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ABSTRACT

Although considerable progress has been made
recently in understanding how gene silencing is
mediated by the RNAi pathway, the rational design
of effective sequences is still a challenging task. In
this article, we demonstrate that including three-
dimensional descriptors improved the discrimin-
ation between active and inactive small interfering
RNAs (siRNAs) in a statistical model. Five descriptor
types were used: (i) nucleotide position along the
siRNA sequence, (ii) nucleotide composition in
terms of presence/absence of specific combin-
ations of di- and trinucleotides, (iii) nucleotide inter-
actions by means of a modified auto- and
cross-covariance function, (iv) nucleotide thermo-
dynamic stability derived by the nearest neighbor
model representation and (v) nucleic acid structure
flexibility. The duplex flexibility descriptors are
derived from extended molecular dynamics simula-
tions, which are able to describe the sequence-
dependent elastic properties of RNA duplexes,
even for non-standard oligonucleotides. The matrix
of descriptors was analysed using three statistical
packages in R (partial least squares, random forest,
and support vector machine), and the most predict-
ive model was implemented in a modeling tool we
have made publicly available through SourceForge.
Our implementation of new RNA descriptors
coupled with appropriate statistical algorithms
resulted in improved model performance for the se-
lection of siRNA candidates when compared with
publicly available siRNA prediction tools and previ-
ously published test sets. Additional validation
studies based on in-house RNA interference

projects confirmed the robustness of the scoring
procedure in prospective studies.

INTRODUCTION

RNA interference (RNAi) has become an essential tool in
functional genomics by enabling genome-scale loss of
function screens for the identification of new drug
targets (1). However, development of RNAi as a viable
therapeutic has progressed more slowly, as the potential
advantages over small molecules are balanced with the
challenges of intracellular tissue specific delivery.
Compounds that have advanced to the clinic have
shown promise in the control of a wide array of disorders,
including cancer, infectious diseases, cardiovascular,
neurodegenerative, and obesity (2).
RNAi is an evolutionary conserved, efficient and

specific pathway by which short double-stranded RNAs
(dsRNAs) trigger the inhibition of gene expression
post-transcriptionally (3,4). RNAi can be endogenously
processed and expressed or exogenously introduced with
chemically synthesized small interfering RNA (siRNA).
When in the cytoplasm, longer dsRNAs are processed
by Dicer, an RNAse III endonuclease enzyme, which
cleaves into 21- or 22-nucleotide-long dsRNA molecules,
with 30-overhangs (nucleotides that do not form part of
the duplex) of 2 nucleotides on the end of each the sense
and antisense strands. Current models hypothesize that
Dicer selects cleavage sites by measuring a set distance
from the 30-overhang of the dsRNA terminus (5). Dicer is
also required for loading and function of the RNA-induced
silencing complex (RISC). Recent reports suggest that
RISC must be activated from a latent form, containing
a double-stranded siRNA, to an active form, RISC*,
through unwinding of the siRNAs. This is controlled by
one of the RISC’s functional units, Argonaute 2 (Ago2),
which recognizes and cleaves the passenger strand of the
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siRNA, hence releasing the guide strand from the duplex
(6–8). The activated RISC then uses the unwound siRNA
as a guide to trigger sequence-specific mRNA degradation.
Although theoretically any 21-nucleotide region of an
mRNA can be used as the basis of design for an siRNA,
in practice, different intrinsic activities are seen. This dif-
ference in activity can be attributed to many reasons,
including hybridization energy, mRNA secondary struc-
ture motifs and any other components coded in the
sequence. Algorithms for the selection of efficient and se-
lective siRNA sequences are therefore necessary, and a
number of tools have been developed for predicting
siRNA efficacy, with varying accuracy. These predictions
tools can be classified into two different groups: (i)
rule-based and (ii) machine-learning.
First-generation siRNA design tools were developed

through the study of small data sets and consist of guide-
lines in contrast to a quantitative scoring scheme. Tuschl
et al. (9) were among the first to come up with a set of
siRNA design rules, based on G/C content and symmetric
30 TT overhangs. Khvorova et al. (10) found that func-
tional siRNA duplexes displayed a lower internal duplex
stability at the 50-end of the antisense strand when
compared with non-functional duplexes, suggesting the
key role played by duplex thermodynamics in biasing
strand selection during siRNA–RISC assembly and acti-
vation. Amarzguioui and Prydz (11) confirmed the
importance of duplex end stability asymmetry and
identified sequence motifs on the siRNA sense strand
that consistently correlated positively (G-/C-1, A-6,
A-/U-19, where the number corresponds to the position
on the antisense strand) or negatively (U-1, G-19) with
functionality across a data set of 80 siRNAs targeting
four genes. With a data set of 62 siRNAs targeting four
exogenous and two endogenous genes, Ui-Tei et al. (12)
derived four design rules:(i) the use of an A/U at the 50 end
of the antisense strand, (ii) G/C at the 50 end of the sense
strand, (iii) enrichment of A/U residues in the terminal
one-third of the antisense strand and (iv) absence of any
GC stretch of >9 nucleotides in length. Reynolds et al.
(13) published a set of eight rules based on a systematic
analysis of 180 siRNAs that stressed the importance of
duplex thermodynamics, as determined by overall GC
content, lower stability at 30-end of the sense strand,
controlling for potential internal hairpins and presence
of a uridine at position 10 of the sense strand.
Second-generation machine learning-based algorithms

