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Abstract: The popular tobacco and e-cigarette chemical flavorant (−)-menthol acts as a nonselective,
noncompetitive antagonist of nicotinic acetylcholine receptors (nAChRs), and contributes to multiple
physiological effects that exacerbates nicotine addiction-related behavior. Menthol is classically
known as a TRPM8 agonist; therefore, some have postulated that TRPM8 antagonists may be
potential candidates for novel nicotine cessation pharmacotherapies. Here, we examine a novel
class of TRPM8 antagonists for their ability to alter nicotine reward-related behavior in a mouse
model of conditioned place preference. We found that these novel ligands enhanced nicotine reward-
related behavior in a mouse model of conditioned place preference. To gain an understanding of the
potential mechanism, we examined these ligands on mouse α4β2 nAChRs transiently transfected into
neuroblastoma-2a cells. Using calcium flux assays, we determined that these ligands act as positive
modulators (PMs) on α4β2 nAChRs. Due to α4β2 nAChRs’ important role in nicotine dependence,
as well as various neurological disorders including Parkinson’s disease, the identification of these
ligands as α4β2 nAChR PMs is an important finding, and they may serve as novel molecular tools
for future nAChR-related investigations.

Keywords: allosteric; nicotine; nicotinic receptor; conditioned place preference

1. Introduction

The single nucleotide polymorphisms (SNPs) of α4 and β2 receptor subunit genes
(CHRNA4 and CHRNB2), which comprise a major nicotinic subtype in the brain (α4β2), are
associated with heightened dependence on nicotine and initial subjective responses in both
African American and youth populations [1,2]. To date, approved nicotine cessation phar-
macotherapies have principally targeted α4β2 nAChRs: partial agonist, varenicline [3,4];
antagonist, bupropion [5,6]. Despite this, smoking cessation rates remain low [7], prompt-
ing the need for investigation into pharmacotherapies with a novel mechanism of action
that may produce higher cessation rates. Transient receptor potential (TRP) channels have
been investigated for their potential involvement in the effects of nicotine [8–10]. The
reason for this comes from the understanding that menthol, the natural ligand for TRP
melastatin 8 (TRPM8) and the most popular and widely used tobacco and e-cigarette flavor,
causes several biological effects that contribute to nicotine reward and reinforcement.

One contributing effect is mediated through menthol’s interaction with TRPM8, which
results in a cooling sensation that may reduce the harsh throat irritation of nicotine and to-
bacco [11–16]. This may contribute to smokers and vapers inhaling more nicotine, and thus
may contribute to elevations in plasma nicotine concentrations [17]. In addition to its coun-
terirritant effects, menthol has been shown to directly facilitate nicotine self-administration.
Oral menthol, the TRPM8 partial agonist and cooling agent, WS-23, and cold temperatures
(~11 ◦C) significantly increase nicotine intravenous (i.v.) self-administration in female
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adolescent rats, compared to nicotine alone or other tastant/odorant cues. Menthol also
induces a considerable nicotine extinction burst, re-instates extinguished nicotine-seeking
behavior, and acts as a conditioned cue for nicotine [16], suggesting that menthol may
have direct effects on nAChRs beyond the sensory effects discussed above. In addition,
constellation pharmacology efforts have identified TRPM8 and a7 nAChR co-expression in
cold thermosensors from mouse and rat dorsal root ganglia and trigeminal ganglia [18].

In recent years, the direct effects of menthol on nAChRs have begun to be identi-
fied. Menthol enhances the nicotine-induced upregulation of nAChRs [19,20] and en-
hances reward-related behavior in conditioned place preference assays [19], the vapor
self-administration of nicotine [21], intravenous self-administration of nicotine [16,22], and
nucleus accumbens dopamine release [23]. These findings support the previous findings
that menthol may be a cue-reinforcer for nicotine use [24].

Given that menthol is a well-characterized agonist of TRPM8, some have speculated
that TRPM8 antagonists may be potential candidates as novel pharmacotherapies for
smoking cessation, by directly affecting nicotinic pharmacology or by blocking menthol’s
counter-irritant effects in relation to smoke inhalation. A novel class of menthol-derived
TRPM8 antagonists has recently been discovered [25]. Based on menthol’s ability to en-
hance nicotine reward-related behavior, we tested these novel TRPM8 antagonists for their
ability to modulate nicotine reward-related behavior using a mouse model of conditioned
place preference. Here, we report that one of the most potent TRPM8 antagonists in this
class (VBJ104, TRPM8 IC50 of 6 ± 1 nM) enhanced nicotine reward-related behavior, and
this was due to its ability to act as a positive modulator (PM) of α4β2 nAChRs.

