly
indicates a greater number of mitochondria [35,36].

Raman spectroscopy is a label-free and non-destructive method that is used to study
the chemical composition of samples, including biological ones [37]. Cervical cancer cells
have been studied with the use of Raman microscopy [38–41] and infrared spectroscopy [42]
but they did not concentrate on changes in the lipid profile of cells.

This paper presents a multiparameter approach based on high-resolution Raman
microscopy and molecular methods, particularly, quantitative real-time polymerase chain
reaction (qPCR) to assess the lipid profile in cervical epithelial cells of cervical smears of
high-risk HPV (HPVhr) positive or negative patients with different degrees of cervical
dysplasia/cervical cancer and correlate it with the genetic background. Our unique ap-
proach enabled to demonstrate that the increased level of lipids observed in the late stages
of oncogenesis was linked to the high level mtDNA copies. We have also shown that lipids
unsaturation, inflammation, and a degree of CpG island methylation of the SREBF1 gene
are dysplasia dependent and, counterintuitively, the most pronounced in the LSIL group.

2. Materials and Methods
2.1. Clinical Specimens

Cervical smears were obtained from 63 women in the age of 19–76 years, living in
southern Poland in the period from October 2017 to August 2020. Samples containing
cervical epithelial cells were obtained from The Centre of Microbiological Research and
Autovaccines, in memory of Jan Bobr and from the Department of Gynecological Oncology,
National Research Institute of Oncology, Krakow Branch. The study included both women
who underwent prophylactic Pap smears (samples collected in The Centre of Microbio-
logical Research and Autovaccines; samples from 48 women) and women during their
first visit to the referral Institute of Oncology (samples from 15 women). Samples at the
Institute of Oncology were collected before invasive procedures and initiation of therapy
(biopsies, radiochemotherapy, etc.). The cancer diagnosis was confirmed by histopathologi-
cal examination by the Institute of Oncology. In our study, we included only samples of
confirmed squamous cell cervical cancer.

In this work, patients have been divided into 7 groups based on the results of the
cytological examination and the polymerase chain reaction (PCR) for the presence of
HPVhr infection. Cervical cells were classified as normal, dysplastic (LSIL and HSIL) or
cancerous according to Bethesda 2014 Classification [43]. The evaluation was performed
by an experienced cytologist. Groups included patients whose smears were classified
as normal, HPVhr negative (N−); normal, HPVhr positive (N+); low grade squamous
epithelial lesion, HPVhr negative (LSIL−); low grade squamous epithelial lesion, HPVhr
positive (LSIL+); high grade squamous epithelial lesion, HPVhr negative (HSIL−); high
grade squamous epithelial lesion, HPVhr positive (HSIL+); and patients with squamous
cervical carcinoma, HPVhr positive (SCC+). Full details on the size of the groups can
be found in the Supplementary Materials (Table S1). Samples taken from each patient
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were divided into two parts—one for PCR testing and the other for Raman imaging. For
DNA isolation for PCR, cells were frozen at −20◦C until the start of the assay. For Raman
imaging, freshly isolated cells were fixed using a 2.5% solution of glutaraldehyde for 4 min,
then washed twice with PBS and stored in PBS in 4◦C until the measurement. To carry
out Raman measurements, cells were placed on a Raman substrate (CaF2 slides, Crystran
LTD., Poole, UK). The trial was approved by the Bioethics Committee of the Jagiellonian
University (23 February 2018, identification code: 1072.6120.29.2018). Written informed
consent was obtained from all participants.

2.2. Raman Microscopy

Raman imaging of cells was performed using an Alpha 300 confocal Raman micro-
scope (WITec, Ulm, Germany) equipped with a CCD detector (DU401A-BV-352, Andor,
Belfast, UK) and a UHTS 300 spectrograph (600 grooves·mm−1 grating, the spectral res-
olution of 3 cm−1). A laser power of ca. 28 mW on a sample provided by a solid-state
532 nm laser source was used. To collect Raman spectra a 63× water immersion objective
(Zeiss Fluor, NA = 1.0, Zeiss, Oberkochen, Germany) was applied. Raman spectra were
obtained from uneven areas covering over half the area of the cell, including cell nuclei
with a fragment of cytoplasm. The integration time was 0.3 s and the sampling density was
0.5 µm. At least 3 cells were measured on average for each patient. Cells that were selected
for imaging: single cells, not part of an aggregate since in the aggregate the signal from
neighboring cells was overlaid; lying flat on a slide as the signal from wrapped cells could
be falsified; undamaged, e.g., cells with a prolapsed nucleus were rejected. Among these
cells, we randomly selected cells for Raman imaging. A total of 197 cells were imaged.

Pre-treatment data processing including the procedure of cosmic rays removal and the
background subtraction (polynomial of 3 degree) was performed using the WITec Project
Plus 5.1 software (WITec, Ulm, Germany). To identify and separate clusters containing
the cell nucleus, LDs, and cytoplasm, the obtained spectra were subjected to Cluster
Analysis (CA, K-means, Manhattan distance). The Opus 7.2 software was used for the
next steps of analysis: the vector normalization (spectral ranges was 1500–400 cm−1 and
3000–2800 cm−1), the averaging of spectra in the analyzed groups and calculations of the
integral intensities of bands in the 3000–2830 cm−1 range (lipids) or at 486 cm−1 (glycogen),
1270 and 1300 cm−1 (the last two signals to calculate the lipid unsaturation ratio). The
obtained results are presented in relative units.

2.3. HPV Testing

Detection of the presence of HPVhr infection was carried out in two stages. The first
step was to perform nested PCR using two primer pairs: external MY09/MY11 and internal
GP5+/GP6+ using Mastercycler Nexus × 2 from Eppendorf (Hamburg, Germany). This
test is designed to detect fourteen types of HPVhr: HPV16, 18, 31, 33, 35, 39, 45, 51, 52,
56, 58, 59, 66, and 68. To visualize the test results, agarose gel electrophoresis with the
addition of bromodeoxyuridine (BrdU) was performed. The second step was to perform a
Cobas HPV Test (Roche, Basel Switzerland) to confirm that the detected HPV infections
were associated with highly oncogenic types of the virus. Complete data on the presence of
genotypes 16 and 18 in each group can be found in the Supplementary Materials (Table S2).

2.4. Counting Leukocytes in Samples

To determine the level of inflammation in specific groups, the number of leukocytes in
the vaginal fornix and the cervical shield and canal were collected from the database of the
Microbiological Research Center in all patients who underwent a cytological examination
in 2017–2019. This number has been termed “very numerous” (leukocytes cover about 75%
of the field of view), “numerous” (leukocytes cover about 50% of the field of view), “not
numerous” (leukocytes cover about 25% of the field of view) and “none” (leukocytes cover
0% of the field of view) by an experienced cytologist.
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2.5. Determination of mtDNA Copy Number

The qPCR was used to determine the amount of mitochondrial DNA in test samples
relative to the amount of nuclear-encoded beta-actin gene. Two pairs of specific primers
were used for the reaction: one pair for the amplification of the mitochondrial ND1 gene
(described by Warowicka et al. [36]) and the other pair for the amplification of the nuclear
beta-actin gene (described by Guzik et al. [44]).