were first introduced by Huesken et al. (14). In their
work, Huesken published a data set of 2431 randomly
selected siRNAs targeting 34 mRNA species, which were
consistently assayed through a fluorescent reporter gene
system. This data set was subsequently used as the basis of
siRNA efficacy models such as BIOPREDsi (14), DSIR
(15), Thermocomposition (16) and i-Score (17). These
machine learning models use a numerical description of
the siRNA sequence features, which are statistically
analysed with regression or classification algorithms.
Whereas statistical algorithms vary in performance, the
accuracy of siRNA models is primarily dependent
on the descriptors and their degree of abstraction from
the sequence information. Current tools are typically

based on positional features, nucleotide composition,
thermodynamics, energy profiles and local target mRNA
stability. These descriptors primarily encode the nucleo-
tide sequence of the siRNA [one-dimensional (1D) infor-
mation] and in some cases the predicted mRNA secondary
structure (two-dimensional information) (18–20). To date,
three-dimensional (3D) structural information for the
siRNA duplex has not been included as a descriptor in
siRNA activity models. Additionally, RNA strain and
flexibility have not been included in efficacy modeling
studies, even though they have been shown to play a key
role during binding of the siRNA guide strand to the
Argonaute (Ago) silencing complex (21).

In this study, the use of sequence-based one-
dimensional (1D) and structural 3D descriptors is
investigated in siRNA efficacy models. The 1D descriptors
used include positional and composition features, together
with duplex thermodynamics and the auto-cross-covari-
ance (ACC) transform description of the siRNA guide
strand (22). The physical 3D structural descriptors
include global helical stiffness, sequence-adapted stiffness
parameters for the RNA duplex, which were derived from
the analysis of molecular dynamics (MD) simulations on
a set of diverse RNA duplexes (23). The information
content and biological relevance of the 3D descriptors
is studied through comparison with previous results.
Using these descriptors and the Huesken data set (14),
siRNA efficacy models were generated using three regres-
sion techniques: (i) partial least squares (PLS), (ii) random
forest (RF) and (iii) support vector machine (SVM).
Validation of the results was done through cross-
validation and external predictions based on independent
test sets, allowing the identification of the best combin-
ations of descriptors and regression algorithm. The
final model is available as part of the PFizer Rnai
Enumeration and Design (PFRED) (H. Xi et al., unpub-
lished result) OpenSource project developed for the design,
analysis and visualization of antisense and siRNA
oligonucleotides.

MATERIALS AND METHODS

Data sources

Public data
Several sources of siRNA data were used in this study.
The Huesken et al. (14) data set consisting of 2431
randomly selected siRNAs targeting 34 different mRNA
transcripts was used to train and validate the model
(14,24). Three additional data sets provided by Reynolds
et al. (13) (244 siRNAs targeting seven genes), Vickers
et al. (25) (76 siRNAs targeting the mRNA transcripts
of CD54 and PTEN) and Harborth et al. (26) (44
siRNAs targeting Lamin A/C mRNA) were used to
benchmark the model against other prediction algorithms.

In-house data
The prediction model developed here was used to design a
set of 352 siRNA and 591 Dicer substrates. The siRNA
were designed as 21-nucleotide dsRNA molecules, with
30-overhangs of 2 nucleotides at the end of the each
sense and antisense strand, whereas the Dicer substrates
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were in either the R-Dicer or L-Dicer pattern. The
R-Dicer consisted of 25 nucleotides in the sense strand
and 27 in the antisense, with two DNA nucleotides at
the 30 end of the sense strand and a two-nucleotide
overhang at the 30-end of the antisense strand, and
L-Dicer had 27 nucleotides in the sense strand and 25 in
the antisense, with two DNA nucleotides at the 30-end of
the antisense strand and a two-nucleotide overhang at the
30-end of the sense strand. The design patterns for the
siRNA as well as R- and L-Dicer substrates are shown
in Figure 4. All siRNA duplexes were either purchased
from Integrated DNA Technologies (IDT) or synthesized
in-house using standard protocols on a MerMade-192
synthesizer with 20-TBDMS phosphoramidites and fast-
base deprotecting group protocols at 200-nmole scale
on CPG supports. Monomers were obtained from
ChemGenes Corporation or Glen Research. After synthe-
sis, the DMTr-off oligoribonucleotides were cleaved from
the support and deprotected using AMA (a 50:50 mixture
of ammonium hydroxide and aqueous methylamine) at
65�C for 1 h. The base-deprotected oligoribonucleotides
were desilylated using TEA-HF/NMP per the Wincott
et al. procedure (27). In most cases, the crude desalted
oligoribonucleotides were of sufficient purity. If necessary,
further purification was done by reverse-phase high-
performance liquid chromatography and desalting with
cartridge-based methods. The final oligoribonucleo-
tides were characterized using a Waters Acquity ultra-
performance liquid chromatography connected in-line to
a Waters LCT Premier ToF mass spectrometer. The final
oligoribonucleotides were dissolved in IDT duplex buffer
(100mM potassium acetate, 30mM HEPES, pH 7.5) to
yield a stock solution at 60 mM. Equal volumes of the
complimentary oligoribonucleotides at 60 mM were
mixed together and the resulting solution was heated to
90–100�C for 5–10min then slowly cooled to room
temperature.

