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Abstract: Ghrelin is a major appetite-stimulating neuropeptide found in circulation. While its role in
increasing food intake is well known, its role in affecting taste perception, if any, remains unclear. In
this study, we investigated the role of the growth hormone secretagogue receptor’s (GHS-R; a ghrelin
receptor) activity in the peripheral taste system using feeding studies and conditioned taste aversion
assays by comparing wild-type and GHS-R-knockout models. Using transgenic mice expressing
enhanced green fluorescent protein (GFP), we demonstrated GHS-R expression in the taste system in
relation phospholipase C ß2 isotype (PLCβ2; type II taste cell marker)- and glutamate decarboxylase
type 67 (GAD67; type III taste cell marker)-expressing cells using immunohistochemistry. We
observed high levels of co-localization between PLCβ2 and GHS-R within the taste system, while
GHS-R rarely co-localized in GAD67-expressing cells. Additionally, following 6 weeks of 60% high-
fat diet, female Ghsr−/− mice exhibited reduced responsiveness to linoleic acid (LA) compared to
their wild-type (WT) counterparts, while no such differences were observed in male Ghsr−/− and
WT mice. Overall, our results are consistent with the interpretation that ghrelin in the taste system is
involved in the complex sensing and recognition of fat compounds. Ghrelin-GHS-R signaling may
play a critical role in the recognition of fatty acids in female mice, and this differential regulation may
contribute to their distinct ingestive behaviors.
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1. Introduction

Ghrelin is a peptide hormone primarily produced by the endocrine cells in the stom-
ach, with its most established function associated with the stimulation of food intake [1].
Circulating ghrelin levels rise between meals, which peak during a fasting state and fall
within one hour after a meal [2]. Instead of directly reflecting the physiological fasting
level, ghrelin is generally considered to be a meal anticipation signal, a food-entrainable
circadian clock in both humans and mice [3,4]. Despite this fact, ghrelin’s actual role in both
metabolic and feeding behaviors remains unclear. Interestingly, both fasted human and
rodent models display elevated taste thresholds compared to their fed counterparts [5,6].
These studies are coincident with elevated ghrelin levels, suggesting a role for hormones
such as ghrelin in impacting taste detection. However, this physiological connection
between ghrelin and taste sensitivity, if any, is largely unexplored.

The current understanding of ghrelin’s orexigenic and metabolic effects is focused
on its actions in the hypothalamus of the brain, which has been eloquently reviewed [7].
Interestingly, experimenters using an alternate Ghsr knockout model observed that the
ghrelin receptor (growth hormone secretagogue receptor (GHS-R))-knockout (Ghsr−/− KO)
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mice were resistant to high-fat diet (HFD)-induced obesity, with a reduction in food in-
take [8]. From these findings, one might predict that at least part of the diet-induced-obesity
(DIO) resistance observed in these Ghsr−/− mice was due to a lower HFD intake [8]. In
contrast, the Ghsr−/− mice by Sun et al. [9,10], which are used in the present study, showed
no significant changes in food intake after being on a 35% high-fat diet for 10 weeks. To
determine whether a 60% HFD elicits caloric intake or body weight differences in Ghsr−/−

male and female mice, we performed a 6-week feeding study. Further, we investigated
whether Ghsr−/− mice have an altered responsiveness to the chemical cues contained in
dietary fat.

Ghrelin signaling elements have already been found in taste buds, the primary taste-
sensing organelle in the peripheral sensory system. First, ghrelin can be produced by the
salivary glands, with subsequent excretion of the hormone into saliva [11]. Second, both
ghrelin and GHS-R have been found in type I, II, III, and IV taste cells [12,13]. Ghrelin sig-
naling has been shown to alter sensitivities to certain tastants in the brief-access lickometer
test. Ghrelin KO mice have reductions in both NaCl aversion and intralipid preference [12],
and Ghsr−/− mice have reduced sensitivities to NaCl and citric acid [13]. While NaCl (salt)
and citric acid (sour) sensitivities also contribute to the overall gustatory experience, the
reduction in intralipid responsiveness in ghrelin KO mice suggests that the ghrelin/GHS-R
axis plays a role in the initial events surrounding the taste of fat.