The reaction was performed on the CFX96 Touch Real-Time PCR Detection System
(Bio-Rad, Hercules, CA, USA). The total volume of the PCR mixture was 10 µL. The
mixture consisted of a template DNA (5 ng/reaction), 1 mM of each forward and reverse
primers and 5 µL of RT HS-PCR Mix SYBR®A (A&A Biotechnology, Gdansk, Poland).
Both genes were amplified for each sample during one thermal-cycler reaction with the
same temperature profile: initial denaturation at 95 ◦C for 3 min, followed by 40 cycles of
95 ◦C for 30 s, 56 ◦C for 60 s, and 72 ◦C for 60 s. All the reactions for samples were run in
duplicate. The obtained data were analyzed using double delta Ct analysis. The geometric
mean of the values obtained in normal, HPVhr negative samples, in which additionally no
inflammation was found, was used as the control value in the calculations.

2.6. Study of CpG Islands Methylation in SREBF1 Gene

To investigate the CpG island methylation of the SREBF1 gene, bisulfite-sequencing of
these genes was performed. First, sample conversion was performed with bisulfite reagent
(CiTi Converter DNA Methylation Kit, A&A Biotechnology). After conversion, PCR
was performed in Eppendorf Mastercycler® nexus (Eppendorf). The specific primer pair
described by Lou et al. [45] was used to amplify the SREBF1 gene. The total volume of the
PCR mixture was 25 µL. The mixture consisted of a template DNA (6 ng/reaction), 0.4 mM
of each forward and reverse primers, 2.5 mM of MgCl2 and 12.5 µL of CiTi Converter MSP
PCR Kit (A&A Biotechnology). The temperature profile was: initial denaturation at 95 ◦C
for 5 min, followed by 40 cycles of 95 ◦C for 15 s, 58 ◦C for 30 s, and 72 ◦C for 60 s, final
elongation at 72 ◦C for 5 min, and cooling at 10 ◦C.

After the PCR reaction, the presence of the products was verified by agarose gel
electrophoresis. Then, the samples were purified using the EPPiC kit (A&A Biotechnology)
and subjected to Sanger sequencing.

2.7. Statistical Analysis

Statistical analysis was performed using the Origin 9.1 (OriginLab Corporation,
Northampton, MA, USA) and STATISTICA 13.1 software (TIBCO Software Inc., Palo
Alto, CA, USA). The Shapiro–Wilk test was used to check the normality of data distribution.
Then, Kruskal-Wallis and U’Mann-Whitney tests were performed to assess the lipid content,
glycogen content, lipid unsaturation, leucocyte count and CpG islands methylation. The
Chi-square test was used to calculate differences in the level of leukocytes. A Spearman’s
correlation method was used to calculate the correlation between data. Two results (both
from N− group) were discarded from the cytoplasmic lipid analysis, two results (one from
LSIL and one from SCC group) were discarded from unsaturation analysis and three results
(from N−, LSIL− and SCC+ group) were discarded from mtDNA analysis, as they were
classified as outliers based on interquartile range.

3. Results
3.1. Subcellular Distribution of Lipids in Cervical Epithelial Cells

Raman imaging was performed to determine changes in the lipid profile of cervical
epithelial cells depending on the severity of pathological changes. Cells obtained from
63 patients, classified into seven groups based on the Bethesda 2014 system [43] and HPV
tests as follows: N−, N+, LSIL−, LSIL+, HSIL−, HSIL+, and SCC+, were analyzed. Raman
images (Figure 1A) were obtained to visualize the distribution of various components, in
particular lipids, proteins, nucleic acids (DNA/RNA), and glycogen. To obtain spectra
from individual subcellular structures (Figure 1B,C), the cluster analysis (KMCA, k-means,
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Manhattan distance) was performed. The analyzed subcellular structures are nucleus, lipid
droplets (LDs) and cytoplasm—denoted in orange, blue and green, respectively. LDs were
additionally divided into saturated lipids-rich—green class and unsaturated lipids-rich—
purple class. LDs heterogeneity occurs between cells, there is no substantial variability
inside the cells. Figure S1 (Supplementary Materials) shows the distribution of lipids in
representative cells from each test group (N, LSIL, HSIL, SCC).
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Figure 1. Subcellular distribution of lipids in cervical epithelial cells. Representative Raman images of cervical epithelial
cells (N−, LSIL+, LSIL+) (A) obtained by integration in the regions: 2830–3030 cm−1 (all organic matter), 770–800 cm−1

(DNA & RNA), 900–955 cm−1 (glycogen), 2830–2900 cm−1 (total lipids), 2990–3020 cm−1 (unsaturated lipids) and 1715–
1760 cm−1 (esters). Average Raman spectra and representative K-means cluster analysis image (B) showing the distribution
of main classes in cervical epithelial cells: orange—cytoplasm, blue—nucleus, green—LDs. Average Raman spectra of LDs
with an utmost difference of lipid unsaturation and glycogen content (C) of different cells indicating their heterogeneity.
Scale bars equal 6 µm.

LDs were observed in approximately half of all imaged epithelial cells and were
randomly distributed in the cytoplasm. They exhibit bands characteristic for lipids (1266,
1304, 1440, 1664, 1747 and 3006 cm−1) [46]. The signal at 1747 cm−1 arising from the
C=O stretching vibration of esters indicates triacylglycerols as the main components of
studied LDs. Due to the heterogeneity of observed LDs, they were divided into two groups
according to their unsaturation status according to the intensity ratio of the signals at 1660
and 1440 cm−1 (due to the C=C stretching and CH2 scissoring vibrations, respectively) [46].
Moreover, observed LDs show different levels of esters. High levels of polyunsaturated
fatty acids are observed in inflammation and cancer, mainly because they act as mediators
in these processes [22]. When comparing the averaged signatures of cytoplasm and LDs, it
is clear that bands due to lipids are present only in LDs (Figure 1B). Moreover, both of these
classes also contain glycogen bands (481, 577, 858, 937, 1083, 1129, and 1340 cm−1) [38] but
they are not present in all cells and their intensity significantly vary between cells. In the
LDs of the studied cells, these components are intertwined and cannot be discriminated
from each other with the use of the CA. As shown in our previous paper, the level of
glycogen in cervical epithelial cells depends on the degree of dysplasia and HPVhr infection,
in particular, is very low in large-nucleus HPVhr+ cells vs. HPVhr− cells, which may be
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associated with the increased protein metabolism [38]. The described Raman bands and
their assignments have been included in the Supplementary Materials (Table S3).