2. Results

We have previously shown that the TRPM8 agonist menthol enhances nicotine reward-
related behavior when combined with nicotine [19], and this likely happens by directly
binding to nAChRs [26]. We then decided to examine the impact of a potent TRPM8
antagonist, VBJ104 (Figure 1), on nicotine reward-related behavior in a mouse model of
conditioned place preference (CPP). We hypothesized that the potent ligands of TRPM8
that displayed antagonist properties may exert the opposite effect to menthol on nicotine
reward-related behavior, and result in a reduction in reward, as opposed to enhance-
ment. We used an unbiased 10-day CPP protocol, which was identical to previously
published methods [19,27,28] (Figure 2A). Mice were assigned to cohorts injected with
saline, 0.5 mg/kg nicotine, 0.5 mg/kg nicotine plus 0.5 mg/kg VBJ104, or 0.5 mg/kg nico-
tine plus 1.0 mg/kg VBJ104. Using a one-way ANOVA, we detected a significant overall
effect of drug treatment (F(3, 36) = 10.1, p < 0.0001).

Using a post hoc Tukey means comparison, we detected the presence of significant
place preference with 0.5 mg/kg nicotine (Figure 2B). This is similar to previous reports
examining nicotine reward-related behavior in mice [19,27,29]. VBJ104, a mixture of two
diastereomers, is composed of >85% of the 2SR, 9RS and 10SR isomers (isolated, hTRPM8
IC50: 1.4 ± 1.0 nM). We chose a dose equivalent to that of nicotine (0.5 mg/kg VBJ104) and
previous menthol investigations (1.0 mg/kg VBJ104 [19]). Here, we observed that nicotine
plus 0.5 mg/kg VBJ104 produced a significant increase in reward-related behavior when
compared to nicotine (p < 0.05; Figure 2B). Nicotine plus 1.0 mg/kg VBJ104 produced a
significant CPP compared to saline (p < 0.0001), but not compared to nicotine alone. We
observed nearly identical place preference between male and female mice for nicotine (CPP
scores of 131.2 and 127.5, respectively) and nicotine plus 0.5 mg/kg VBJ104 (CPP score of
261.5 and 269.8, respectively). Given the lack of sex differences, we combined data for both
males and females into Figure 2B.
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Figure 2. (A1,A2) Representative time-traces for a mouse used in pre- and post-tests in a conditioned place preference
assay and assigned to the 0.5 mg/kg nicotine treatment group. (B) Male and female mice were assigned saline, 0.5 mg/kg
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Our behavioral results contradicted our hypothesis, given that we observed an
enhancement in nicotine reward-related behavior. To examine how these compounds
could enhance nicotine reward-related behavior, we conducted follow-up assays to de-
termine their effects on nAChR pharmacology. To do so, we used a Ca2+ flux assay
with neuroblastoma-2a cells transiently transfected with α4β2 nAChRs. While this cell
type has been used extensively to study nAChRs in electrophysiology and microscopy
assays [30–32], it is underutilized in fluorescence plate-reading assays compared to HEK
cell lines. Therefore, we created a control nicotine concentration–response curve, and
verified that our assay reproduced a nicotine EC50 value (81.1 ± 18.5 µM) consistent with
previous literature reports, which utilized a Flexstation platform [26,33,34] (Figure 3). This
EC50 indicates that our transient transfection of α4β2 nAChRs and our functional analysis
via Ca2+ flux likely measure mostly low-sensitivity α4β2 nAChRs.
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Figure 3. (A) Representative Ca2+ Flux trace from a single 96-well plate seeded with cells transiently
transfected with mouse α4β2 nAChRs. A1 and A2 designate drug additions 1 (vehicle) and 2 (100 µM
nicotine). (B) Concentration–response of nicotine on neuroblastoma-2a cells transiently transfected
with α4β2 nAChRs. Data are mean ± SEM and are normalized to 1 mM nicotine. For B, n = 6
individual experiments.

Next, we examined VBJ104 and five analogs (VBJ032, VBJ051, VBJ094, VBJ098, and
VBJ109; see Figure 1) for their ability to alter nAChR and nicotine-induced nAChR function.
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As these compounds are unknowns, we used a two-addition drug application protocol
(see Figure 3A), wherein the first addition included the VBJ compounds by themselves
(at varying concentrations) and the second addition included the VBJ compound and
100 µM nicotine (~EC60). We observed no α4β2 nAChR agonist activity with any of the
VBJ compounds at concentrations up to 100 µM (data not shown).

