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Objectives: To assess if mammographic density (MD) changes during neoadjuvant breast cancer treat-
ment and is predictive of a pathological complete response (pCR).
Methods: We prospectively included 200 breast cancer patients assigned to neoadjuvant chemotherapy
(NACT) in the NeoDense study (2014e2019). Raw data mammograms were used to assess MD with a fully
automated volumetric method and radiologists categorized MD using the Breast Imaging-Reporting and
Data System (BI-RADS), 5th Edition. Logistic regression was used to calculate odds ratios (OR) for pCR
comparing BI-RADS categories c vs. a, b, and d as well as with a 0.5% change in percent dense volume
adjusting for baseline characteristics.
Results: The overall median age was 53.1 years, and 48% of study participants were premenopausal pre-
NACT. A total of 23% (N ¼ 45) of the patients accomplished pCR following NACT. Patients with very dense
breasts (BI-RADS d) were more likely to have a positive axillary lymph node status at diagnosis: 89% of
the patients with very dense breasts compared to 72% in the entire cohort. A total of 74% of patients
decreased their absolute dense volume during NACT. The likelihood of accomplishing pCR following
NACT was independent of volumetric MD at diagnosis and change in volumetric MD during treatment.
No trend was observed between decreasing density according to BI-RADS and the likelihood of
accomplishing pCR following NACT.
Conclusions: The majority of patients decreased their MD during NACT. We found no evidence of MD as a
predictive marker of pCR in the neoadjuvant setting.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Mammographic density (MD) has gained significant interest
and publicity in breast cancer (BC) screening. This is because
women within the highest density categories have up to a 4- to 6-
fold increased risk of primary BC in comparison to women with
non-dense breasts [1]. The role of MD as a predictive marker in
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terms of response to diverse oncological treatments is less studied
although it has been shown that a decrease inMD during tamoxifen
treatmentdboth in the primary and secondary preventive
settingdis associated with risk reduction for BC and recurrence
hereof [2,3].

As a complement or alternative to the subjective Breast
Imaging-Reporting and Data System (BI-RADS) categorization [4],
assessment of MD can be estimated by one of many software
products operating on both digital vendor-processed and unpro-
cessed mammograms. Validated against BI-RADS and magnetic
resonance imaging (MRI) [5,6], Volpara™ is robust and consistent
across manufacturers [7,8] for measurement of volumetric MD.

On the tissue level, high MD represents a proliferative and pro-
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Abbreviations

MD mammographic density
BC breast cancer
BI-RADS Breast Imaging-Reporting and Data System
MRI magnetic resonance imaging
NACT neoadjuvant chemotherapy
pCR pathological complete response
FEC fluorouracil, epirubicin and cyclophosphamide
EC epirubicin and cyclophosphamide
HER2 human epidermal growth factor receptor 2
ALN axillary lymph node
ER estrogen receptor
PR progesterone receptor
VBD% volumetric breast density percentage
FGV fibroglandular volume
IQR interquartile range
OR odds ratio
BMI body mass index
DCIS ductal carcinoma in situ

Fig. 1. Patient flow chart.
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inflammatory environment [9,10]. It is plausible that the same
biological mechanisms associated with tumor initiation and tumor
growth in dense breasts may be responsible for a poorer treatment
response. Previous studies including one from our group [11,12],
have shown that patients with high MD are less responsive to
neoadjuvant chemotherapy (NACT) in terms of pathological com-
plete response (pCR)da surrogate marker for long-term survival
[13,14]. However, both previous studies were retrospective and
used only a qualitative method for MD assessment (Wolfe catego-
rization [15] and BI-RADS, respectively). Biomarkers, including
imaging biomarkers, are needed for more personalized oncological
treatment. This study aimed to investigate whether MD assessed
with a volumetric quantitative method or a change in MD during
NACT for BC is a predictive marker for pCR.

2. Material and methods

2.1. Cohort and clinical parameters

From 2014 to 2019, we included 207 BC patients assigned to
NACT within the ongoing SCAN-B trial (Clinical Trials ID
NCT02306096) at Skåne University Hospital, Sweden [16,17]. Pa-
tients were enrolled at their first visit to the Department of
Oncology following their BC diagnosis. The inclusion criteria were
female, age�18 years, accepting NACT, and ability to give informed
written consent. Reasons for exclusion (N ¼ 7) are presented in
Fig. 1. Bilateral mammograms and unilateral ultrasound of the
cancerous breast and axilla were performed at baseline and after
two and six cycles of chemotherapy, respectively (Fig. 2).