3.2. The Lipid Level Is Significantly Elevated in the Cytoplasm of Cervical Epithelial Cells in the
HSIL+ and SCC+ Groups

High-spatial resolution Raman microscopy enabled to estimate of lipid and glycogen
contents in the cytoplasm of studied cells. A very important observation is that the lipid
content of cervical epithelial cells (calculated as the integral intensity in the 2830–3000 cm−1

range for the whole cytoplasm with LDs/glycogen) is significantly elevated in cells of
HSIL+ and SCC+ groups compared to the others (Figure 2A). A statistically significant
difference in lipid levels in HSIL+ cells compared to HSIL− cells was also noticed, whereas
no statistically significant differences were observed in other HPVhr+ groups vs. the
respective HPVhr− ones. Complete statistical data on the lipid content in the cytoplasm
have been included in the Supplementary Materials (Table S4). Additionally, the glycogen
level anti-correlates with the lipid content in the cytoplasm of cervical epithelial cells, in
particular, it is the lowest in the HSIL+ and SCC+ groups (Figure 2B), in agreement with
our previous results [38]. The negative correlation of both factors is statistically significant
in the N and HSIL groups (Figure 2C).
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and HPVhr infection. The comparison of the lipid (A) and glycogen (B) content in the cytoplasm of cervical epithelial cells
in the studied groups obtained by calculations of the integral intensity in the 2830–3000 cm−1 and 458–482 cm−1 range,
respectively. Mean values ± SEM are given as box plots: mean (horizontal line), SEM (box), SD (whiskers). Lipid content
as a function of glycogen content in the cytoplasm of cervical epithelial cells (C) The average lipid and glycogen contents
obtained by calculations of the integral intensity of the marker bands in the 2830–3000 cm−1 and 458–482 cm−1 range,
respectively) in the studied groups. Each mark represents data for one cell. A significant correlation was obtained for the N
(p < 0.001) and HSIL (p < 0.01) groups. * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.3. The Level of Lipid Unsaturation in Cervical Epithelial Cells Correlates with the Leucocyte
Levels Confirming Increased Inflammation in the LSIL Group

The level of lipid unsaturation in LDs of cervical epithelial cells was obtained based
on Raman data. Lipid unsaturation is the highest in the LSIL group and the lowest for
cancer cells (SCC group, Figure 3A). Complete statistical data on the lipid unsaturation in
LDs have been included in the Supplementary Materials (Table S5). Previously increased
lipid unsaturation was directly related to inflammation due to activation of the arachidonic
cycle [47,48].
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Figure 3. Lipid unsaturation in LDs of cervical epithelial cells correlates with the number of leucocytes in cervical
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calculating the ratio of the integral intensity of the bands at 1270/1300 cm−1 (A). Mean values ± SEM are given as box plots:
mean (horizontal line), SEM (box), minimal and maximal values (whiskers). Percentage of patients grouped based on the
number of leukocytes in the cervical Scheme 2017 at The Centre of Microbiological Research and Autovaccines (B,C). The
comparison of the leukocyte count in the vaginal fornix (B) and cervical shield & canal (C) in the studied groups: N, LSIL,
and HSIL. The leukocytes in each sample were assessed by the cytologist as: very numerous (leukocytes cover about 75% of
the field of view), numerous (leukocytes cover about 50% of the field of view), not numerous (leukocytes cover about 25%
of the field of view) and none (leukocytes cover 0% of the field of view). * p < 0.05, ** p < 0.01, *** p < 0.001.

To confirm quantitatively increased inflammation in the LSIL group, the level of
leukocytes from vaginal fornix and cervical shield & canal in cervical swabs collected from
2017–2019 in The Centre of Microbiological Research and Autovaccines, including data
for N, LSIL, and HSIL groups was collected and compared (Figure 3B,C). The number of
leukocytes was assigned by an experienced cytologist as: very numerous, numerous, not
numerous and none. The leukocyte count for both vaginal fornix and cervical shield &
canal shows the following decreasing tendency in groups: LSIL > HSIL > N. The lipid
unsaturation decreases in the same order confirming the conclusion regarding the increased
inflammation in the LSIL group.
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3.4. The Level of CpG Island Methylation of the SREBF1 Gene Is Statistically the Highest in LSIL
Group and the Lowest in SCC Group

Another interesting correlation was found studying the CpG island methylation level
of the SREBF1 gene in the considered groups. Figure 4A,B show that the methylation
level decreases in the following order: LSIL > N > HSIL > SCC. It directly correlates with
the glycogen content in the cytoplasm and reversely with the lipid levels (Figure 2A,B).
However, it should be noted that for most of the samples in groups N (16), HSIL (8) and
SCC (9) no methylation was found. Full data on the number of methylations is provided
in the Supplementary Materials (Table S6). Figure 4B shows the percentage of samples
with at least one methylation in each group. The percentage of samples with at least one
methylation are as follows: LSIL > N > HSIL > SCC. The mean number of methylations in
the sample shows the same trend for the individual groups as the percentage of methylated
samples (Figure 4A).
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3.5. The Level of Mitochondrial DNA Copies Is the Highest for the HSIL+ and SCC+ Groups

To indirectly assess whether pathological and control cells differ in the number of
mitochondria, the number of copies of mitochondrial genomes was estimated. The level of
mitochondrial DNA copies is highest for the HSIL+ and SCC+ groups (Figure 5). There is a
tendency showing the increase in the mtDNA copy level in the presence of HPVhr infection
within the N and HSIL groups, however, the statistical significance of these data was not
achieved. Complete statistical data on the level of mtDNA copies have been included in
the Supplementary Materials (Table S7).
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Figure 5. The level of mitochondrial DNA copies in cervical epithelial cells. The com-
parison of the level of mtDNA copies in cervical epithelial cells in studied groups obtained
by calculating a Ct value from the Ct value of the ND1 gene relative to the Ct value of the
beta-actin gene. Mean values ± SEM are given as box plots: mean (horizontal line), SEM
(box), SD (whiskers). * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

Cells that proliferate at high frequency, such as cancer cells, must efficiently produce
biomass such as lipids, proteins, and nucleic acids [49]. The results obtained by us regarding
the level of lipids in the cytoplasm are consistent with this assumption—the highest lipid
levels are obtained in epithelial cervical cells are in the HSIL+ and SCC+ groups (Figure 2A).
The phenomenon of de novo lipid synthesis in neoplastic cells is associated with the
increased expression of the FASN and ACC enzymes [20]. FASN catalyzes the condensation
of acetyl-CoA to long-chain fatty acids [20], while ACC is responsible for the formation
of malonyl-CoA [21]. One of the mechanisms behind increased FASN expression is its
regulation by SREBP protein [50]. In tumors, SREBPs are activated by the Akt/PI3K and
mammalian target of rapamycin complex 1 (mTORC1) pathways [18,19]. The oncogenic
HPV E6 and E7 proteins are among the many activators of the Akt/PI3K pathway [51,52],
which may explain the increased lipid levels in the HSIL+ group compared to the HSIL−
group (Figure 2A).