However, in combination with nicotine, we observed that the compounds enhanced
nAChR function in a concentration-dependent manner (Table 1 and Figure 4). Accordingly,
we classified these compounds as putative α4β2-positive modulators (PMs). VBJ104, which
was most potent as an antagonist for TRPM8, showed the lowest potency as a PM for α4β2
nAChRs (EC50 of 4.6 µM, Table 1), but it exhibited the highest increase in efficacy (361%,
Table 1). The remaining VBJ compounds exhibited much higher potencies, with a drastically
reduced impact on efficacy compared to VBJ104 (Table 1 and Figure 4). VBJ098 showed no
activity as an agonist, PM, or antagonist.
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Table 1. In vitro Ca2+ flux data.

Compound hTRPM8 IC50
a α4β2 nAChR PM EC50

b Max Efficacy (Normalized to
100 µM Nicotine) c

VBJ032 49 ± 1 µM 77.6 nM 158.5 ± 8.6% (50 µM)

VBJ051 52 ± 1 nM 8.2 (0.8–47.2) nM 143.6 ± 7.1% (50 µM)

VBJ094 16 ± 1 nM 23.6 (1.8–68.2) nM 130.7 ± 7.8% (30 µM)

VBJ098 NE NE NE

VBJ104 6 ± 1 nM 4.6 (2.6–8.4) µM 360.7 ± 37.7% (100 µM)

VBJ109 52 ± 1 nM 29.7 (4.3–69.0) nM 125.6 ± 5.1% (50 µM)
a, the hTRPM8 IC50 data are derived from [25]. b, data are expressed as means with 95% confidence limits. c, the concentration at which
maximum increase occurs is indicated in parenthesis. NE, no detectable effect. n = 4–7 individual experiments for each compound.

3. Discussion

Menthol acts as an agonist of TRPM8 and a NAM of α4β2 nAChRs [35]. This novel
series of compounds were characterized as antagonists of TRPM8 [25], and we found
they failed to stimulate α4β2 nAChR activation on their own. However, they increased
nAChR function in a concentration-dependent manner. Accordingly, we have deemed
these compounds as putative α4β2 PMs. We acknowledge that further investigation needs
to be conducted to determine if these ligands act orthosterically or allosterically. Therefore,
we chose not to label these ligands as putative positive allosteric modulators (PAMs), and
instead limited our designation at this time to putative PMs.

It is important to mention that there exist two types of nAChR PAMs: type-I PAMs
potentiate nAChR peak-currents but have little impact on desensitization or inactivation;
type-II PAMs potentiate nAChR peak-currents, and also prolong activation by enhanc-
ing slow-phase desensitization at the cost of fast-phase desensitization [36]. While we
have determined that compounds such as VBJ104 can enhance agonist-induced α4β2
nAChR function, there is a need to examine the impact on desensitization and open–close
channel time.

As to how VBJ104 may enhance nicotine reward-related behavior, first we can consider
what is known regarding the mechanism of another TRPM8 ligand, menthol. In the case
of menthol, its ability to enhance nicotine reward and reinforcement lies in its ability to
alter dopamine neuron excitability [19], enhance dopamine release [23], enhance nicotine-
induced upregulation of nAChRs [19,20], and act on TRPM8-related mechanisms [13].
While we have no evidence that these VBJ series compounds can alter any of these mech-
anisms, the ability to act as a PM on α4β2 nAChRs alone can explain how they enhance
nicotine reward-related behavior. α4β2 nAChRs have been well-characterized to be critical
in nicotine-related reward mechanisms [29,37–39]. Thus, enhancing the activity of nicotine
on this subtype could have an impact on not only nicotine reward and reinforcement, but
also on tolerance and sensitization.

While these ligands have no potential utility in nicotine cessation, α4β2 nAChR PMs
(or PAMs) may be useful for other diseases and disorders. PAMs of nAChRs have been
implicated for their potential use in treatment of schizophrenia [40] and cognitive disabili-
ties [41]. Given that menthol exerts an effect on all subtypes of nAChRs and many members
of the Cys-loop superfamily [35,42–46], follow-up studies for these VBJ compounds’ activity
on other nAChR subtypes and ligand-gated ion channels may be necessary.