Palatable foods rich in lipids are known to be attractive to humans and rodents. Lipids
can be easily hydrolyzed to free fatty acids (FFAs) by lingual lipase provided by von
Ebner’s gland in the oral cavity [14,15]. Additionally, there is a sufficient concentration
of free fatty acids present in fat-containing food where they act as gustatory cues for
dietary fat [16–18]. Over the past 20 years, molecular mechanisms of FFA recognition in
the taste system have slowly emerged, with delayed rectifying potassium channels (DRKs),
fatty-acid-sensitive G protein-coupled receptors (i.e., GPR40 and GPR120), and the fatty
acid transporter CD36 as the top candidates for sensors of FFAs in the oral cavity [18–22].
The somatosensory system also contributes to the sensory detection of FFAs. Several
FFAs of varying chain lengths have been reported to be able to induce calcium responses
in trigeminal neurons [23]. Therefore, the idea that fat sensing occurs during the initial
events in peripheral chemosensory pathways, playing a significant role in the overall flavor
experience in foods, is gaining increasing popularity. However, whether fat taste sensing
can be modulated by other factors, especially those related to the modulation of food
intake, remains unclear. Given that ghrelin KO mice previously showed a decrease in lipid
taste responsiveness [12] and considering the observed reduction of HFD intake in Ghsr−/−

mice, we hypothesize that loss of ghrelin receptors in mice leads to a reduction in the
peripheral signals carrying fat taste information emanating from the oral cavity. To test this,
we examined whether GHS-R plays a role in taste-mediated fat detection by comparing
taste responsiveness to linoleic acid (LA, the prototypical fatty acid stimulus and one that
is abundant in food) in Ghsr−/− animals and their WT counterparts using conditioned taste
aversion (CTA) assays.

2. Materials and Methods
2.1. Animals and High-Fat-Diet Feeding

Eight-week Ghsr−/− and littermate wild-type (WT) control mice were obtained from
the laboratory of Dr. Yuxiang Sun, where the mice were backcrossed with a C57BL/6J
background over 10 generations [10]. All mice were bred at the Laboratory Animal Research
Center (LARC), and all procedures were approved by the Institutional Animal Care and
Use Committees (IACUC) of Utah State University and the University of Central Florida.
Our goal was to assess the effects of loss of GHS-R in mice that have been maintained on a
high-fat diet. Therefore, Ghsr−/− and WT mice were fed a high-fat diet (HFD; 60% calories
from fat, Research Diets D12492) for 6 weeks, with ad libitum access to food and water.
Body weights were recorded at the beginning of the feeding study and then weekly until
the end of the study. Body composition data were collected prior to the start of HFD feeding
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and immediately following completion of the feeding study using a Bruker minispec LF-
50 body composition analyzer (Billerica, MA, USA). All mice were switched to a chow
diet (Teklad rodent diet #8604) for a minimum of 2 days to facilitate the formation of
a conditioned taste aversion to LA. A total of 37 WT mice (21 females, 16 males) and
29 Ghsr−/− mice (12 females, 18 males) were used.

2.2. Immunohistochemistry

To determine the expression pattern of GHS-R in cell types within the taste bud,
adult PLCβ2-GFP and GAD67-GFP transgenic mice on a C57Bl/6 background were used.
The PLCβ2-GFP mice were a generous gift from Dr. Nirupa Chaudhari (University of
Miami School of Medicine), and the GAD67-GFP mice were purchased from the Jackson
Laboratory (Bar Harbor ME). The PLCβ2-GFP and GAD67-GFP transgenic mice were
deeply anesthetized with isoflurane and perfused transcardially with 4% paraformaldehyde
in phosphate buffer (PB, pH 7.4). The tongues were excised and immersed in the same
fixative for 1 h at room temperature first and cryo-protected in 30% sucrose in phosphate-
buffered saline (PBS, pH 7.4) overnight. After cryoprotection, tissue sections containing
circumvallate and fungiform papillae were embedded in OCT, frozen and sectioned at
20 µM using a cryostat, and mounted on Superfrost Microscope Slides (Fisher Scientific).
After 3× 10 min rinses with PBS, the sections were blocked with 10% normal goat serum
and 2% bovine serum albumin in PBST (PBS-0.05% Tween® 20) for 1 h and incubated with
1:500 rabbit GHS-R (extracellular) (Alomone, Jerusalem, Israel) overnight in a blocking
solution without Tween® 20. Following another 3× 10 min rinsing with PBS, the sections
were incubated with 1:500 goat-anti rabbit Alexa Fluor 594 (Invitrogen) for 2 h in the same
diluent as the primary antibody. To validate the specificity of our antibody, Ghsr−/− mice
served as controls for the immunofluorescence assays and treated in a similar fashion as the
experimental sections. Subsequently, all the sections were rinsed 3× for 10 min each in PBS,
counterstained with 1:2000 Hoechst 33342 (Invitrogen, A10027) in PBS for 10 min for nuclei
staining, and mounted with Fluoromount G (Southern Biotech). We used a laser scanning
confocal microscope (Zeiss, LSM710) equipped with 405, 488, 561, and 633 laser lines for
images acquisition. Images were processed by ImageJ, and PLCβ2- and GAD67-positive
taste cells were counted using the Cell Counter plug-in in ImageJ (V1.51s).