Contrary to the lipid content in the cytoplasm of the cervical cells, the concentration
of glycogen is the lowest for the HSIL+ and SCC+ groups, and the highest for the LSIL−
and LSIL+ groups (Figure 2B). Cancer cells, as well as other rapidly dividing cells, metab-
olize glucose by aerobic glycolysis [53]. In the past, this phenomenon was thought to be
indicative of damage of mitochondria, but van der Heiden et al. [15] hypothesized that
glucose catabolism is unprofitable from the point of view of rapidly proliferating cells as
they need acetyl-CoA and glycolysis intermediates to produce biomass for division, which
otherwise would be lost as carbon dioxide during oxidative phosphorylation. Except that,
via alternative pathways to glucose oxidation, cells obtain NADPH, which is necessary
for the synthesis of various macromolecules [15]. This process is also regulated by the
mammalian target of rapamycin kinase (mTOR) and Akt/PI3K pathways, and it provides
substrates for lipogenesis [15].
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The lack of a negative correlation between the level of lipids and glycogen in the
cytoplasm of neoplastic cells (Figure 2C) may seem inconsistent with the fact of increased
activation of the Akt/PI3K pathway in neoplasms. It is particularly noteworthy that this
correlation is disturbed by cells with zero glycogen levels in the cytoplasm. Referring to
the results of Curtis et al. [54] it can be hypothesized that these are cells associated with the
formation of metastases. In turn, Lee et al. [55] described that the formation of lymph node
metastases is associated with the shift of lipid metabolism in cells towards the fatty acid
oxidation pathway.

The highest level of lipid unsaturation of LDs was observed in the LSIL group, and
the lowest in the SCC group (Figure 3A). The increase in unsaturation of fatty acids in
cells is associated with carcinogenesis and inflammation [23,24,47] in literature. Studies
on six different types of cancer using mass spectrometry have shown that tumors increase
the level of MUFAs and are negatively correlated with the level of polyunsaturated fatty
acids (PUFAs) and SFAs [56]. However, the increase in the level of lipid unsaturation is not
typical of all types of cancer—an decrease in fatty acid unsaturation was also reported in the
case of human liver cancer [26]. To verify if this result is associated with inflammation, we
compared the leucocyte counts in the studied groups. Based on the analysis of the results
of several thousand samples, we concluded that the highest level of leukocytes, both from
vaginal fornix and cervical shield and canal, is present for the LSIL group (Figure 3B,C).
According to Geisler et al. [57], the elevated leukocyte count is a strong predictor of vaginal
and cervical inflammation. Other authors have shown that leukocytes are rarely found in
the vaginal discharge of healthy women, except during menstruation [58].

To shed light on the observed variations in lipid levels in cervical cells, methylation
of the SREBF1 gene encoding SREBP1 was assessed. SREBP1 is a protein from the SREBP
family, responsible for increasing the level of de novo lipogenesis and glycolysis by stimu-
lating the expression of proteins involved in these processes [59,60]. SREBP1 also inhibits
the process of beta-oxidation, increasing the concentration of malonyl-CoA (that can be
used for lipid synthesis) in the mitochondrial membrane [61]. We noticed the highest
level of SREBF1 gene methylation in the LSIL samples and the lowest in the SCC samples
(Figure 4A,B). It is noted in the literature that a higher degree of CpG island methylation in
the selected gene fragment indicates a decrease in its expression [45]. Literature data show
an association of increased SREBP1 expression with pancreatic, breast and colon cancers,
as well as with a poor prognosis in these tumors [62–64]. Moreover, depletion of this gene
expression in pancreatic cancer results in tumor growth inhibition [62].

Furthermore, we asked ourselves a question if observed changes are dependent on
the number or activity of mitochondria, as various key processes in eukaryotic cells lipid
metabolism take place in mitochondria [65]. Based on the measurement of mtDNA levels
in the tested samples, we concluded that mitochondria are the most numerous in the
HSIL+ and SCC+ groups, and the least in LSIL− and LSIL+ (Figure 5). Previously it was
reported that an increase in the mitochondrial genome copy number in cervical epithelial
cells is associated with dysplasia and oncogenesis [36,66]. The obtained results correlate
with the amount of lipids in the cytoplasm and inversely correlate with methylation
of the SREBF1 gene (Figures 2A and 4A,B). In cancer, the ACC level is upregulated,
and its suppression causes a significant reduction in the viability of cancer cells [67–69].
Seemingly paradoxically, the key enzyme that enables lipid synthesis, PDHC, is deactivated
in cancer by pyruvate dehydrogenase kinase (PDK) [70]. However, in cancer cells, another
mitochondrial-active enzyme, acetyl-CoA synthetase 3 (ACSS3), is overexpressed [71].
Based on obtained data, we also put forward the statement that HPVhr infection increases
the number of copies of the mitochondrial genome, but further research on a bigger cohort
of patients is needed to confirm this.

The results obtained based on Raman imaging (contents of lipids and glycogen,
lipid unsaturation) correlate very well with the results obtained by molecular methods
(methylation of the SREBF1 gene, the level of mitochondrial DNA) as well as leukocyte
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count, giving a very consistent picture of lipid changes in cervical cells developing dysplasia
and, moreover, show the added value of a multimethodological approach.

The biggest limitation of our study is the relatively small number of patients in each
group. It is, however, important to note that the results are backed up by several different
methods that give complementary results. Other factors that have not been taken into
account may also affect the results, such as the day of the menstrual cycle, past menopause,
diet, physical activity, and health.

5. Conclusions

The increase in lipid levels in neoplastic cells has been repeatedly described in the
literature. This phenomenon is related to SREBP activation through the Akt/PI3K and
mTOR pathways [18,19]. Using a unique, multimethodological approach, we confirmed
that this phenomenon occurs also for cervical epithelial cells classified as HSIL, moreover,
is HPVhr-dependent, hence it manifests only for HPVhr positive cells. This result shows
that HPVhr infection actively changes the cell epithelial metabolism making it similar
to that of the cancer cell. The HSIL+ and SCC+ groups, showing the highest lipid level
in the cytoplasm, demonstrate also the highest number of mitochondrial genome copies
indicating the metabolic switch in these cells. The increased number of mitochondria in
cells, indirectly evidenced by the number of mtDNA copies, either increases the efficiency
of lipid synthesis in mitochondria of cancer-like cells or results from the inefficiency of
aerobic glycolysis in energy production or both.