Data were generated for hepatocellular carcinoma
(HCC) relevant genes: hypoxia-inducible factor 1alpha sub-
unit (HIF1A), hexokinase-2 (HK2), heparanse (HPSE),
survivin (BIRC5), histone-lysine N-methyltransferase
(EZH2), c-Myc (MYC), FK506 binding protein
12-rapamycin associated protein 1 (MTOR), beta-catenin
(CTNNB1), proto-oncogene B-Raf (BRAF) and
phosphoinositide-3-kinase catalytic alpha polypeptide
(PIK3CA). Hep3B cells (American Type Culture
Collection) were grown in EMEM (ATCC) supplemented
with 10% fetal calf serum. Cells were maintained in mono-
layer cultures at 37�C in an incubator with 5% CO2. One
day before transfection, cells were seeded at 5000 cells per
well in 96-well plates. Cells were transfected at 30–60%
confluence using LipofectamineTM RNAiMAX (Life
Technologies) according to the manufacturer’s instructions
and the indicated doses of each siRNA. The 21-mers
siRNAs and Dicer substrates targeting HK2 and HIF1A
were transfected at 0.08, 0.4, 2 and 10 nM concentrations.
The compounds designed for HPSE were transfected at
0.08, 0.4 and 2 nM, as the hit rate was high enough at
2 nM to not require a higher concentration. These initial
results were used to define a screening funnel for target
validation, and only 5–10 in silico predicted siRNA

screened at 10 nM would be necessary to identify a potent
tool. These guidelines were used for all the follow-up studies
on HCC relevant genes BIRC5, EZH2, MYC, MTOR,
CTNNB1, BRAF and PIK3CA. Given that transfection
efficiencies can vary according to the ratio of nucleotide to
transfection reagent, each dose was supplemented with
non-targeting (negative) control siRNA, such that the
total RNA concentration was equal across experiments.
RNA was purified 48 h post-transfection using the
RNeasy mini kit from Qiagen. QuantiGene 2.0 assay
(Affymetrix Inc. Santa Clara, CA) was used to measure
the expression level of target genes before and after
knockdown in Hep3B cell lines. Branched DNA probes
for targeting genes and housekeeping gene PPIB probes
were purchased from Affymetrix. Standard assay proced-
ures were carried out according to the manufacturer’s rec-
ommendations. Assay plates were read on the GloRunner
Microplate Luminometer (PromegaCorp, Sunnyvale, CA).
The data reported in this study are normalized against
the housekeeping gene PPIB. Cytotoxicity was not
observed at the concentrations tested.

Molecular descriptors

By convention, the numerical descriptors of the siRNA
sequence refer to the nucleotides in the guide (antisense)
strand, which are ordered in the 50 ! 30 direction from 1
to 21 (including the two-nucleotide overhang at position
20 and 21).

Sequence position
It can be shown that to characterize four different objects
in an unbiased way (no particular object should be repre-
sented as being more similar or dissimilar with respect to
the others), it is sufficient to use three indicator variables.
The tetrahedron is a geometric representation that fulfills
this condition, with the corner coordinates of the tetrahe-
dron being used as qualitative sequence descriptors
(Figure 1). In this way, the four nucleotides A, C, G and
U (or T) can be placed in four selected, diametrically
opposed, corners of a cube so that all the inter-objects
distances are identical. The corresponding numerical rep-
resentation for the four nucleotides will be as follows: A
(�1, �1, +1), C (+1, �1, �1), G (�1, +1, �1) and U/T
(+1,+1,+1). Each siRNA guide strand is then described
by a numerical vector of length 63 (21 position in the guide
strands� 3 indicator variables), which will be used to
capture the frequency of the four nucleotides at specific
positions along the sequence.

Sequence composition
The characterization of the siRNA guide strand in terms
of global content of specific short nucleotide motifs was
done using a count of occurrences of each nucleotide motif
of length 1–3. Given that there are, respectively, 4, 16 and
64 potential nucleotide motifs with length 1, 2 and 3, the
overall nucleotide content for each siRNA sequence could
be encoded in an ordered vector of length 84 (4+16+64).