Patients received NACT according to the same guidelines and
standard treatment included three series of fluorouracil, epirubicin,
and cyclophosphamide (FEC) or epirubicin and cyclophosphamide
(EC) followed by three series of docetaxel. HER2 double-blockade
(trastuzumab and pertuzumab) was provided for human
epidermal growth factor receptor 2 (HER2)-overexpression
concomitantly with NACT. Ninety-seven percent of the patients
received standard NACT, and 3% (N ¼ 6) of the patients received a
taxane-only NACT-regimen, and one patient received EC only.
Among the patients with HER2-overexpressing tumors (N ¼ 48),
94% received a double HER2-blockade whereas the remainder
received only trastuzumab.
Clinical data and information on potential confounders were
retrieved from patient questionnaires regarding anthropometrics,
lifestyle factors, reproductive and hormonal history, previous
breast disorders, and current and previous use of prespecified
pharmaceuticals. Menopausal status at the time of diagnosis was
defined according to self-reported menstrual history and patients
with more than 1 year since the last period (secession of periods
not caused by birth control, i.e., intrauterine hormonal contracep-
tive, or recent pregnancy/breastfeeding) were considered post-
menopausal. Information on tumor characteristics was retrieved
from clinical pathology reports. A pCR was defined as the absence
of any residual invasive cancer in the resected breast after surgery
as well as all sampled axillary lymph nodes (ALN) following
completion of NACT [18]. For the four patients with bilateral BC, the
breast with the largest tumor/tumors was followed and evaluated.
The Research Electronic Data Capture application was used for
secure data entry [19]. The study was approved by the Regional
Ethics Committee in Lund, Sweden (committee’s reference
numbers: 2014/13, 2014/521, and 2016/521).

2.2. Digital mammography

Through prospectively collected radiological study forms (Sup-
plementary Material 1), detailed radiological tumor characteristics
were retrieved and noted in real-time at the examination. Clinical
bilateral digital mammograms in three views were acquired on
different machines: GE Senographe Pristina (3%), Philips Mammo-
Diagnost DR (17%), Philips MicroDose (2%), and Siemens Mammo-
mat Inspiration (77%). All images were saved in their raw,
unprocessed format, andMDwas estimated with the computerized
fully-automatic software Volpara™ (version 1.5.4.0, Volpara Solu-
tions Limited, Wellington, New Zealand) for which technical details
are described elsewhere [20]. Briefly, the volumetric estimate is
derived from a 2-dimensional digital mammogram that creates an
artificial volume based on assumptions of the anatomy of the
breast, knowledge of the breast thickness, and image processing
[20]. Volumetric breast density percentage (VBD%) is a continuous
variable calculated as the ratio of absolute dense tissue volume
[fibroglandular volume (FGV)] to total breast volume. At each time
point, the craniocaudal view and the mediolateral oblique view in
both breasts and the contralateral healthy breast only, respectively,
were used to calculate MD (VBD% and FGV). In line with a previous
study showing good concordance in MD between the ipsilateral
tumorous breast and the contralateral healthy breast [21], a
simplified validationwas performed showing no large difference in
volumetric MD in cancer affected and non-affected breast



Fig. 2. Study timeline.
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supporting the use of the average VBD%bilat in the descriptive sta-
tistics. Experienced breast radiologists, in direct connection to the
examination, assessed the MD of the contralateral breast according
to BI-RADS 5th edition [4].
2.3. Statistical analysis

We first plotted the cumulative distribution of the mean of the
VBD% in both breasts (VBD%bilat) within each BI-RADS level.We also
plotted the change in VBD%bilat from baseline to T1 (after 2nd
chemotherapy cycle) and from baseline to T2 (after 6th chemo-
therapy cycle) versus baseline VBD%bilat; equivalent plots were
made with the mean of FGV in both breasts (FGVbilat) instead of
VBD%bilat.

Next, patient characteristics were summarized by the BI-RADS
level at baseline. Categorical variables were described by counts
and percentages whereas continuous variables were described by
their median and interquartile range (IQR). For categorical vari-
ables, we furthermore assessed themedian and IQR of baseline VBD
%bilat within each level of the variable. Finally, we described the
baseline characteristics and VBD%bilat at T1 and T2 of the patients by
pCR status at the end of the follow-up.