A decrease in the level of CpG island methylation in the analyzed fragment of the
SREBF1 gene in neoplastic cells proves a higher expression of this gene clearly associated
with a global increase in the level of lipid synthesis in the cell. We also observed that the
correlation of lipid and glycogen levels in the cytoplasm is negative for normal and HSIL
groups, this phenomenon does not occur in LSIL and cancer cells. In the LSIL group, the
phenomenon may be disturbed by inflammation. After subtracting cells with zero glycogen
levels in the cytoplasm, the described relationship also occurs for neoplastic cells. Referring
to the literature, it may be suspected that cancer cells with no glycogen may be involved in
the metastasis process, but further research is needed to confirm this hypothesis [54,55]. If,
however, these assumptions are confirmed, Raman microscopy may be useful in the rapid
selection of cervical cancer patients at higher risk of metastasis based on cellular lipid and
glycogen content. An interesting finding, and certainly requiring further research, is that
the LDs of cervical cancer cells have a low level of lipid unsaturation contrarily to cells
from the LSIL group that demonstrate the highest lipid unsaturation related to the highest
inflammation as confirmed by the number of leucocytes in cervical smears.

Overall, SREBF1 methylation and mitochondrial DNA levels are in line with observed
lipid levels in cervical cells with different levels of dysplasia, showing that LSIL, normal
cells and severely dysplastic/cancer cells (i.e., HSIL+ and SCC+) show very different
metabolic characteristics. Of particular interest is a dual switch of the lipid metabolism
observed for cells from the LSIL group (a decreased lipid level and related parameters) and
HSIL+ and SCC+ groups (an increased lipid level) compared with the control cells. This
phenomenon requires certainly further studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13091997/s1, Figure S1: Subcellular distribution of lipids in cervical epithelial cells
divided into groups Normal, LSIL, HSIL and SCC, Table S1: The number of patients in studied
groups, Table S2: Percentage of HPV-16 and HPV-18 positive samples among HPVhr positive samples
in individual groups, Table S3: Raman bands from publication and their assignments, Table S4: Lipid
content in studied epithelial cervical cells, Table S5: Lipid unsaturation in lipid droplets of studied
epithelial cervical cells, Table S6: CpG island methylation data of studied SREBF1 gene fragment,
Table S7: Level of mtDNA copies.
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Abbreviations

ACC acetyl-CoA carboxylase
ACSS3 acetyl-CoA synthetase 3
Akt protein kinase B
AMPK AMP-activated protein kinase
BrdU bromodeoxyuridine
FASN fatty acid synthase
HPV human papillomavirus
HPVhr high-risk HPV
HSIL high-grade squamous epithelial lesion
LDs lipid droplets
LSIL low-grade squamous epithelial lesion
MCT1 monocarboxylate transporter 1
MCT4 monocarboxylate transporter 4
mtDNA mitochondrial DNA
mTOR mammalian target of rapamycin kinase
mTORC1 mammalian target of rapamycin complex 1
MUFAs monounsaturated fatty acids
NADPH reduced form of nicotinamide adenine dinucleotide phosphate
PCR polymerase chain reaction
PDHC pyruvate dehydrogenase complex
PDK pyruvate dehydrogenase kinase
PI3K phosphatidylinositol 3-phosphate kinase
PUFAs polyunsaturated fatty acids
qPCR quantitative real-time polymerase reaction
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SCC squamous cell carcinoma
SCD1 stearoyl-CoA desaturase
SFAs saturated fatty acids
SREBF1 sterol regulatory element-binding factor 1
SREBP sterol regulatory element-binding proteins
TCA tricarboxylic acid

References
1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [CrossRef]
2. Alexander, K.A.; Giuliano, A.R. HPV—beyond cervical cancer (online resource center). Am. J. Med. 2012, 125, S1. [CrossRef]
3. Cline, B.J.; Simpson, M.C.; Gropler, M.; Bukatko, A.R.; Boakye, E.A.; Mohammed, K.A.; Osazuwa-Peters, N. Change in age at

diagnosis of oropharyngeal cancer in the united states, 1975–2016. Cancers 2020, 12, 3191. [CrossRef]
4. Bertoli, H.K.; Thomsen, L.T.; Iftner, T.; Dehlendorff, C.; Kjær, S.K. Risk of vulvar, vaginal and anal high-grade intraepithelial

neoplasia and cancer according to cervical human papillomavirus (HPV) status: A population-based prospective cohort study.
Gynecol. Oncol. 2020, 157, 456–462. [CrossRef]

5. Faridi, R.; Zahra, A.; Khan, K.; Idrees, M. Oncogenic potential of human papillomavirus (HPV) and its relation with cervical
cancer. Virol. J. 2011, 8, 269. [CrossRef]

6. Kocjan, B.J.; Bzhalava, D.; Forslund, O.; Dillner, J.; Poljak, M. Molecular methods for identification and characterization of novel
papillomaviruses. Clin. Microbiol. Infect. 2015, 21, 808–816. [CrossRef] [PubMed]

7. Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjosé, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical
cancer in 2018: A worldwide analysis. Lancet Glob. Health 2020, 8, e191–e203. [CrossRef]

8. Shanmugasundaram, S.; You, J. Targeting persistent human papillomavirus infection. Viruses 2017, 9, 229. [CrossRef] [PubMed]
9. McBride, A.A.; Warburton, A. The role of integration in oncogenic progression of HPV—associated cancers. PLoS Pathog. 2017,

13, e1006211. [CrossRef] [PubMed]
10. Doorbar, J. Molecular biology of human papillomavirus infection and cervical cancer. Clin. Sci. 2006, 110, 525–541. [CrossRef]

[PubMed]
11. Petry, K.U.; Wörmann, B.; Schneider, A. Benefits and risks of cervical cancer screening. Oncol. Res. Treat. 2014, 37, 48–57.

[CrossRef]
12. European Medicines. HPV Vaccines: EMA Confirms Evidence Does Not Support That They Cause CRPS or Pots Reports after HPV

Vaccination Consistent with What Would Be Expected in This; European Medicines Agency: London, UK, 2016.
13. Lowy, D.R.; Solomon, D.; Hildesheim, A.; Schiller, J.T.; Schiffman, M. HPV infection and the primary and secondary prevention

of cervical cancer. Cancer 2008, 113, 1980–1993. [CrossRef]
14. Luo, X.; Zhao, X.; Cheng, C.; Li, N.; Liu, Y.; Cao, Y. The implications of signaling lipids in cancer metastasis. Exp. Mol. Med. 2018,

50, 127. [CrossRef]
15. Heiden, M.G.V.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation.

Science 2009, 324, 1029–1033. [CrossRef] [PubMed]
16. Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer

2019, 18, 26. [CrossRef] [PubMed]
17. Beg, M.; Abdullah, N.; Thowfeik, F.S.; Altorki, N.K.; McGraw, T.E. Distinct Akt phosphorylation states are required for insulin

regulated Glut4 and Glut1-mediated glucose uptake. eLife 2017, 6, e26896. [CrossRef]
18. Krycer, J.R.; Sharpe, L.J.; Luu, W.; Brown, A.J. The Akt-SREBP nexus: Cell signaling meets lipid metabolism. Trends Endocrinol.