ACC transformation
To take into account the potential lack of independence
between subsequent nucleotide positions along the siRNA
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guide strand, a numerical transformation based on
neighbor effects was included. Auto- and cross-covariance
functions were originally described and validated for
modeling of peptide and DNA sequences where the differ-
ence in length limited the application of position-based
descriptors (22). For a given lag ‘d’, the corresponding
auto-covariance function of a descriptor ‘x’ over a
sequence of length ‘L’ is given by:

AxxðdÞ ¼

PL�d
i¼1

ðxiÞðxi+dÞ

L� d

in the same way we can define the lagged cross-covariance
function between two descriptors ‘x’ and ‘y’ as:

CxyðdÞ ¼

PL�d
i¼1

ðxiÞðyi+dÞ

L� d

where ‘i’ is the nucleotide sequence position index running
from 1 to L, ‘x’ and ‘y’ are taken from the numerical rep-
resentation previously described in ‘Sequence Position’
and ‘d’ (lag) is the maximum distance at which two
nucleotides are allowed to interact (d=13) in our study,
giving an overall descriptor vector of length 108.

Duplex thermodynamics stability
Specific thermodynamic profiles of duplex RNA calcul-
ated at the sequence level have been shown to correlate
well with siRNA functionality. Schwarz et al. (28) showed
that the two strands of an siRNA duplex are not equally
eligible for RISC assembly, and this asymmetry is a
feature shared among both siRNAs and microRNAs
(miRNAs). Based on a statistical analysis of the internal
duplex stability of published miRNA precursors and
siRNA sequences, Khvorova et al. (10) found that the
50-AS region of the duplex siRNA was on average less
stable than the 50-S terminus in functional siRNAs. To
take the thermodynamics effect into account, the
INN-HB nearest neighbor (NN) model from Xia et al.
(29) was used. The overall enthalpy (�H), entropy (�S)
and free energy (�G) change on binding of the two
siRNA strands were calculated, as well as the correspond-
ing melting temperature (Tm). This resulted in a set of
11 differential end stability descriptors being added to

the list to consider the free-energy differences (��G)
between all the permutations of the first and last three
base pair stacks (��GNN18-NN1, ��GNN18-NN2,
��GNN18-NN3, ��GNN17-NN1, ��GNN17-NN2,
��GNN17-NN3, ��GNN16-NN1, ��GNN16-NN2,
��GNN16-NN3, ��G(NN17+NN18)-(NN1+NN2),
��G(NN16+NN17+NN18)-(NN1+NN2+NN3)). In the notation
used here, NN1 refers to the first nearest neighbor pair
at the 50-end of the antisense strand, whereas the NN18
refers to the last nearest neighbor interaction pair at the 30-
end of the antisense strand. The average internal stability
at the cleavage site (AIS) is the average of internal stability
values for positions 9–14 on the antisense strand. Two
additional duplex descriptors are included to quantify
the differential stability between the 50- and 30-ends with
respect to the centered positions in the siRNA duplex
(��GNN18-NN10, ��GNN1-NN13). The free-energy profile
for the sense-antisense duplex resulted in 18 additional
descriptors corresponding to the dinucleotide nearest
neighbors present in the 19-nucleotide stem-loop. All
together, the block of thermodynamics descriptors is
encoded in a ordered vector of length 36.

Duplex flexibility
Including duplex flexibility into the descriptor set is
hindered by the scarcity of experimental data from RNA
duplex structures. As a surrogate, the results of MD simu-
lations were used to generate flexibility descriptors.
A recent study (23) of the RNA duplex flexibility has
shown the parm99 force field (30) with the parmbsc0
(31) modification reliably reproduces the limited structural
data available on dsRNAs. In that study, four different
18-mer duplex-RNA sequences were simulated containing
many copies of the 10 unique base steps and making
possible a reliable analysis of the sequence dependence
of duplex flexibility. After a previously used protocol
(32,33), all simulations were performed in the isother-
mal–isobaric ensemble (T=298K, P=1 atm) for 150 ns
to capture the near-equilibrium dynamic properties of the
duplexes. The extensive MD simulations performed in
that study provided the estimation of local (dinucleotide
step) and global descriptors of RNA structure and flexi-
bility. Average base pair step helical parameters were
calculated using Curves+ (34) for the three translational
[shift (f), slide (l), rise (s)] and the three rotational [tilt (t),
roll (r), twist (w)] movements, while the associated stiff-
ness matrix (�) was derived by the inversion of the covari-
ance matrix (�) obtained from the equilibrated part of the
trajectory.

�¼ E �Xð Þ
�2
¼ kBT�

�1¼

kw kwr kwt kws kwl kwf

kwr kr krt krs krl krf

kwt krt kt kst ktl ktf

kws krs kst ks kls klf

kwl krl ktl kls kl klf

kwf krf ktf klf klf kf

0
BBBBBBB@

1
CCCCCCCA

where E is the energy associated with the deformation �X,
kBT is the Boltzmann temperature factor and k stands for
the different stiffness constants defining the 36 elements of

Figure 1. A perfect tetrahedron can be drawn by joining together the
four diametrically opposed vertices of a cube. Each of the vertices can
be assigned to a set of numerical coordinates if the tetrahedron is
placed in a three-dimensional coordinate system, with the origin in
the center of the cube.
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the stiffness matrix. Thus, local helical deformations and
their associated force constants are defined for each of the
10 representative dinucleotide steps. Associated flexibility
values for the rotational helical parameters were deter-
mined as the inverse of the corresponding force constants,
so the higher the force constant, the stiffer the corres-
ponding deformation will be. Average local helical par-
ameters roll (r) and tilt (t) for each base pair step were
used to calculate the angle of axis deflection (y) and its
directionality (�) measured from the direction of the
major groove (35).