We then set up logistic regression models including either VBD
%bilat, the VBD% of the contralateral non-cancer affected breast only
(VBD%contra), FGVbilat, or BI-RADS as the independent variable. pCR
was the dependent (outcome) variable. We also considered dy-
namic models, i.e., models inwhich absolute change in MD from T0
to T1 [i.e., VBD% (at T1) minus VBD% (at T0)], T0 to T2, and T1 to T2,
respectively, served as independent variables. For both VBD%bilat
and VBD%contra, we established models with an odds ratio (OR)
corresponding to a 0.3, 0.5, and 2.0 percentage point change in VBD
%, respectively. In addition, models based on relative change (OR
corresponding to 5% change) in VBD%bilat as the independent var-
iable were established. For FGVbilat, we built the models with an OR
corresponding to a 1- and 3-unit change, respectively. In the logistic
regression models, we used generalized estimating equations to
consider within-hospital site correlations. We set up both crude
models and partially- and fully adjusted models. In the partially
adjusted models, we included age, body mass index (BMI), meno-
pausal status, parity and hormone replacement therapy; in the fully
adjusted models, we also included ER, Ki67, HER2, ALN status, and
tumor size at diagnosis. In the dynamic models, we also adjusted
for MD at baseline and T1 because a decrease in MD was mostly
seen in patients with high MD at baseline. Finally, similar logistic
regression models were used to analyze the cohorts within sub-
groups defined by ALN, ER, and menopausal status. All analyses
were carried out in SAS (SAS Institute Inc., Version 9.4, Cary, NC,
USA).
3. Results

The distribution of baseline characteristics according to BI-RADS
and VBD%bilat is presented in Table 1 for the 200 BC patients
receiving NACT (Fig. 1). For the whole cohort, the median age was
53.1 years (IQR 45.9 to 62.5), the median BMI was 25.6 (IQR 22.4 to
28.7), median VBD%bilat at diagnosis was 11.0 (IQR 7.5 to 17.1), and
median FGVbilat was 73.5 cm3 (IQR 52.4 to 100).

Patients being younger, premenopausal, leaner (a lower BMI),
nulliparous and/or having a history of oral contraceptive use had
higher median VBD%bilat at baseline in comparison to their oppo-
sites (for age and BMI, respectively, visual assessment was done of
boxplot for two groups divided by the median).

In comparison to patients with less dense breasts, patients with
very dense breast (BI-RADS d, N ¼ 27) were more likely to have ER-
positive tumors and to have a positive ALN status at diagnosis
(89%), but VBD%bilat was similar regardless of ER expression and
ALN status. In total, only a few tumors had low proliferation [Ki67,
(N ¼ 11)]. None of the patients categorized as BI-RADS d (N ¼ 27)
had low proliferative tumors. Except for BI-RADS a, there was a
trend in that denser breasts implied larger tumors.

Patients with pCR following NACT (N ¼ 45) compared to pa-
tients without pCR (N ¼ 155) had similar VBD%bilat at all three time
points (Table 2). Patients with ER-negative, PR-negative, and/or
HER2-overexpressing tumors, negative ALN status, or high prolif-
eration (Ki67) were more likely to obtain pCR irrespective of MD.

The distribution of BI-RADS categories in relation to VBD%bilat
measured with Volpara™ at baseline is visualized in Fig. 3.

About half of the patients (47%) decreased their VBD%bilat be-
tween baseline and T1 and the corresponding percentage between
baseline and T2 was 56%. Only a small temporal change in VBD%bilat
was seen between baseline and T1 [median absolute decrease �0.1
(IQR -1.0 to 0.9)] whereas a slightly more pronounced change in
VBD%bilat was seen between baseline and T2 [median absolute
decrease �0.5 (IQR -2.4 to 0.7)]. A larger proportion of patients



Table 1
Patient and tumor characteristics according to mammographic density at diagnosis.

BI-RADS a (N ¼ 9) BI-RADS b (N ¼ 74) BI-RADS c (N ¼ 90) BI-RADS d (N ¼ 27) VBD%bilat median
(IQR)

Age at diagnosis Median (IQR) 62 (58e67) 56 (46e65) 51 (44e62) 47 (43e60)
BMI Median (IQR) 34.0 (28.7e36.8) 26.5 (22.4e28.7) 24.8 (22.3e28.7) 23.9 (22.1e25.6)
Age at menarche Median (IQR) 13 (11e14) 13 (12e14) 13 (12e14) 13 (12e13)

Missing N ¼ 5 0 (0.0) 1 (1.4) 4 (4.4) 0 (0.0)
Menopausal status Premenopausal N ¼ 95 0 (0) 28 (37.8) 51 (56.7) 16 (59.3) 14.0 (10.0e19.6)