2.3. Conditioned Taste Aversion (CTA) Assay

The scheme of our CTA assay is shown in Figure 1. Four groups of mice (Ghsr−/−

females and males, WT females and males) were used in the study. Each group was further
divided into two sub-groups to receive either LiCl (experimental manipulation, CTA)
or NaCl (control) injections with the following sample sizes that successfully completed
training: Ghsr−/− female LiCl (n = 7), NaCl (n = 4); Ghsr−/− male LiCl (n = 10), NaCl (n = 8);
WT female LiCl (n = 9), NaCl (n = 6); and WT male LiCl (n = 8), NaCl (n = 7). The details of
using CTA assays to assess the taste sensitivity were described previously [24]. Briefly, the
whole paradigm consisted of three stages: training, conditioning, and testing. Mice had ad
libitum access to water until 24 h prior to the first training day, when mice were started
on a 23.5 h water restriction schedule for the whole duration of the experiment. On water-
restricted days, 2 h after the start of training/conditioning/testing, animals were given
30 min access to water to facilitate rehydration. Training days were designed to familiarize
mice to the lickometer chamber and testing procedures using water as the stimulus for
the training trials (MS-160 Davis Rig gustatory behavioral apparatus, DiLog Instruments,
Tallahassee, FL). Training was followed by three conditioning days, where animals were
trained to avoid the conditioned stimulus (100 µM LA). Briefly, on each conditioning day,
mice were first given 5 min access to 100 µM LA. Once the mice stopped licking, they were
given the same solution orally with syringes. Immediately after the intraoral application,
either 150 mM LiCl or 150 mM NaCl (control) was administered through intraperitoneal
injections (20 mL/kg body weight). All mice receiving LiCl injections showed behavioral
signs of gastric malaise within 10 min of the injection. There were three testing sessions
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(days 0, 1, and 2) performed. Day 1 data were reported, when mice were behaving more
consistent after day 0, where significant neophobia was evident across all stimulus classes,
but the associated aversion had not weakened. On the testing days, 9 bottles (8 stimuli
and 1 water) were used on a Davis rig. To reduce olfactory cues, a fan was placed near the
chamber to provide constant airflow and to serve as white noise. The effectiveness of the fan
was evident as mice rarely accessed the spout without initiating licking behavior. The test
session included 2 blocks of 9 trials (8 stimuli plus 1 water) with stimulus durations of 5 s,
a water rinse of 2 s, and wait times for the first lick of 150 s. The stimulus order within each
block was randomly assigned. Total numbers of licks per stimulus were summarized across
the two trials per test session and normalized using a lick ratio (licks per test stimulus/licks
to water) in order to account for individual variances in the water-restricted motivation
across the mice. Zero-lick trials, while rare, were not included in subsequent analyses.
Thus, all mice included in the data analysis sampled each stimulus at least once during
each daily test session.

Figure 1. Conditioned taste aversion paradigm. Following 6 weeks of high-fat diet (HFD) (60%), the
mice underwent the following conditioning paradigm. The mice were trained to lick from a Davis
rig for 3–5 days prior to conditioning using water until they consistently licked the bottle during a 5 s
interval. On conditioning days, mice were given free access to the unconditioned stimulus (100 µM
linoleic acid (LA)) prior to an intraperitoneal injection of either 150 mM NaCl or LiCl (conditioned
stimulus; 127 mg/kg). Mice in the LiCl treatment group were observed post-injection for signs of
gastric distress. During testing days, mice were given access to LA at concentrations of 0.1, 1, 3, 10,
30, and 100 µM; 100 mM sucrose; 3 mM denatonium benzoate; and water in a randomized sequence.
Mice had access to test solutions for 5 s followed by a rinse solution (water) for 2 s before presentation
of the next test solution.