� ¼ ðr2+t2Þ1=2

� ¼ tan�1ðt=rÞ for ðr > 0Þ

� ¼ 180+tan�1ðt=rÞ for ðr < 0Þ

Average interaction energies (stacking and hydrogen
bonding) were also derived from energy analysis of the
snapshots collected during the MD simulations and were
introduced in the model. Analysis of global deformations
including global bending, tilt and roll were calculated
using Madbend (36) from the corresponding local param-
eters associated to every dinucleotide step. An ordered
vector of length 330 was therefore used to describe the
structural flexibility of all the siRNA sequences in the
data set.

mRNA secondary structure
Studies have shown that accessibility of local mRNA
structures is an important determinant of the ability of a
target region to promote efficient gene silencing (37–41).
Although incorporating mRNA secondary structure into
the descriptor set may improve model predictions, it has
not been included in this work. This decision was made
because only minimal improvement to model performance
was seen in previous studies (19,42), and in-house valid-
ation studies of target secondary structure descriptors did
not result in improvements over siRNA duplex descriptors
alone (Supplementary Data, Table S3). Prediction of
mRNA secondary structure is an inherently difficult
problem and uncertainties related to currently available
methods likely reduce their utility. As future algorithms
improve mRNA structure predictions, the incorporation
of these descriptors into efficacy models is likely to signifi-
cantly improve their performance.

Statistical modeling

In this study, we decided to use regression instead of
classification models, as they provide more information,
additional flexibility and ease of evaluation. Using a con-
tinuous variable for siRNA efficacy also avoids the step
of defining an arbitrary threshold for assigning com-
pounds as active or inactive. Given the heterogeneity of
our sequence descriptors and to keep variables with large
variance from overshadowing other variables with small
numerical scale, the descriptor matrix was scaled before
running the regression algorithms. This was done using
the scale=TRUE option in the R environment, which
divides the centered columns of the descriptor matrix by
their standard deviations.

Partial least squares
The partial least squares regression (PLSR) technique has
been found to be useful when the number of independent
variables is comparable with or greater than the number
of data points. It is normally a powerful alternative for
cases where the solution of the classical least squares
problem does not exist or is unstable. This occurs in
data sets with highly correlated descriptors (43). PLSR’s
objective is to summarize the variation in a data matrix in
terms of a few essential and informative scores, also
known as latent variables (LVs), which are mutually inde-
pendent (orthogonal) and represent linear combinations
of the original descriptors. Because LVs are chosen in
such a way as to provide maximum correlation with the
dependent variable, PLS models use the smallest possible
number of descriptors to explain the underlying variance
in the data set, providing enhanced model precision and
stability. Data were imported in R and scaled as described
previously. The PLSR package in R (44) was used to
compute the top 10LVs and the cross-validated R2

applied to select the optimal number of PLS factors to
include in the final model.

Support vector machines
The theory of SVM has been extensively described (45,46).
SVM has been successfully applied to a number of data
classification problems where the geometrical interpret-
ation consists of choosing the N-dimensional hyperplane
that optimally separates clusters of vectors in such a way
that cases with one category of the target variable are on
one side of the plane and cases with the other category are
on the other. A vector in an SVM represents a set of
features that describes one case, and the vectors near the
hyperplane are called the support vectors. The optimal
separating hyperplane has a number of attractive statis-
tical properties, which are detailed by Vapnik (46). The
SVM method can also be used in regression, maintaining
all the main features that characterize the maximal margin
algorithm: a non-linear function is learned by a linear
learning machine in a kernel-induced feature space while
the capacity of the system is controlled by a parameter
that does not depend on the dimensionality of the space.
Some advantages of SVM in comparison with other
methods include: (i) a global and perhaps unique
solution, (ii) a general solution and thus avoiding over-
training, (iii) a sparse solution and (iv) non-linear relations
can be modeled. In our study, we used the SVM’s interface
to libsvm (47) as implemented in the R package e1071.
Data were scaled within R and the epsilon-type regression
machine was used in combination with the radial basis
function kernel. A grid search over the two tunable par-
ameter gamma (�) and cost (c) was performed, and
the best value selected based on 10-fold cross-validation.
The selected parameters for � and c were used to build the
final model.