Postmenopausal N ¼ 105 9 (100) 46 (62.2) 39 (43.3) 11 (40.7) 8.3 (5.7e12.6)
Number of pregnancies None N ¼ 19 0 (0) 6 (8.1) 10 (11.1) 3 (11.1) 12.0 (6.0e20.1)

1 N ¼ 28 1 (11.1) 11 (14.9) 10 (11.1) 6 (22.2) 10.7 (8.5e17.8)
2 N ¼ 76 0 (0) 26 (35.1) 40 (44.4) 10 (37.0) 12.4 (7.7e17.8)
3þ N ¼ 77 8 (88.9) 31 (41.9) 30 (33.3) 8 (29.6) 9.8 (6.9e15.0)

Any live birth No N ¼ 31 1 (11.1) 9 (12.2) 15 (16.7) 6 (22.2) 12.8 (7.1e18.5)
Yes N ¼ 169 8 (88.9) 65 (87.8) 75 (83.3) 21 (77.8) 11.0 (7.6e16.7)

Age first birth (years) No children N ¼ 31 1 (11.1) 9 (12.2) 15 (16.7) 6 (22.2) 12.8 (7.1e18.5)
<20 N ¼ 10 2 (22.2) 4 (5.4) 4 (4.4) 0 (0) 8.6 (5.8e10.0)
20e29 N ¼ 90 6 (66.7) 33 (44.6) 40 (44.4) 11 (40.7) 10.1 (6.6e16.9)
30e34 N ¼ 44 0 (0) 15 (20.3) 22 (24.4) 7 (25.9) 13.3 (9.6e19.0)
35þ N ¼ 21 0 (0) 11 (14.9) 7 (7.8) 3 (11.1) 10.0 (8.7e15.6)
Missing N ¼ 4 0 (0) 2 (2.7) 2 (2.2) 0 (0) 8.5 (6.9e10.4)

Number of biological children None N ¼ 31 1 (11.1) 9 (12.2) 15 (16.7) 6 (22.2) 12.8 (7.1e18.5)
1 N ¼ 34 0 (0) 16 (21.6) 14 (15.6) 4 (14.8) 9.5 (7.9e12.7)
2 N ¼ 96 3 (33.3) 33 (44.6) 47 (52.2) 13 (48.1) 11.7 (7.7e17.4)
3þ N ¼ 39 5 (55.6) 16 (21.6) 14 (15.6) 4 (14.8) 9.6 (6.4e16.7)

Alcohol use once a week or
more often

Yes N ¼ 92 3 (33.3) 34 (45.9) 42 (46.7) 13 (48.1) 11.2 (7.7e18.0)

No N ¼ 107 6 (66.7) 40 (54.1) 47 (52.2) 14 (51.9) 10.4 (7.2e16.5)
Missing N ¼ 1 0 (0) 0 (0) 1 (1.1) 0 (0) 17.1 (17.1e17.1)

Exercise More than 4 h/week N ¼ 64 2 (22.2) 23 (31.1) 31 (34.4) 8 (29.6) 12.0 (7.9e15.7)
Less than 4 h/week N ¼ 100 5 (55.6) 34 (45.9) 44 (48.9) 17 (63.0) 11.8 (7.6e18.9)
Nothing N ¼ 34 2 (22.2) 16 (21.6) 14 (15.6) 2 (7.4) 8.9 (6.1e11.8)
Missing N ¼ 2 0 (0) 1 (1.4) 1 (1.1) 0 (0) 10.0 (5.7e14.3)

Smoking Current N ¼ 19 2 (22.2) 8 (10.8) 8 (8.9) 1 (3.7) 8.7 (5.8e10.8)
Former N ¼ 67 3 (33.3) 24 (32.4) 30 (33.3) 10 (37.0) 10.1 (6.4e16.6)
Never N ¼ 114 4 (44.4) 42 (56.8) 52 (57.8) 16 (59.3) 12.3 (8.3e17.5)

Ever hormone replacement
therapy

Yes N ¼ 18 0 (0) 7 (9.5) 8 (8.9) 3 (11.1) 11.0 (8.6e18.4)

No N ¼ 182 9 (100) 67 (90.5) 82 (91.1) 24 (88.9) 11.1 (7.4e16.9)
Oral contraceptives Current N ¼ 5 0 (0) 1 (1.4) 2 (2.2) 2 (7.4) 14.1 (13.1e14.3)

Former N ¼ 146 5 (55.6) 50 (67.6) 72 (80.0) 19 (70.4) 12.3 (7.9e18.0)
Never N ¼ 48 4 (44.4) 22 (29.7) 16 (17.8) 6 (22.2) 8.7 (5.9e12.0)
Missing N ¼ 1 0 (0) 1 (1.4) 0 (0) 0 (0) 5.7 (5.7e5.7)