2.4. Stimuli

All taste stimuli were prepared from reagent-grade chemicals and presented at room
temperature. In addition to water, there were 8 test stimuli in the study, which consisted of
0.1, 1, 3, 10, 30, and 100 µM LA; 100 mM sucrose; and 3 mM denatonium benzoate. All LA
solutions were made fresh daily on conditioning/testing days. Sucrose and denatonium
benzoate were made fresh on day 0 of testing.
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2.5. Statistics

The normalized lick rates of female and male WT or Ghsr−/− mice were examined
using two-way ANOVA treating the unconditioned stimulus (LiCl or NaCl) and days
(day 1 or day 2) as between-subject variables. Test solutions (6 concentrations of LA) were
treated as within-subject variables. The simple effects within test solutions were corrected
with Bonferroni’s multiple-comparison test. Results are presented as the mean ± SEM.
For body weights and MRI body composition analyses, the two-way ANOVA method
with Bonferroni’s multiple-comparison test was used for correcting multiple comparisons.
Unpaired t-tests were used in food intake analysis. The alpha value was set as 0.05. All the
analyses were done using GraphPad Prism 7.

3. Results
3.1. GHS-R Is Expressed Predominantly in Type II Taste Cells

Although it was previously reported that the GHS-R antibody co-labels with markers
from all taste cell types [12,25], here, we examined cell-type-specific extracellular GHS-R ex-
pression, again using PLCβ2-GFP and GAD67-GFP mice, which faithfully label type II and
type III cells. As shown in Figure 2A–C, GHS-R was expressed in some but not all PLCβ2-
positive type II cells from circumvallate papilla. In contrast, it was almost completely
absent in GAD67-positive type III cells from circumvallate papilla (Figure 2D–F, Table 1).
Immunohistochemistry from fungiform papillae showed a similar pattern (Figure 3). After
counting GHS-R and PLCβ2 or GHS-R and GAD67 co-expression cells, we found that in
circumvallate papilla, 71.1% of GHS-R cells were type II and 2.9% were type III, while
in fungiform papilla, 100% of GHS-R cells that we counted were type II and 4.2% were
type III (Table 1). This indicates that GHS-R is expressed mainly in type II and possibly in
type I or other supportive basal cells but rarely in type III cells. We compared the GHS-R
expression pattern in both sexes of mice; no obvious differences were observed.

Figure 2. Growth hormone secretagogue receptor (GHS-R) is expressed in type II but rarely in type
III taste cells of circumvallate papillae. (A–C) PLCβ2-GFP, green; anti-GHS-R, red; and merged
images, respectively. In (C), the yellow arrow points to a representative taste cell that expresses
PLCβ2 but not GHS-R, and the white arrow highlights a PLCβ2-negative, GHS-R-positive taste
cell. (D–F) GAD67-GFP, green; anti-GHS-R, red; and merged images, respectively. (G) Anti-GHS-R
antibody incubated on a representative section of circumvallate papillae from a GHS-R-deficient
mouse (negative control). Nuclear staining is shown in blue in all figures.
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Table 1. Relative proportion of type II (PLCß2-positive) and type III (GAD67-positive) taste cells
expressing GHS-R.

PLCß2-GFP, n GHS-R(+), n Co-Expressing, n (%)

Circumvallate 101 97 69 (71.1)
Fungiform 12 8 8 (100)

GAD67-GFP, n GHS-R(+), n Co-Expressing, n (%)

Circumvallate 114 103 3 (2.9)
Fungiform 9 24 1 (4.2)

Figure 3. GHS-R is expressed in type II but rarely in type III taste cells of the fungiform papillae.
(A–C) PLCβ2-GFP, green; anti-GHS-R, red; and merged images, respectively. (D–F) GAD67-GFP,
green; anti-GHS-R, red; and merged images, respectively.