While the results of this study did not follow our original hypothesis, we have discov-
ered a new series of α4β2 nAChR PMs that may be useful as novel probes. As discussed
above, examinations of activity on the major nAChR subtypes, and possibly other members
of the Cys-loop superfamily, must be carried out. Additionally, another potential follow-up
for this work would be to expand our concentration–response studies to determine if
VBJ104 may have a concentration-dependent dual effect (see Figure 4B1). Similarly, there
needs to be an expanded dose range for our CPP assays. Currently, the higher dose of
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VBJ104 (1.0 mg/kg) produces a lesser response than the 0.5 mg/kg dose. Nicotine exhibits
an inverted-U dose response in CPP assays, exhibiting a peak of reward-related behavior
followed by aversion-related behavior at higher doses. Thus, higher doses of VBJ104 may
potentiate nAChR actions to a degree that produces a similar aversion-related response.
Thus, while we have failed to identify a novel chemical scaffold for nicotine cessation, we
may have discovered compounds that are useful in other areas of interest. This will require
careful examination via assays related to learning, memory, and anxiety-related behaviors.

4. Materials and Methods
4.1. Mice

All experiments were conducted in accordance with the Guide for Care and Use
of Laboratory Animals provided by the National Institutes of Health. Protocols were
approved by the Institutional Animal Care and Use Committee at Marshall University.
Adult male and female wildtype C57BL/6J mice (3–5 months old) were obtained from the
Jackson Laboratory (https://www.jax.org/strain/000664, accessed on 7 November 2019).
Mice were kept on a standard 12/12 h light/dark cycle at 22 ◦C and given food and water
ad libitum.

4.2. Reagents and Dose Selection

The calcium-sensitive fluorescent probe, Calcium 6, was obtained from Molecular
Devices (Sunnyvale, CA, USA). Minimum essential medium (MEM) was obtained from
Corning. Opti-MEM, penicillin and streptomycin were obtained from Invitrogen Cor-
poration (Grand Island, NY, USA). Nicotine ditartrate dihydrate (product # 415660500)
was obtained from Acros Organics (Fair Lawn, NJ, USA). We utilized a nicotine dose of
0.5 mg/kg (with respect to free base) for its previously determined rewarding effect for
mice in conditioned place preference assays [19,29]. VBJ series compounds (see Table 1)
were prepared as described previously [25]. All molecules were >99.6% pure, as deter-
mined by elemental analysis. For pharmacological evaluation, all compounds were initially
dissolved in 100% DMSO (0.01 M stocks) due to solubility. Further dilutions of compounds
were made in double-distilled H2O or extracellular solution (ECS) (≤100 µM).

4.3. Conditioned Place Preference (CPP) Assays

CPP assays were completed in a three-chamber spatial place preference chamber
(Harvard Apparatus, PanLab, dimensions: 47.5 × 27.5 × 47.5 cm) using male and female
C57BL/6J mice. Time in chambers was recorded by motion tracking software (SMART 3.0).
A 10-day, unbiased protocol identical to previous studies [19,28] was used where drugs
(saline, nicotine (0.5 mg/kg), nicotine plus 0.5 mg/kg VBJ104, and nicotine plus 1.0 mg/kg
VBJ104) were given immediately before confinement in the right white/grey chamber on
drug days, and saline was given immediately before confinement in the left white/black
chamber on saline days (via intraperitoneal injections). On day 1, a pre-test was completed
wherein mice were placed in the central chamber and allowed free access to the apparatus
for 20 min. Mice that spent >65% of the test in one chamber were excluded and the
remaining mice were counterbalanced. For counterbalancing, mice were separated into
groups of approximately equal bias, similar to previously published CPP methods [47].
No exclusions were necessary for these studies. Following counterbalancing, no initial
biases were noted. The mice received their designated drug injections on days 2, 4, 6, and
8, and received saline injections on days 3, 5, 7, and 9. Each conditioning period lasted
20 min. On day 10, a post-test was completed whereby the mice were again placed in
the central chamber and allowed free access for 20 min. In total, 5 male and 5 female
C57BL/6J mice, 3–5 months old, were used in the CPP assays for each treatment group.
Time spent in in the saline-paired chamber was subtracted from time spent in the drug-
paired chamber to score the pre-test and post-test. CPP score (or change from baseline)
was determined by subtracting the pre-test score from the post-test score. A significant

https://www.jax.org/strain/000664
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positive CPP score is indicative of reward-related behavior, while a significant reduction is
indicative of aversion-related behavior.