Tumor size at diagnosis (mm)a Median (IQR) 34 (26e40) 27 (21e38) 30 (21e40) 36 (23e42)
Missing N ¼ 3 0 (0.0) 1 (1.4) 2 (2.2) 0 (0.0)

Estrogen receptor status Positive (�10%) N ¼ 121 5 (55.6) 45 (60.8) 52 (57.8) 19 (70.4) 11.2 (7.6e16.7)
Negative (<10%) N ¼ 79 4 (44.4) 29 (39.2) 38 (42.2) 8 (29.6) 10.9 (7.3e18.3)

Progesterone receptor status Positive (�10%) N ¼ 103 6 (66.7) 38 (51.4) 43 (47.8) 16 (59.3) 10.8 (7.5e16.6)
Negative (<10%) N ¼ 96 3 (33.3) 36 (48.6) 46 (51.1) 11 (40.7) 12.0 (7.3e18.3)
Missing N ¼ 1 0 (0) 0 (0) 1 (1.1) 0 (0) 10.1 (10.1e10.1)

HER2 receptor statusb Positive N ¼ 48 4 (44.4) 19 (25.7) 19 (21.1) 6 (22.2) 10.0 (6.8e17.4)
Negative N ¼ 152 5 (55.6) 55 (74.3) 71 (78.9) 21 (77.8) 11.3 (7.6e16.7)

Ki67c High N ¼ 157 8 (88.9) 60 (81.1) 69 (76.7) 20 (74.1) 10.6 (7.3e16.9)
Intermediate N ¼ 30 1 (11.1) 7 (9.5) 15 (16.7) 7 (25.9) 14.7 (9.2e19.6)
Low N ¼ 11 0 (0) 6 (8.1) 5 (5.6) 0 (0) 10.1 (9.0e14.6)
Missing N ¼ 2 0 (0) 1 (1.4) 1 (1.1) 0 (0) 8.8 (7.5e10.1)

Axillary lymph node status Positive N ¼ 143 6 (66.7) 52 (70.3) 61 (67.8) 24 (88.9) 10.8 (7.3e17.1)
Negative N ¼ 57 3 (33.3) 22 (29.7) 29 (32.2) 3 (11.1) 11.7 (7.6e17.1)

a Tumor size (largest diameter) was retrieved from study specific radiological protocols and when the size assessments varied between the modalities, the largest mea-
surement was used.

b If the tumor was assessed as 3þ with immunohistochemistry and/or amplified with in situ hybridization.
c Tumors were considered as low, intermediate or highly proliferative according to laboratory specific cutoffs (site 1: low 0e20%; intermediate 21e30%; high 31e100%,

site 2: low 0e14%; intermediate 15e24%; high 25e100%) for proportion of cells staining positive for Ki67.
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decreased their FGVbilat during NACT; a total of 61% of the patients
decreased their FGVbilat between baseline and T1 [median absolute
decrease �3.6 (IQR -11 to 3.3)] and 74% of the patients decreased
their FGVbilat between baseline and T2 [median absolute
decrease �9.6 (IQR -24 to �1.6)] (Supplementary Material 2).

No association was seen between MD measured with Volpara™
as a static marker at T0 and T2 (VBD%bilat, VBD%contra, and FGVbilat)
or as a dynamicmarker (DVBD%bilat,DVBD%contra, andDFGVbilat) and
pCR using different logistic regression models, iteratively adjusted
for increasing numbers of variables (Table 3, Supplementary Ma-
terial 3, and Supplementary Material 4). Furthermore, no associa-
tion was found between volumetric MD and pCR for OR
corresponding to 0.3 and 2.0 percentage point change in VBD%,
respectively, 5% change in VBD%bilat, and a 1-unit change in FGV.We
did not find any association between DVBD%bilat, DVBD%contra, or
DFGVbilat in the subgroup analyses based on menopausal status, ER
expression, and ALN status. No trend was observed between
decreasing BI-RADS categories and the likelihood of accomplishing



Table 2
Patient and tumor characteristics at diagnosis according to pathological complete response (pCR).

pCR (N ¼ 45) Non-pCR (N ¼ 155)

VBD%bilat diagnosis Median (IQR) 12.4 (7.1e17.1) 11.0 (7.7e16.9)
Missing 2 (4.4) 5 (3.2)

VBD%bilat at T1 Median (IQR) 10.9 (7.1e17.0) 10.7 (7.8e15.9)
Missing 1 (2.2) 7 (4.5)