3.2. Ghsr−/− Males and Females Express Divergent Metabolic Phenotypes

Ghsr−/− and WT males and females were placed on 6 weeks of 60% high-fat diet (HFD)
feeding. Female mice showed no significant differences in weight gain (F (1, 217) = 0.5382,
p > 0.05) (Figure 4A). In contrast, however, Ghsr−/− males gained less weight on the HFD
than WT males (F (1, 224) = 11.15, p < 0.01) (Figure 4C). While they did not gain weight,
Ghsr−/− females consumed less HFD than their WT counterparts (WT 82.4 ± 0.9 g vs.
Ghsr−/− 78.6 ± 1.5 g, p < 0.05) (Figure 4B). No significant changes in food consumption
were observed between WT and Ghsr−/− males (WT 93.8 ± 1.7 g vs. Ghsr−/− 89.8 ± 1.3 g,
p > 0.05) (Figure 4D). Studies have seen a similar metabolic phenotype for these Ghsr−/−

males where they show reduced body weight but similar HFD consumption [9] These
metabolic trends were further observed in the MRI body composition data where no
significant changes were found between WT and Ghsr−/− females in fat, lean, or water
mass (F (1, 93) = 0.2414, p> 0.05), (Figure 5A). Ghsr−/− males, however, showed a significant
decrease in fat mass but not in water or lean mass (F (1, 96) = 13.14, p < 0.001) (WT 4.8 ± 0.4
vs. Ghsr−/− 3.0 ± 0.4 p < 0.01; Figure 5B).
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Figure 4. Body weight and food intake in wild-type (WT) and GHS-R-deficient mice on a high-fat
diet. While not showing a significant difference in body weight (A), Ghsr−/− females consumed less
compared to WT females (B). Alternatively, male Ghsr−/− mice (C,D) showed a decrease in body
weight by week 5 of the HFD and no significant differences in food intake compared to their WT
counterparts.* p-value < 0.05.

Figure 5. Body composition changes in WT and Ghsr−/− mice on a high-fat diet. Changes in body
compositions calculated from data collected before the HFD and after 6 weeks of the HFD. (A). No
significant changes in body composition were found in WT and Ghsr−/− females on 6 weeks of the HFD.
(B). WT males gained more fat mass on 6 weeks of HFD compared to Ghsr−/− males.* p-value < 0.05.
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3.3. Female Ghsr−/− Mice Show Reduced Avoidance to Linoleic Acid in CTA Assays

Since Ghsr−/− mice are known to have altered feeding behavior and metabolic sta-
tus, we hypothesized that the taste detection of fat contributes, at least in part, to this
phenomenon by altering fatty acid responsiveness at the peripheral level. Therefore, we
performed brief-access behavioral assays after forming a CTA to LA (conditioned stimulus,
100 µM LA) to investigate the alteration of taste responsiveness to LA in both sexes of
Ghsr−/− and WT mice.

Using the CTA assay with 100 µM LA as the conditioned stimulus, the WT female mice
developed an aversion to LA at concentrations as low as 10 µM (F (1, 78) = 51.71, p < 0.0001)
(Figure 6A). In contrast, Ghsr−/− female mice did not develop a significant aversion to LA
(F (1, 54) = 3.085, p > 0.05) (Figure 6C), though there was evidence of an aversive profile at
higher concentrations. These findings suggested that the LA taste responsiveness in female
Ghsr−/− mice was reduced compared to the WT controls. Due to our immunohistochemical
(IHC) findings showing high levels of co-localization between GHS-R and PLCβ2 (type II
cells), we used two other G-protein-mediated tastants requiring PLCβ2, bitter and sweet,
to test the overgeneralization of LA aversion to other tastants. The preference for the sweet
stimulus sucrose and the rejection of the bitter stimulus denatonium benzoate showed no
differences between the Ghsr−/− and WT animals (WT females (F (1, 28) = 3.097, p > 0.05);
Ghsr−/− females (F (1, 18) = 0.7361, p > 0.05)) (Figure 6E).