Random forest
RF models produce accurate predictions that should
not overfit the data. The RF algorithm uses an ensemble
of unpruned decision trees, each of which is built on a
bootstrap sample of the training set using a randomly
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selected subset of variables (48). Whereas standard trees
are built by splitting each node using the best split among
all variables, in RF, each node is split using the best
among a subset of predictors randomly chosen at that
node. A large number of trees are grown to maximum
size without pruning, and aggregation is done to produce
the final prediction. In the case of classification, this
is done by assigning the object to the class predicted
by the majority of the trees, whereas for regression
problems, the average of the individual tree predictions
is taken. In our study, we used the randomForest inter-
face in R to the Fortran programs by Breiman and
Cutler (http://www.stat.berkeley.edu/�breiman/Random
Forests/cc_home.htm). Data were scaled within R and
the ntree parameter was set to 1000. For the mtry param-
eter, it has been observed that the performance of RF
varies little over a wide range of values, except near the
extremes, mtry=1 or p, where p is the total number of
variables. Therefore, we decided to use the default value,
which will sample p/3 randomly selected variables as
candidates at each split.

RESULTS AND DISCUSSION

A preliminary analysis was carried out to test the rele-
vance of different groups of sequence descriptors (pos-
itional, composition, ACC transform, thermodynamics
and 3D duplex flexibility), when used in combination
with various machine learning algorithms (SVM, PLS
and RF). The training set from Huesken et al. (14) con-
sisting of 2182 siRNA sequences was used to build all the
model combinations. The test set of 249 sequences
randomly defined in the same work from Huesken was
used to validate each specific combination. Table 1
shows the results obtained for the 18 models with the
agreement between in silico predictions and experiments
represented by the Pearson correlation coefficient. Among
the three statistical algorithms tested, SVM gave slightly
better correlation with experiment. As previously shown
from studies on the same data set, position-dependent de-
scriptors (Rsvm=0.66) and motifs composition (Rsvm=
0.60) were found to correlate best with siRNA efficacy.
This can be explained by the fact that certain regions in
the duplex are involved in specific recognition events,
which might only be encoded in specific nucleotide com-
binations. Thermodynamic features (Rsvm=0.53) and

3D duplex flexibility descriptors (Rsvm=0.53) were also
found to be important in explaining the overall variance in
the training set. As might be expected, a model generated
using all sequence descriptors showed the best correlation
with experiments (RSVM=0.71), indicating that none of
the descriptors blocks were perfectly correlated and each
provides some element of unique information predictive of
efficacy. The results were independent of the specific stat-
istical algorithm applied.

Next the relative importance of each specific sequence
descriptor was determined using the training set of 2182
siRNAs from Huesken. A variable selection algorithm
was applied to test whether a given variable should be
included in the final model. The procedure consists of an
iterative evaluation of the effects of individual variables on
the model predictivity based on the validation of a number
of reduced models. These reduced models are created
using variables combinations selected according to a frac-
tional factorial design (49). Table 1 shows the final
number of descriptors for each block that survived the
variable selection procedure (within brackets), as well as
the recalculated correlation coefficients for all the model
combinations (descriptor blocks and learning algorithms)
using the reduced number of descriptors. Once selection
was complete, 148 variables were chosen from the original
set of 642 sequence descriptors. The name of the selected
variables can be found in the Supplementary Table S2.
Overall, the optimized models (SVM, PLS and RF using
148 variables) showed better correlation with experiment
than those using the full set of descriptors, with SVM
giving the best results (Table 1 in parenthesis and
Figure 2). An attempt was made to investigate the per-
formance of our SVM model under the same descriptor
selection and optimization scheme presented previously
when the 3D structural descriptors were not included.
The SVM model built excluding the 3D descriptors
gave a correlation between experimental and predicted
siRNA activity equal to R=0.70 (313 variables). After
applying descriptor selection, the best model used 219
variables with a correlation coefficient of R=0.75
(Supplementary Table S3). In comparison, the correlation
coefficient for the optimized SVM model trained with all
the descriptors, 3D included, was R=0.80 (Table 1),
demonstrating that additional information is present in
the 3D duplex flexibility descriptors, which is not
encoded by any of the other descriptor blocks based
only on the primary sequence information.

Table 1. Performance comparison for sequence descriptors and statistical algorithms

Feature type Position Composition ACC Thermo 3D All

NVAR 84 (15) 84 (29) 108 (37) 36 (14) 330 (53) 642 (148)
SVM 0.64 (0.57) 0.60 (0.47) 0.47 (0.45) 0.53 (0.57) 0.53 (0.57) 0.71 (0.80)
PLS 0.64 (0.59) 0.55 (0.38) 0.41 (0.40) 0.55 (0.54) 0.56 (0.56) 0.69 (0.73)
RF 0.65 (0.56) 0.47 (0.39) 0.48 (0.48) 0.56 (0.56) 0.55 (0.56) 0.63 (0.66)