VBD%bilat at T2 Median (IQR) 11.2 (7.3e15.3) 9.7 (7.7e14.7)
Missing 1 (2.2) 6 (3.9)

BI-RADS at baseline a 3 (6.7) 6 (3.9)
b 19 (42.2) 55 (35.5)
c 17 (37.8) 73 (47.1)
d 6 (13.3) 21 (13.5)

Age at diagnosis Median (IQR) 53 (46e62) 53 (46e63)
BMI Median (IQR) 25.5 (22.9e28.7) 25.6 (22.4e28.7)
Age at menarche Median (IQR) 13 (12e14) 13 (12e14)

Missing 1 (2.2) 4 (2.6)
Menopausal status Premenopausal 20 (44.4) 75 (48.4)

Postmenopausal 25 (55.6) 80 (51.6)
Number of pregnancies None 3 (6.7) 16 (10.3)

1 9 (20.0) 19 (12.3)
2 13 (28.9) 63 (40.6)
3þ 20 (44.4) 57 (36.8)

Any live birth No 6 (13.3) 25 (16.1)
Yes 39 (86.7) 130 (83.9)

Age first birth (years) No children 6 (13.3) 25 (16.1)
<20 4 (8.9) 6 (3.9)
20e29 18 (40.0) 72 (46.5)
30e34 11 (24.4) 33 (21.3)
35þ 6 (13.3) 15 (9.7)
Missing 0 (0) 4 (2.6)

Number of biological children None 6 (13.3) 25 (16.1)
1 9 (20.0) 25 (16.1)
2 19 (42.2) 77 (49.7)
3þ 11 (24.4) 28 (18.1)

Alcohol use once a week or more often Yes 18 (40.0) 74 (47.7)
No 26 (57.8) 81 (52.3)
Missing 1 (2.2) 0 (0)

Exercise More than 4 h/week 11 (24.4) 53 (34.2)
Less than 4 h/week 26 (57.8) 74 (47.7)
Nothing 8 (17.8) 26 (16.8)
Missing 0 (0) 2 (1.3)

Smoking Current 4 (8.9) 15 (9.7)
Former 16 (35.6) 51 (32.9)
Never 25 (55.6) 89 (57.4)

Ever hormone replacement therapy Yes 2 (4.4) 16 (10.3)
No 43 (95.6) 139 (89.7)

Oral contraceptives Current 0 (0) 5 (3.2)
Former 35 (77.8) 111 (71.6)
Never 10 (22.2) 38 (24.5)
Missing 0 (0) 1 (0.6)

Tumor size at diagnosis (mm)a Median (IQR) 29 (22e38) 30 (21e40)
Missing 1 (2.2) 2 (1.3)

Estrogen receptor status Positive (�10%) 10 (22.2) 111 (71.6)
Negative (<10%) 35 (77.8) 44 (28.4)

Progesterone receptor status Positive (�10%) 5 (11.1) 98 (63.2)
Negative (<10%) 40 (88.9) 56 (36.1)
Missing 0 (0) 1 (0.6)

HER2 receptor statusb Positive 20 (44.4) 28 (18.1)
Negative 25 (55.6) 127 (81.9)

Ki67c High 40 (88.9) 117 (75.5)
Intermediate 5 (11.1) 25 (16.1)
Low 0 (0) 11 (7.1)
Missing 0 (0) 2 (1.3)

Axillary node status Positive 25 (55.6) 118 (76.1)
Negative 20 (44.4) 37 (23.9)

a Tumor size (largest diameter) was retrieved from study specific radiological protocols and when the size assessments varied between the modalities, the
largest measurement was used.

b If the tumor was assessed as 3þ with immunohistochemistry and/or amplified with in situ hybridization.
c Tumors were considered as low, intermediate or highly proliferative according to laboratory specific cutoffs (site 1: low 0e20%; intermediate 21e30%;

high 31e100%, site 2: low 0e14%; intermediate 15e24%; high 25e100%) for proportion of cells staining positive for Ki67.
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pCR (Table 4). When using BI-RADS c as a reference, patients with
both lower and higher BI-RADS categories had a higher likelihood
of achieving pCR.
4. Discussion

In this study of 200 prospectively included BC patients,



Fig. 3. Agreement between BI-RADS and volumetric breast density percentage (VBD%bilat).

Table 3
Associations between VBD%bilat and pathological complete response following neoadjuvant chemotherapy.