Figure 6. Linoleic acid responsiveness assessed in a conditioned taste aversion assay showed changes
in Ghsr−/− female mice. (A). WT female mice (n = 15) revealed a significant aversion to LA at
10 µM, similar to that seen in WT males (n = 15) (B). Ghsr−/− females (n = 11) showed no significant
differences in the LiCl compared to the NaCl group across all concentrations of LA (C). Male mice
lacking GHS-R (n = 18) showed aversion at 10 µM LA, similar to WT mice (D). WT and Ghsr−/−

females (E) and males (F) exhibited similar lick ratios to the control solutions, sucrose (100 mM), and
denatonium benzoate (3 mM). * p-value < 0.05, ** p-value ≤ 0.01, and *** p-value < 0.0001.
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Interestingly, the male Ghsr−/− mice did not display the reduced aversion to LA, as
shown in the female Ghsr−/− mice, which corresponds with similar high-fat diet intake
among the Ghsr−/− and WT males. As shown in Figure 6B, WT mice developed a normal
taste aversion to LA, starting from 10 µM, and male Ghsr−/− mice presented a similar trend
in LA aversion. As shown in Figure 6D, male Ghsr−/− mice showed evidence of aversion
to LA, beginning at concentrations of 10 µM (WT males (F (1, 78) = 38.12, p < 0.0001);
Ghsr−/− males (F (1, 96) = 55.72, p < 0.0001). These data suggest that reduction in LA taste
responsiveness in Ghsr−/− mice is restricted to female mice, as in the case of females, loss
of GHS-R did not affect behavioral responses to either sucrose or denatonium in the CTA
assay (WT males (F (1, 26) = 0.5446, p > 0.05; Ghsr−/− males (F (1, 32) = 3.247, p > 0.05)
(Figure 6F).

4. Discussion

It is well known that numerous hormones regulate eating behaviors through higher
level processing in the brain. However, many of these same hormones, like ghrelin, are
present in the circulatory system and have secondary targets throughout the peripheral
systems involved in metabolism and food intake. A recent study has shown that neuronal
specific deletion of GHS-R alone is able to prevent HFD-induced obesity in male mice [26].
Additionally, ghrelin has been shown to interfere with eating behavior at many levels. Bitter
taste receptors and α-gustducin stimulate ghrelin secretion in the stomach, promoting
consumption and then later delaying stomach emptying [27]. Centrally administered
ghrelin (intracerebroventricular or intra-ventral tegmental area) acutely (3–6 h) increases
chow and lard intake but not sucrose intake [28]. On the other hand, peripheral ghrelin
injections (intraperitoneal) increase saccharin ingestion for 4 h post-injection [29]. While
research has focused mainly on the role of ghrelin in macronutrient and caloric intake,
less research has been done to understand whether the contributing role of ghrelin in
orexigenic behaviors is due to manipulation of nutrient detection in the taste system. To
better understand its role in taste (more specifically fat taste detection) and to limit off-
target effects of ghrelin, we used a global Ghsr−/− mouse model to focus specifically on the
ghrelin–GHS-R pathway.

In this report, we examined the effects of the ghrelin receptor, GHS-R, on the taste
system. We showed that GHS-R is expressed in PLCβ2-positive type II taste cells but rarely
in GAD67-positive type III taste cells, indicating possible interactions with sweet, bitter,
umami, and fatty acid taste sensing. In addition, previous data by Sun et al. demonstrated
that on a 35% HFD, Ghsr−/− males had caloric intake and body weight similar to WT
counterparts [9]. To better understand metabolic changes in Ghsr−/− males and to further
understand whether there are sex-dependent differences in these Ghsr−/− mice, we per-
formed feeding studies and body composition measurements on both male and female
Ghsr−/− and WT mice. Behaviorally, we observed differing roles of ghrelin among the sexes
in Ghsr−/− mice. Following 6 weeks of a 60% HFD, Ghsr−/− males had significantly less
fat mass compared to their WT counterparts, with no change in HFD intake. Additionally,
Ghsr−/− female mice consumed less food than their WT counterparts, with no significant
differences in weight gain or fat mass. Sex-dependent differences were also present in
conditioned taste aversion assays, where Ghsr−/− females showed reduced aversion to LA
but Ghsr−/− males showed no significant changes compared to WT mice.