Metab. 2010, 21, 268–276. [CrossRef] [PubMed]
19. Shao, W.; Espenshade, P.J. Expanding roles for SREBP in metabolism. Cell Metab. 2012, 16, 414–419. [CrossRef]
20. Mashima, T.; Seimiya, H.; Tsuruo, T. De Novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy.

Br. J. Cancer 2009, 100, 1369–1372. [CrossRef]
21. Livieri, A.L.; Navone, L.; Marcellin, E.; Gramajo, H.; Rodriguez, E. A Novel multidomain Acyl-CoA carboxylase in saccha-

ropolyspora erythraea provides malonyl-CoA for de novo fatty acid biosynthesis. Sci. Rep. 2019, 9, 6725. [CrossRef]
22. Munir, R.; Lisec, J.; Swinnen, J.V.; Zaidi, N. Lipid Metabolism in Cancer Cells under Metabolic Stress. Br. J. Cancer 2019, 120,

1090–1098. [CrossRef] [PubMed]
23. Young, R.M.; Ackerman, D.; Quinn, Z.L.; Mancuso, A.; Gruber, M.; Liu, L.; Giannoukos, D.N.; Bobrovnikova-Marjon, E.; Diehl,

J.A.; Keith, B.; et al. Dysregulated MTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like
stress. Genes Dev. 2013, 27, 1115–1131. [CrossRef]

24. Li, J.; Condello, S.; Thomes-Pepin, J.; Ma, X.; Xia, Y.; Hurley, T.D.; Matei, D.; Cheng, J.X. Lipid Desaturation is a metabolic marker
and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 2017, 20, 303–314.e5. [CrossRef] [PubMed]

25. Igal, R.A. Stearoyl-coa desaturase-1: A novel key player in the mechanisms of cell proliferation, programmed cell death and
transformation to cancer. Carcinogenesis 2010, 31, 1509–1515. [CrossRef] [PubMed]

26. Yan, S.; Cui, S.; Ke, K.; Zhao, B.; Liu, X.; Yue, S.; Wang, P. Hyperspectral stimulated Raman scattering microscopy unravels
aberrant accumulation of saturated fat in human liver cancer. Anal. Chem. 2018, 90, 6362–6366. [CrossRef]

27. Wang, Y.P.; Lei, Q.Y. Metabolic recoding of epigenetics in cancer. Cancer Commun. 2018, 38, 25. [CrossRef]

http://doi.org/10.3322/caac.21551
http://doi.org/10.1016/j.amjmed.2012.03.005
http://doi.org/10.3390/cancers12113191
http://doi.org/10.1016/j.ygyno.2020.01.030
http://doi.org/10.1186/1743-422X-8-269
http://doi.org/10.1016/j.cmi.2015.05.011
http://www.ncbi.nlm.nih.gov/pubmed/26003284
http://doi.org/10.1016/S2214-109X(19)30482-6
http://doi.org/10.3390/v9080229
http://www.ncbi.nlm.nih.gov/pubmed/28820433
http://doi.org/10.1371/journal.ppat.1006211
http://www.ncbi.nlm.nih.gov/pubmed/28384274
http://doi.org/10.1042/CS20050369
http://www.ncbi.nlm.nih.gov/pubmed/16597322
http://doi.org/10.1159/000365059
http://doi.org/10.1002/cncr.23704
http://doi.org/10.1038/s12276-018-0150-x
http://doi.org/10.1126/science.1160809
http://www.ncbi.nlm.nih.gov/pubmed/19460998
http://doi.org/10.1186/s12943-019-0954-x
http://www.ncbi.nlm.nih.gov/pubmed/30782187
http://doi.org/10.7554/eLife.26896
http://doi.org/10.1016/j.tem.2010.01.001
http://www.ncbi.nlm.nih.gov/pubmed/20117946
http://doi.org/10.1016/j.cmet.2012.09.002
http://doi.org/10.1038/sj.bjc.6605007
http://doi.org/10.1038/s41598-019-43223-5
http://doi.org/10.1038/s41416-019-0451-4
http://www.ncbi.nlm.nih.gov/pubmed/31092908
http://doi.org/10.1101/gad.198630.112
http://doi.org/10.1016/j.stem.2016.11.004
http://www.ncbi.nlm.nih.gov/pubmed/28041894
http://doi.org/10.1093/carcin/bgq131
http://www.ncbi.nlm.nih.gov/pubmed/20595235
http://doi.org/10.1021/acs.analchem.8b01312
http://doi.org/10.1186/s40880-018-0302-3


Cancers 2021, 13, 1997 15 of 16

28. Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492.
[CrossRef]

29. Herman, J.G.; Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 2003, 349,
2042–2054. [CrossRef]

30. Zong, W.X.; Rabinowitz, J.D.; White, E. Mitochondria and cancer. Mol. Cell 2016, 61, 667–676. [CrossRef]
31. Mahmood, S.; Birkaya, B.; Rideout, T.C.; Patel, M.S. Lack of Mitochondria-generated acetyl-CoA by pyruvate dehydrogenase

complex downregulates gene expression in the hepatic de novo lipogenic pathway. Am. J. Physiol. Endocrinol. Metab. 2016, 311,
E117–E127. [CrossRef]

32. Vishwanath, V.A. Fatty acid beta-oxidation disorders: A brief review. Ann. Neurosci. 2016, 23, 51–55. [CrossRef] [PubMed]
33. Browsney, R.W.; Boone, A.N.; Elliott, J.E.; Kulpa, J.E.; Lee, W.M. Regulation of Acetyl-CoA carboxylase. Biochem. Soc. Trans. 2006,

34, 223–226. [CrossRef]
34. Holness, M.J.; Sugden, M.C. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem. Soc.