VBD%bilat exposure type, OR correspond
to a 0.5 unit change in VBD%bilat

N Cases Model 1 OR (95% CI) Model 2 OR (95% CI) Model 3 OR (95% CI) Model 3 adjusted for
VBD%bilat at T0 OR (95% CI)

Static T0 188 42 1.00 (0.98e1.03) 1.00 (0.97e1.03) 1.01 (0.97e1.06)
Static T2 187 43 1.00 (0.98e1.03) 1.00 (0.97e1.04) 1.01 (0.97e1.06)
Dynamic T0-T1 180 41 1.00 (0.91e1.09) 1.00 (0.92e1.08) 0.96 (0.87e1.06) 0.97 (0.89e1.07)
Dynamic T0-T2 181 41 1.02 (0.94e1.10) 1.02 (0.94e1.10) 0.99 (0.91e1.08) 1.00 (0.92e1.09)
Dynamic T1-T2 181 42 1.02 (0.94e1.11) 1.02 (0.94e1.11) 1.02 (0.93e1.12) 1.05 (0.95e1.16)a

Model 1: crude analysis.
Model 2: minimally adjusted (age, BMI, menopause, parity, HRT) analysis.
Model 3: fully adjusted (model 2 þ ER, Ki67, HER2, axillary node status and tumor size at diagnosis) analysis.

a Adjusted for VBD%bilat at T1.

Table 4
Associations between BI-RADS at diagnosis and pathological complete response following neoadjuvant chemotherapy.

BI-RADS N Cases Model 1 OR (95% CI) Model 2 OR (95% CI) Model 3 OR (95% CI)

a 9 3 2.22 (1.49e3.30) 2.32 (1.09e4.94) 1.56 (0.43e5.70)
b 72 19 1.59 (1.46e1.73) 1.57 (1.37e1.80) 1.49 (1.45e1.52)
c 87 16
d 27 6 1.27 (0.34e4.75) 1.23 (0.37e4.11) 2.37 (1.15e4.88)

Model 1: crude analysis.
Model 2: minimally adjusted (age, BMI, menopause, parity, HRT) analysis.
Model 3: fully adjusted (model 2 þ ER, Ki67, HER2, axillary node status and tumor size at diagnosis) analysis.
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approximately three-quarters of the patients decreased their
FGVbilat during NACT. We found no evidence of MD as a predictive
marker in the neoadjuvant setting (neither with Volpara™ nor with
BI-RADS). Two previous studies [11,12] found low MD at diagnosis
associated with improved rates of pCR, however, both were retro-
spective and used a qualitative density method. Patient, tumor, and
treatment characteristics were comparable across the previous two
studies as well as this work (besides the single HER2-blockade in
contrast to the double HER2-blockade in the current study).
Another retrospective study using BI-RADS for MD assessment did
not find such an association [22]; however, it was based on a cohort
that was different from many othersda low pCR rate (15%), sub-
optimal NACT (i.e., no anti-HER2 treatment to patients with HER2-
overexpressing tumors), and a pCR definition that included patients
with residual invasive tumor cells making comparison with other
studies difficult. To the best of our knowledge, this is the first study
to investigate the association between MD measured with a volu-
metric quantitative method and response to NACT, and investigate
the rate and quantification of MD change during NACT.

It is of interest to look at the temporal association between MD
and a certain intervention since changes in MD can modulate the
risk, and recurrence, of BC [2,23]. While a larger group of studies
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[2,3,24e28] have explored the effect of endocrine treatment on
MD, less is known about the association between treatment
response to chemotherapy (with or without anti-HER2 therapy)
and MD. A longitudinal study investigating the effect of anties-
trogen treatment in the adjuvant BC setting on volumetric MD
changes in a relatively large study cohort showed an annual
decrease in VBD% of 0e2% [24]. The corresponding number for a
small study using MRI was almost 4% [28].

Chen et al. further investigated the change in breast density
measured with MRI during NACT in a small number of patients
(N < 45 in both studies) and showed an 11e13% reduction in
percent breast density measuredwithMRI [29,30]. Previous studies
demonstrate a reduction in MD during adjuvant chemotherapy
[31e33], however only one of them provided a quantitative mea-
sure of the change in MD (�2.9 percentage points %MD). In two
studies, women, predominantly younger women, with �10% MD
reduction had a reduced risk of contralateral BC compared to
women with less reduced MD [31,33]. In our study, the median
decline in MD during NACT was�0.5 percentage points (IQR -2.4 to
0.7) correlating to a mean decline of 4.5%. In this context, despite
our relatively short period of time between first and last mea-
surement (4.1 months, IQR 3.9e4.5 months), we should have been
able to detect and quantify a potential association between density
and outcome measure (pCR).