Previous data published by Shin et al. reported the expression of ghrelin and GHS-R
in all taste cell types using double-labeling of the GHS-R antibody and other taste cell-
type-specific antibodies [13]. Our data support their finding that GHS-R co-localizes in
PLCβ2 (type II)-expressing cells. Additionally, our data show GHS-R expressed in a subset
of cells that did not express PLCβ2 (about 30% of GHS-R-expressing cells) and had little
co-localization with GAD67 (type III), supporting their findings of GHS-R in non-PLCβ2-
expressing cells such as type I and basal taste cells. Contrary to their findings, we observed
little expression of GHS-R in type III cells. These differences, however, could be due to the
use of different type III markers (neural cell adhesion molecule (NCAM) vs. GAD67) or a
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different methodology, as our study used a genetically expressed GFP under the control
of a type III-specific gene (GAD67), and the previous study used dual-labeling of a type
III marker and GHS-R. Our data provide new insight into the potential role of GHS-R
in taste signaling. Relatively high levels of co-expression of GHS-R and PLCβ2 suggest
a more targeted role of ghrelin/GHS-R in the taste system, as type II cells respond to
G-protein-mediated tastes: bitter, sweet, umami, and fat.

CD36 and GPR120 are thought to be the primary receptors for the long-chain polyun-
saturated fat taste pathway. The majority of ghrelin-expressing cells of the stomach express
GPR120, and both GPR120 and long-chain unsaturated fatty acids have been shown to
inhibit ghrelin secretion [30–32]. In addition, ghrelin-deficient mice exhibit decreased
Gpr120 expression in isolated taste buds [12]. These data together suggest a necessary
crosstalk between ghrelin and fatty acid pathways to maintain metabolic balances. While it
has been shown that fatty acid activation of GPR120 inhibits secretion of ghrelin, it may be
that ghrelin also plays a role in sensing pathways for fatty acids in the oral cavity to help
further drive metabolic needs. Future studies are needed to determine how or whether
ghrelin/GHSR pathways interact with GPR120 to regulate both ghrelin secretion and fat
taste sensitivity.

Cai et al. reported that ghrelin (Ghrl−/−)- and ghrelin O-acyltransferase-knockout
(Goat−/−) male mice had reduced intralipid (a fat emulsion) sensitivity but did not appear to
have altered preference for intralipid compared to their WT counterparts [12]. Additionally,
they showed that ghrelin-deficient mice had reduced expression of fatty acid receptors
(CD36 and GPR120) thought to play a crucial role in fat taste transduction, while they
found no significant expression changes in the components of bitter, sweet, and umami
taste pathways. Following this and other studies suggesting that Ghsr−/− mice are resistant
to high-fat-diet-induced obesity [8], we focused on the role of GHS-R in lipid sensing using
Ghsr−/− mice. Lipids can be easily hydrolyzed to FFAs by lingual lipase, and FFAs exist in
food at concentrations that can be detected by taste cells. For rodents, fatty acid solutions
by themselves are less preferred [24]. To better separate the sensitivity differences between
Ghsr−/− and WT mice, we used CTA assays to assess the taste responsiveness to LA. Our
results demonstrated that ghrelin-GHS-R signaling is involved in the lipid/fatty acid taste
thresholds in mice, but future studies are still needed to explore additional tastants. While
our CTA assay did not show changes in the LA thresholds of male mice, we did observe
changes in the apparent LA thresholds of female mice. This is interesting in light of our data
showing that loss of GHS-R in males leads to a reduction in body fat (cf. Figure 5B) but does
not do so in females (Figure 5A). This suggests that there are significant sex differences in
fatty acid taste and its metabolic regulation, a finding that has recently received additional
empirical support [33]. Our results in Ghsr−/− mice, coupled with those of Cai et al. in
ghrelin KO mice [12], may provide further insight into the role ghrelin plays in the taste
system and whether it is through the GHS-R signaling pathway or through alternative
mechanisms. Therefore, while it is clear from our data that ghrelin receptors are present in
the peripheral taste system, whether the effects of loss of GHS-R in the present study are
attributable to a direct action on the gustatory system or whether its regulatory effect is
restricted to the descending central pathways remains unknown. Additional functional
and mechanistic studies are needed to clarify the extent to which peripheral ghrelin directly
targets the taste system and, more specifically, the pathways devoted to fat taste.