Correlation coefficients for SVM, PLS and RF for models trained with all variables or a reduce set (within brackets) are shown. Selection was
performed on the entire variable space. The NVAR row lists the number of variables broken down by descriptor blocks, before and after the
selection had been done. Each model combination was generated based on the Huesken training set of 2182 siRNAs, and the correlation coefficients
are related to the predictions of the Huesken test set of 249 siRNAs. The same training and test sets were used as benchmarks from other publicly
available predictors and their performance is reported here for comparison: RBIOPREDsi[14]=0.66, RDSIR[15]=0.67 and RThermocomposition[16]=0.66.
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An alternative cross-validation study was also run using
the Huesken data in a strategy that can be described as
Leave-One-Gene-Out (LOGO). This is a realistic scenario
in a drug design setting, where an in silico model based on
available data is applied to predict the activity of siRNA
sequences derived from a new and unrelated gene target.
Beyond being unbiased, the LOGO validation study
provides an overall estimation of target dependency,
which has not been fully addressed in the literature. The
data set of 2431 siRNA sequences was encoded by the
entire set of 642 descriptors, and in sequential rounds of
analysis, the following protocol was used: (i) siRNAs for
one gene were removed from the complete set to create a
test set, (ii) multiple models were built (SVM, PLS and
RF) from the remaining data (training set) and (iii) the
reduced model was used to predict the activities of the

siRNA sequences from the gene not included in the
training set. Figure 3 shows the correlation coefficient
profiles for SVM, PLS and RF across the 31 validation
studies carried out by the LOGO procedure. Overall,
SVM showed a better correlation between predicted and
experimental values when compared with PLS and RF.
Although the average correlation coefficients are in line
with the validation study performed on the multi-gene
test set, prediction accuracy varies significantly with
target (Figure 3). This target dependence may be due to
a number of factors, including mRNA turnover rate, ac-
cessibility of the target sequence to the RNAi machinery,
secondary and tertiary structure of the mRNA, binding
proteins and subcellular localization of the transcript,
which all together may hamper or even prevent access of
activated RISC to the corresponding target sequences,

Figure 3. LOGO cross-validation results based on 31 gene sets from the Huesken data set (x-axis). Although prediction accuracy varies significantly
with target mRNA, SVM showed overall the best correlation with experimental activity (R: >0.65 in 23 of 31 LOGO calculations).

Figure 2. SVM, PLS and RF model predictions versus experimental siRNA activity for the test set of 249 sequences taken from the Huesken
data set.
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leading to reduced silencing or completely blocking
silencing (50,51). Transferability between genes is critical
for an efficacy model, and the SVM scoring scheme gave a
correlation coefficient greater than 0.65 for 23 of 31 genes,
whereas PLS and RF achieved such a threshold for only
18 and 17 genes, respectively. Based on these results, the
SVM regression algorithm coupled with a reduced set of
148 sequence descriptors was selected for use going
forward and it has been implemented in our current
siRNA design workflow for potency predictions (H. Xi
et al., unpublished result).
To further validate the performance of the SVM model,

it was tested against a series of internal and external data
sets. Unfortunately, few large consistently assayed data
sets are available for siRNA model building and valid-
ation. We therefore created an internal data set consisting
of small RNAs designed against three genes (HIF1A,
HK2 and HPSE), with the aim of removing questions of
assay and target variation. For each target, 100 sequences
were selected using a basic selection funnel designed to
generate siRNA of potential therapeutic interest. The
criteria were: (i) select sequences in target exons avoiding
exon boundaries and the untranslated region; (ii) bias for
selection of sequences with cross-species homology to
allow a single compound to advance through rodent,
non-human primate and human trials; (iii) avoid single
nucleotide polymorphisms in the target sequence; (iv)
prevent matches in the siRNA seed region to known
miRNA seed sequences; (v) exclude immune stimulatory
and G-tetrad forming motifs; (vi) minimize high comple-
mentary matches to off-target transcripts; (vii) sort the
remaining sequences using the SVM model for siRNA ef-
ficiency described previously and (viii) introduce any
chemical modifications to the siRNA. Although straight-
forward, this filtering and selection process can prove lo-
gistically challenging. At Pfizer, this was solved by
creating an informatics platform for siRNA and antisense
oligonucleotides design. This tool has recently been made
available to the scientific community as a server and
design client, with all of the code also being available as
an Open Source project (H. Xi et al., unpublished result).
Each of the 300 selected sequences was designed as a
standard 21-mer siRNA containing target matching over-
hangs (2 nucleotides in length) on the sense and antisense
strands, but also as right (R-Dicer) and left (L-Dicer) dicer

substrates, using the conventions described by Rossi and
colleagues (52). The design patterns are shown in Figure 4.
This resulted in a data set of 891 compounds.