MD changes throughout a woman’s life along with age and
hormonal events [34] with a steep decline occurring around
menopausal change [35]. In the NSABP B-30 trial [36], the vast
majority of premenopausal patients receiving adjuvant chemo-
therapy for BC had at least a 6-month long period of amenorrhea,
and it is reasonable to expect similar proportions in our
neoadjuvant-treated cohort since the patients were treated with
the same combination of chemotherapy agents [36]. There was a
more pronounced association between MD reductions and
chemotherapy in premenopausal patients in comparison to post-
menopausal patients [29,32]: This is likely related to a change in
the hormonal milieu. Also, lobular atrophies may contribute to a
MD reduction during chemotherapy [37]. Thus, it is difficult to
identify the underlying biological explanation for the small decline
in MD seen in our study.

Bilateral and contralateral mammograms, respectively, were
used for Volpara™-assessment in this study. Each Volpara™-
output includes VBD%, FGV, and the absolute non-dense volume in
the breast/breasts. Previous studies have shown a positive associ-
ation between both FGV and VBD% and BC risk with a more pro-
nounced association seen with VBD% [38e40]; these data indicate
the importance of the microenvironment of the non-dense breast
tissue in the BC etiology. Tumor characteristics as well as host
factors influence the tumor response to treatment, e.g. triple
negative subtypes are known to be highly responsive to NACT [41].
This motivates the adjustments in our logistic regression models.
Representing the microenvironment of the surrounding breast
tissue [22], MD is a host factor that influences the tumor response
to treatment. In terms of MD and tumor characteristics, previous
studies have shown associations between higher MD and positive
ALN and larger tumor size [42e44]. In our study, approximately
70% of the patients had a positive ALNdthe corresponding number
for patients with very dense breasts (BI-RADS d, N¼ 27) was 89%. In
our cohort, the median tumor size was 30.0 mm (IQR
22.0e40.0 mm) with a tendency for a larger tumor, the denser the
breast. One plausible explanation contributing to the inconsistent
results regarding MD as a predictive marker for pCR during NACT
seen in our studies is that, in the current study, a high MD is
seemingly associated with high proliferation (Ki67), which is in
turn associated with a better response to NACT [45e47]. This di-
lutes the previously suggested association between MD and pCR.
Several systems for pathological evaluation of the complex post-
NACT response exist, and the clinical importance of residual ductal
carcinoma in situ (DCIS) only is not yet fully understood [48].
Regardless of whether residual DCIS only is considered as pCR or
not, both definitions are associated with similar improved prog-
nosis [14], but the pCR rates are lower in studies using the most
conservative definition. In order to include all patients with
favorable prognosis, in this study, patients with only residual DCIS
were categorized as having accomplished pCR.

Our study has several strengths including the prospective cohort
with detailed information on patient and tumor characteristics. We
used both a fully-automated volumetric density method on raw
digital mammograms as well as BI-RADS categorization of pro-
cessed images. Previous studies have shown different degrees of
agreement and correlation [49] between VBD% and BI-RADS
ranging from poor to good [50e52]. Given the proportions of the
displayed patient and tumor characteristics and the ratio of pCR, we
suggest that our cohort is a good reflection of the general patient
group as a whole and offers external validity.

The issue of lacking consistency regarding the vendor andmodel
of the machines must be addressed. We made no adjustment for
this variable because Volpara™ has been shown to offer a consis-
tent measurement of volumetric MD across vendors [7,8]. The
matter of alignment [53] of mammograms that makes the amount
of breast tissue similar in each image must be brought to attention
when dealing with a change in MD over time. To minimize error
due to alignment, each technician was repeatedly instructed to
similarly position the breast each time and to capture the entire
breast and not just the tumor. Thus, we believe that the principally
important concept of alignment will not affect our results on a
group level. No subgroup analyses based on the St. Gallen BC sub-
type [54] were performed due to our limited number of patients.
However, when stratifying on ER expression, no association was
seen between volumetric MD and pCR. A larger dataset is needed to
better understand the role of MD as a predictive marker during
NACT in different subtypes of BC. This enables clinical applicability.
Longer follow-up might be needed to demonstrate a consistent
decline in MD.

5. Conclusion

In summary, a large proportion of the patients decreased their
mammographic density during neoadjuvant chemotherapy for
breast cancer. We found no evidence of mammographic density,
assessed with both quantitative and qualitative methods, as a
predictive marker for complete pathological response in the neo-
adjuvant setting. Future larger studies should examine whether
mammographic density holds predictive value regarding treatment
with chemotherapy.
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