An important finding in this study is that GHS-R KO females demonstrated increased
taste thresholds to LA, as assessed by CTA assays after the 6-week high-fat-diet feeding,
while male mice showed no evidence of such an effect. While limited publications discuss
the role of ghrelin in the taste system, research has shown sex-dependent effects of ghrelin
on feeding behavior. Clegg et al. [34] reported increased food intake during peripheral
injection of ghrelin in male rats, while no effects were seen in intact female rats. Addi-
tionally, females demonstrated reduced sensitivity to the orexigenic effects of centrally
administered ghrelin. Furthermore, these sex-dependent effects of ghrelin were found to
be estradiol mediated. Ovariectomized females displayed increased feeding in response to
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ghrelin; however, when given estradiol supplementation, the effects of ghrelin were again
lost [34]. Previous studies also indicate that differences in taste preference exist between
the two sexes. In a lickometer behavioral study using rats, ovariectomized female rats
supplemented with estrogen responded to a lower LA + sucrose concentration than male
counterparts [25]. LA can also increase the preference for lower monosodium glutamate
(MSG) concentrations (40 mM) in male rats and higher MSG concentrations (100 mM) in
female rats [35]. In one crowdsourcing human study, women and girls rated high con-
centrations of LA as more intense than men and boys [36]. Recently, it was shown that
there are sex differences in fat taste detection and that estradiol acts as the key regulator in
altering fatty acid taste responsiveness [33]. Females responded to lower concentrations of
fatty acids than males, while loss of ovarian hormones reversed this effect by decreasing
taste responsiveness to fat. Furthermore, fatty acid taste responsiveness varied significantly
within the estrous cycle in females, where high levels of taste responsiveness coincided
with high secretion of estradiol [33]. Of note, our CTA experiments illustrated similar
fat taste thresholds between WT males and females, whereas significant differences were
observed in previous studies [33,37]. A question of physiological interest is whether taste
responsiveness is altered during the estrous cycle; therefore, it is possible that both the
high-fat diet in our experiments and estrous cycle variation complicate apparent fat taste
thresholds and contribute to these differences. Although the interplay between the effects
of estradiol and ghrelin signaling in the taste system are uncertain, our data suggest that
ghrelin may play a significant role in fatty acid detection in females and the interaction
of both endocrine hormones may contribute to the observed sex differences. While the
beginning of these effects may be seen in the slight decrease in the caloric intake of Ghsr−/−

females, longer-term food intake studies in females need to be performed to better un-
derstand whether these effects lead to significant behavioral changes. Additionally, these
changes in fat taste responsiveness may play a more significant role in preference when
mice are presented different tastants simultaneously, but was not as apparent as only one
choice (high-fat diet) was present.

Previous research shows that individuals with high fat sensitivity tend to consume
less fat and gain less weight [38]. This suggests a negative correlation between fat taste
threshold levels and food intake. However, we did not observe a similar pattern in Ghsr−/−

females, as they showed decreased responsiveness to LA in the behavioral assay yet
consumed slightly fewer calories than WT females. It is possible that much of the overall
caloric reduction seen in these mice may be due to the central role of ghrelin/GHS-R.
Central administration of ghrelin has been shown to increase caloric intake by acting
on neuropeptide Y and agouti-related peptide [39]. This central role of ghrelin is well
established and a potent driver of caloric intake. Central KO of GHS-R may be obfuscating
the behavioral impact of ghrelin/GHS-R signaling that is present within the taste system.
Further research is needed to better delineate the peripheral role of ghrelin/GHS-R in
the taste system with central ghrelin/GHS-R signaling intact to better understand the
importance of ghrelin signaling in the taste system.

5. Conclusions

In this report, we investigated ghrelin receptor expression patterns in taste cells and
explored the change in LA taste thresholds and metabolic phenotypes in the presence
and absence of growth hormone secretagogue receptor (GHS-R). Our results suggest
that ghrelin-GHS-R signaling may have a direct action on the peripheral taste system,
independent of descending central pathways. Additionally, ghrelin-GHS-R effects on
the taste system appear to be sex specific, which may have important implications in
differential weight regulation in men and women. Moreover, GHS-R and estrogen receptor
(ERα) are highly co-expressed in a number of hypothalamic regions, indicating a dual
role of GHSR and ERα in mediating metabolic signals [40]. ERα is also expressed in
taste cells [33], and it is possible that estradiol signaling through ERα is convergent with
GHS-R signaling in the taste system. These data help further elucidate the peripheral role
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of ghrelin in the taste system, likely linked to sex-dependent fatty acid taste pathways.
Future studies exploring the mechanism by which ghrelin alters fat signaling in the taste
system and its differential effects among the sexes will provide valuable insights into and
understanding of the fundamentals of how endocrine factors affect taste perception and
drive caloric intake.
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