Trans. 2003, 31, 1143–1151. [CrossRef] [PubMed]
35. Prag, H.A.; Murphy, M.P. mtDNA mutations help support cancer cells. Nat. Cancer 2020, 1, 941–942. [CrossRef]
36. Warowicka, A.; Kwasniewska, A.; Gozdzicka-Jozefiak, A. Alterations in mtDNA: A qualitative and quantitative study associated

with cervical cancer development. Gynecol. Oncol. 2013, 129, 193–198. [CrossRef]
37. Klein, K.; Gigler, A.M.; Aschenbrenner, T.; Monetti, R.; Bunk, W.; Jamitzky, F.; Morfill, G.; Stark, R.W.; Schlegel, J. Label-free

live-cell imaging with confocal Raman microscopy. Biophys. J. 2012, 102, 360–368. [CrossRef]
38. Sitarz, K.; Czamara, K.; Bialecka, J.; Klimek, M.; Zawilinska, B.; Szostek, S.; Kaczor, A. HPV infection significantly accelerates

glycogen metabolism in cervical cells with large nuclei: Raman microscopic study with subcellular resolution. Int. J. Mol. Sci.
2020, 21, 2667. [CrossRef]

39. Lyng, F.M.; Traynor, D.; Ramos, I.R.M.; Bonnier, F.; Byrne, H.J. Raman spectroscopy for screening and diagnosis of cervical cancer.
Anal. Bioanal. Chem. 2015, 407, 8279–8289. [CrossRef]

40. Duraipandian, S.; Traynor, D.; Kearney, P.; Martin, C.; O’Leary, J.J.; Lyng, F.M. Raman spectroscopic detection of high-grade
cervical cytology: Using morphologically normal appearing cells. Sci. Rep. 2018, 8, 15048. [CrossRef]

41. Bonnier, F.; Traynor, D.; Kearney, P.; Clarke, C.; Knief, P.; Martin, C.; O’Leary, J.J.; Byrne, H.J.; Lyng, F. Processing ThinPrep
cervical cytological samples for Raman spectroscopic analysis. Anal. Methods 2014, 6, 7831–7841. [CrossRef]

42. Wood, B.R.; Quinn, M.A.; Burden, F.R.; McNaughton, D. An investigation into FTIR spectroscopy as a biodiagnostic tool for
cervical cancer. Biospectroscopy 1996, 2, 143–153. [CrossRef]

43. Nayar, R.; Wilbur, D.C. The Pap Test and Bethesda 2014. Acta Cytol. 2015, 59, 121–132. [CrossRef] [PubMed]
44. Guzik, K.; Bzowska, M.; Dobrucki, J.; Pryjma, J. Heat-shocked monocytes are resistant to Staphylococcus aureus-induced apoptotic

DNA fragmentation due to expression of HSP72. Infect. Immun. 1999, 67, 4216–4222. [CrossRef] [PubMed]
45. Lou, H.; Le, F.; Zheng, Y.; Li, L.; Wang, L.; Wang, N.; Zhu, Y.; Huang, H.; Jin, F. Assisted reproductive technologies impair the

expression and methylation of insulin-induced gene 1 and sterol regulatory element-binding factor 1 in the fetus and placenta.
Fertil. Steril. 2014, 101, 974–980.e2. [CrossRef]

46. Czamara, K.; Majzner, K.; Pacia, M.Z.; Kochan, K.; Kaczor, A.; Baranska, M. Raman spectroscopy of lipids: A review. J. Raman
Spectrosc. 2015, 46, 4–20. [CrossRef]

47. Czamara, K.; Majzner, K.; Selmi, A.; Baranska, M.; Ozaki, Y.; Kaczor, A. Unsaturated lipid bodies as a hallmark of inflammation
studied by Raman 2D and 3D microscopy. Sci. Rep. 2017, 7, 40889. [CrossRef]

48. Fritsche, K.L. The science of fatty acids and inflammation. Adv. Nutr. 2015, 6, 293S–301S. [CrossRef]
49. Baenke, F.; Peck, B.; Miess, H.; Schulze, A. Hooked on fat: The role of lipid synthesis in cancer metabolism and tumour

development. DMM Dis. Model. Mech. 2013, 6, 1353–1363. [CrossRef]
50. Carroll, R.G.; Zasłona, Z.; Galván-Peña, S.; Koppe, E.L.; Sévin, D.C.; Angiari, S.; Triantafilou, M.; Triantafilou, K.; Modis,

L.K.; O’Neill, L.A. An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage
activation. J. Biol. Chem. 2018, 293, 5509–5521. [CrossRef] [PubMed]

51. Contreras-Paredes, A.; De la Cruz-Hernández, E.; Martínez-Ramírez, I.; Dueñas-González, A.; Lizano, M. E6 Variants of human
papillomavirus 18 differentially modulate the protein kinase B/phosphatidylinositol 3-Kinase (Akt/PI3K) signaling pathway.
Virology 2009, 383, 78–85. [CrossRef]

52. Menges, C.W.; Baglia, L.A.; Lapoint, R.; McCance, D.J. Human papillomavirus type 16 E7 up-regulates AKT activity through the
retinoblastoma protein. Cancer Res. 2006, 66, 5555–5559. [CrossRef]

53. Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [CrossRef]
54. Curtis, M.; Kenny, H.A.; Ashcroft, B.; Mukherjee, A.; Johnson, A.; Zhang, Y.; Helou, Y.; Batlle, R.; Liu, X.; Gutierrez, N.; et al.

Fibroblasts mobilize tumor cell glycogen to promote proliferation and metastasis. Cell Metab. 2019, 29, 141–155. [CrossRef]
[PubMed]

55. Lee, C.; Jeong, S.; Jang, C.; Bae, H.; Kim, Y.H.; Park, I.; Kim, S.K.; Koh, G.Y. Tumor metastasis to lymph nodes requires
YAP-dependent metabolic adaptation. Science 2019, 363, 644–649. [CrossRef] [PubMed]

56. Guo, S.; Wang, Y.; Zhou, D.; Li, Z. Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types
of cancer microenvironment are observed by mass spectrometry imaging. Sci. Rep. 2014, 4, 1–9. [CrossRef] [PubMed]

http://doi.org/10.1038/nrg3230
http://doi.org/10.1056/NEJMra023075
http://doi.org/10.1016/j.molcel.2016.02.011
http://doi.org/10.1152/ajpendo.00064.2016
http://doi.org/10.1159/000443556
http://www.ncbi.nlm.nih.gov/pubmed/27536022
http://doi.org/10.1042/BST20060223
http://doi.org/10.1042/bst0311143
http://www.ncbi.nlm.nih.gov/pubmed/14641014
http://doi.org/10.1038/s43018-020-00128-x
http://doi.org/10.1016/j.ygyno.2013.01.001
http://doi.org/10.1016/j.bpj.2011.12.027
http://doi.org/10.3390/ijms21082667
http://doi.org/10.1007/s00216-015-8946-1
http://doi.org/10.1038/s41598-018-33417-8
http://doi.org/10.1039/C4AY01497A
http://doi.org/10.1002/(SICI)1520-6343(1996)2:3&lt;143::AID-BSPY1&gt;3.0.CO;2-9
http://doi.org/10.1159/000381842
http://www.ncbi.nlm.nih.gov/pubmed/25997404
http://doi.org/10.1128/IAI.67.8.4216-4222.1999
http://www.ncbi.nlm.nih.gov/pubmed/10417194
http://doi.org/10.1016/j.fertnstert.2013.12.034
http://doi.org/10.1002/jrs.4607
http://doi.org/10.1038/srep40889
http://doi.org/10.3945/an.114.006940
http://doi.org/10.1242/dmm.011338
http://doi.org/10.1074/jbc.RA118.001921
http://www.ncbi.nlm.nih.gov/pubmed/29463677
http://doi.org/10.1016/j.virol.2008.09.040
http://doi.org/10.1158/0008-5472.CAN-06-0499
http://doi.org/10.1126/science.123.3191.309
http://doi.org/10.1016/j.cmet.2018.08.007
http://www.ncbi.nlm.nih.gov/pubmed/30174305
http://doi.org/10.1126/science.aav0173
http://www.ncbi.nlm.nih.gov/pubmed/30733421
http://doi.org/10.1038/srep05959
http://www.ncbi.nlm.nih.gov/pubmed/25091112