No sex differences were observed and data for males and females were combined (see
Results for specifics). Data are expressed as a change in baseline preference, which was
analyzed using a one-way ANOVA with a post hoc Tukey.

4.4. Neuro-2a Cell Culture and Transient Transfections

Mouse neuroblastoma-2a (neuro-2a) cells were cultured using standard techniques.
Cells were maintained in minimum essential medium (MEM, product #10-010-CV obtained
from Corning) plus 10% fetal bovine serum, 100 IU/mL penicillin, and 100 µg/mL strepto-
mycin at 37 ◦C and 5% CO2 in a humidified incubator. Cells were plated at a density of
1.5–2.0 × 105 cells per well in clear 96-well culture plates previously coated with poly-l-
ornithine. At 24 h after plating, neuro-2a cells were transfected with α4 and β2 nAChR
subunits using Lipofectamine 3000 (Invitrogen) following manufacturer recommendations
in Opti-MEM. The plasmid concentrations used for transfection were 5 µg of α4 and β2
(mouse) nAChR subunits for each 96-well plate. At 24 h after transfection, the 96-well
plates were washed and replaced with standard culture medium. At 24 h after replacing
with standard culture medium, 96-well plates were used in Flexstation assays.

4.5. Calcium 6 Assay (Calcium Accumulation Assay)

The Calcium 6 procedure was carried out via a previously published procedure with
minor modifications using calcium 5 [48–50]. For this calcium accumulation assay, neuro-2a
cells transiently expressing mouse α4β2 nAChRs were used (see above for transfection
methods). On the day of the experiment, cells were incubated in the dark for 2 h at 24 ◦C
with 50% Calcium 6 NW dye (Molecular Devices). The plates were then placed into a
fluid handling integrated fluorescence plate reader (Flexstation III, Molecular Devices,
Sunnyvale, CA, USA) and fluorescence was read at an excitation of 485 nm and emission
of 525 nm from the bottom of the plate with changes in fluorescence monitored at ~0.8 s
intervals. Baseline fluorescence was monitored for 20 s and then two drug additions (first
at 20 s and the second at 60 s) were applied using a Flexstation application speed of 2. At
the beginning of the Flexstation assays, each well in the 96-well plate started with 100 µL of
solution. For nicotine concentration response, the first addition contained only assay buffer
(50 µL), and the second addition contained nicotine (50 µL) at 4× the target concentration.

For assays examining the VBJ compounds, potential PM activity was assessed using
the following protocol. For the nicotine control group, assay buffer (50 µL) was added
in the first addition, and nicotine (50 µL of a 400 µM solution) was added to achieve a
final concentration of 100 µM. Treatment groups received the VBJ compound (50 µL of a
3× solution) in the first addition and then the same nicotine solution (400 µM) with the
desired concentration of the VBJ compound (1×) in the second addition. Sham-treated
groups were only given assay buffer.

4.6. Calculations

Functional responses were quantified by first calculating the net fluorescence (the
difference between control sham-treated and control agonist-treated groups). Results were
expressed as a percentage of control (100 µM nicotine). For each PM, six concentrations
were used in a series of concentration–response studies. Following transformation to log
values, sigmoidal-varied slope curves were fit to data using Prism 9 with no constraints
(Graphpad, San Diego, CA, USA). From these curves, EC50 and maximal changes in
efficacy were determined for each PM. Functional data were calculated from the number
of observations (n) performed in triplicate. Due to the use of log values in calculating the
EC50 values, geometric (as opposed to arithmetic) means were calculated for PMs in this
study. All EC50 values are expressed as geometric means (95% confidence limits). Due to
solubility problems, compound concentrations greater than 100 µM were not used in our
concentration–response studies with VBJ compounds. The DMSO concentration at this
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compound concentration was ≤1%, and this had no effects on basal- or agonist-induced
increases in fluorescence intensity.

4.7. Statistical Analysis

All results are presented as mean ± SEM and all statistical analyses were performed
using GraphPad Prism 9. Data were analyzed using a one-way ANOVA. When effects were
shown to be significant, a post hoc Tukey test was performed to compare the individual
drug treatment groups. For CPP assays, males and females were analyzed separately using
a two-way ANOVA. No sex differences were noted; therefore, sexes were combined.

4.8. Supplemental Methods

Supplemental methods and data are available in the Supplementary Materials.

Supplementary Materials: The following are available online. Table S1: MDR1-MDCK permeability,
Table S2: Stability in mouse liver microsomes.
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