Cancers 2021, 13, 1997 16 of 16

57. Geisler, W.M.; Yu, S.; Venglarik, M.; Schwebke, J.R. Vaginal leucocyte counts in women with bacterial vaginosis: Relation to
vagina and cervical infections. Sex. Transm. Infect. 2004, 80, 401–405. [CrossRef]

58. Hill, J.A.; Anderson, D.J. Human vaginal leukocytes and the effects of vaginal fluid on lymphocyte and macrophage defense
functions. Am. J. Obstet. Gynecol. 1992, 166, 720–726. [CrossRef]

59. Sekiya, M.; Yahagi, N.; Matsuzaka, T.; Takeuchi, Y.; Nakagawa, Y.; Takahashi, H.; Okazaki, H.; Iizuka, Y.; Ohashi, K.; Gotoda, T.;
et al. SREBP-1-independent regulation of lipogenic gene expression in adipocytes. J. Lipid Res. 2007, 48, 1581–1591. [CrossRef]

60. Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in
the liver. J. Clin. Investig. 2002, 109, 1125–1131. [CrossRef] [PubMed]

61. Bullón-Vela, M.V.; Abete, I.; Martínez, J.A.; Zulet, M.A. Obesity and nonalcoholic fatty liver disease: Role of oxidative stress. Obes.
Oxidative Stress Diet. Antioxid. 2018, 111–133. [CrossRef]

62. Sun, Y.; He, W.; Luo, M.; Zhou, Y.; Chang, G.; Ren, W.; Wu, K.; Li, X.; Shen, J.; Zhao, X.; et al. SREBP1 regulates tumorigenesis and
prognosis of pancreatic cancer through targeting lipid metabolism. Tumor Biol. 2015, 36, 4133–4141. [CrossRef] [PubMed]

63. Wen, Y.A.; Xiong, X.; Zaytseva, Y.Y.; Napier, D.L.; Vallee, E.; Li, A.T.; Wang, C.; Weiss, H.L.; Evers, B.M.; Gao, T. Downregulation
of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer article. Cell Death Dis. 2018, 9, 265.
[CrossRef] [PubMed]

64. Bao, J.; Zhu, L.; Zhu, Q.; Su, J.; Liu, M.; Huang, W. SREBP-1 is an independent prognostic marker and promotes invasion and
migration in breast cancer. Oncol. Lett. 2016, 12, 2409–2416. [CrossRef]

65. Walther, T.C.; Farese, R.V. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 2012, 81, 687–714. [CrossRef]
[PubMed]

66. Sun, W.; Qin, X.; Zhou, J.; Xu, M.; Lyu, Z.; Li, X.; Zhang, K.; Dai, M.; Li, N.; Hang, D. Mitochondrial DNA copy number in cervical
exfoliated cells and risk of cervical cancer among HPV-positive women. BMC Womens. Health 2020, 20, 139. [CrossRef]

67. Ye, B.; Yin, L.; Wang, Q.; Cunshuan, X.U. ACC1 Is overexpressed in liver cancers and contributes to the proliferation of human
hepatoma Hep G2 cells and the rat liver cell line BRL 3A. Mol. Med. Rep. 2019, 49, 3431–3440. [CrossRef]

68. Chajès, V.; Cambot, M.; Moreau, K.; Lenoir, G.M.; Joulin, V. Acetyl-CoA carboxylase α is essential to breast cancer cell survival.
Cancer Res. 2006, 66, 5287–5294. [CrossRef]

69. Wang, C.; Rajput, S.; Watabe, K.; Liao, D.F.; Cao, D. Acetyl-CoA carboxylase-α as a novel target for cancer therapy. Front. Biosci.
Sch. 2010, S2, 515–526. [CrossRef]

70. Ferriero, R.; Brunetti-Pierri, N. Phenylbutyrate increases activity of pyruvate dehydrogenase complex. Oncotarget 2013, 4, 804–805.
[CrossRef]

71. Zhang, J.; Duan, H.; Feng, Z.; Han, X.; Gu, C. Acetyl-CoA synthetase 3 promotes bladder cancer cell growth under metabolic
stress. Oncogenesis 2020, 9. [CrossRef]

http://doi.org/10.1136/sti.2003.009134
http://doi.org/10.1016/0002-9378(92)91703-D
http://doi.org/10.1194/jlr.M700033-JLR200
http://doi.org/10.1172/JCI0215593
http://www.ncbi.nlm.nih.gov/pubmed/11994399
http://doi.org/10.1016/B978-0-12-812504-5.00006-4
http://doi.org/10.1007/s13277-015-3047-5
http://www.ncbi.nlm.nih.gov/pubmed/25589463
http://doi.org/10.1038/s41419-018-0330-6
http://www.ncbi.nlm.nih.gov/pubmed/29449559
http://doi.org/10.3892/ol.2016.4988
http://doi.org/10.1146/annurev-biochem-061009-102430
http://www.ncbi.nlm.nih.gov/pubmed/22524315
http://doi.org/10.1186/s12905-020-01001-w
http://doi.org/10.3892/mmr.2019.9994
http://doi.org/10.1158/0008-5472.CAN-05-1489
http://doi.org/10.2741/s82
http://doi.org/10.18632/oncotarget.1000
http://doi.org/10.1038/s41389-020-0230-3

	Introduction 
	Materials and Methods 
	Clinical Specimens 
	Raman Microscopy 
	HPV Testing 
	Counting Leukocytes in Samples 
	Determination of mtDNA Copy Number 
	Study of CpG Islands Methylation in SREBF1 Gene 
	Statistical Analysis 

	Results 
	Subcellular Distribution of Lipids in Cervical Epithelial Cells 
	The Lipid Level Is Significantly Elevated in the Cytoplasm of Cervical Epithelial Cells in the HSIL+ and SCC+ Groups 
	The Level of Lipid Unsaturation in Cervical Epithelial Cells Correlates with the Leucocyte Levels Confirming Increased Inflammation in the LSIL Group 
	The Level of CpG Island Methylation of the SREBF1 Gene Is Statistically the Highest in LSIL Group and the Lowest in SCC Group 
	The Level of Mitochondrial DNA Copies Is the Highest for the HSIL+ and SCC+ Groups 

	Discussion 
	Conclusions 
	References