The assay results for the 300 21-mer siRNA are given in
Figure 5 and Supplementary Table S4. All the sequences
were tested for percent knockdown (KD) of the corres-
ponding target using three different concentrations
(0.08 nM, 0.4 nM and 2 nM). For a subset of sequences,
additional data were collected at 10 nM. All measurements
were done 24 h post-transfection using a branched DNA
assay. Although they were all designed to be active,
siRNAs were selected with a range of potencies for each
of the three targets. Slightly more active compounds were
generated for HPSE than the other two targets. The pre-
dictions for this set of compounds based on the SVM
model described earlier are shown in Figure 6 as a receiver
operator characteristic plot. The SVM model was used for
classification, with a cut-off of 70% KD at 10 nM concen-
tration being considered active. Overall the performance is
significantly better than random for each of the targets,
with approximately 50% of the siRNA selected being
active. As seen in the LOGO study of the Huesken data
set, the performance for each gene does vary, with the
HIF-1a predictions being better than those for HPSE
and HK2. However, this trend in the data is not correlated
with the absolute potency of the compounds, as there are a
number of HPSE compounds with greater overall
potency. In contrast to the Huesken data set, which was
randomly assembled, the compounds in this set are biased
towards active motifs and avoid sequence traits that
reduce activity.

The results for the Dicer substrate compounds are also
reported in Figure 5 and Supplementary Table S4.
Overall, the 21-mer siRNAs are slightly more potent
than the Dicer design, with the R-Dicer generally more
active than the L-Dicer at the 2-nM screening concentra-
tion. However, comparison of the absolute KD values
between different length oligonucleotides is challenging,
as transfection efficiency can differ with the length of the
compound. This difficulty extends beyond the comparison
of data to the predictions of siRNA activity for com-
pounds with different design patterns and the creation of
models from non-uniform data sets. Models built with
inconsistent assay formats, design patterns or screening
concentrations have an additional challenge in identifying

Figure 4. Sequence design for 21-mer siRNAs and R-/L-Dicer substrates. siRNAs were designed to have a stem length of 19-nts (nucleotides in bold)
with 2-nts overhangs at each side matching the mRNA target (underlined nucleotides). The R-/L-Dicer substrates were designed based on the
cleavage efficiency criteria defined by Rose et al., (53) where the Dicer entry is from the 2-nt 30-overhang. The arrow points to the predicted cleavage
position, and lowercase letters are used to indicate nucleotides with a 20-deoxyribose sugar.
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features key to activity. This is manifested in a decreased
prediction rate, as is seen in the dicer substrate data, where
the features necessary for efficient dicer cleavage likely
differ from those necessary to incorporate a 21-mer
siRNA into the RISC complex.

In a final prospective study, the variability of model
performance was examined across a wider set of targets.

Seven additional genes were selected (Survivin, C-Myc,
EXH2, FRAP1, CTNB1, bRAF and PIK3Ca), which,
like the initial three, are all relevant for their effect on
HCC (7 GeneSet). The Ensembl ascension numbers for
each gene are listed in the Supplementary Material along
with the sequences and activities of the designed siRNA
(Supplementary Data S1 and S4, respectively). Sequences
were chosen using the workflow and filters described pre-
viously, with the compounds selected for synthesis being
those predicted to be most active after filtering. In a
receiver operator characteristic plot of the results
(Figure 6), activity was defined as 70% KD at 10 nM.
Using this cut-off, nearly half of the selected compounds
are active when the data for the seven targets are
combined, which is in line with the larger three-gene
study. However, once separated by gene, the model per-
formance is extremely target dependent, as can be seen in
Figure 7. For example, nine of nine siRNAs designed for
Survivin show an experimental KD of >70%. In contrast,
for c-Myc, only one of the nine compounds shows a KD
of >70%. This difference is not easily explained by
examining the genes themselves, as they are approximately
the same length with no unusual features, and although we
attribute the difference in performance to the model,
certain genes have proven to be much more difficult to
knockdown with any siRNA. Larsson et al. (51) have
recently investigated the importance of the mRNA
turnover rate as a potential factor influencing mRNA sus-
ceptibility to perturbation by small RNA molecules,
showing strong evidence for the inverse relationship
between mRNA decay rates and propensity to siRNA-
mediated gene silencing on a genome-wide scale. Their
main conclusion was that real-world high-turnover tran-
scripts were found to be more resistant to siRNA
silencing, possibly explaining the difficulties we have
found on knocking down the c-Myc gene, which is

Figure 5. Eight hundred and ninety-one RNA sequences were designed
against HIF1A, HK2 and HPSE as 21-mer, R-Dicer and L-Dicer
designs. Sequences were tested at 0.08 nM, 0.4 nM, 2 nM and, in
some cases, 10 nM. The 21-mer design showed the best hit rate
(active: %KD �70, inactive: %KD <70) at all doses compared with
R- and L-Dicer substrates in both HIF1A and HK2. Whereas for
HIF1A, the R-design performed better than the L-design, the
opposite was true for HK2. HPSE hit rates were higher for R-Dicer
compared with 21-mer and L-Dicer, with 32 R-Dicer sequences
showing >70% inhibition at 0.08 nM, versus 17 (L-Dicer) and
5 (21-mer). Sequence design and target mRNA both influence
activity, with no clear trend observable.

Figure 6. SVM model performance in the ROC space for the in-house
prospective studies. The results for HIF1A showed the best predictive
power among the studies genes (�70% accuracy at 40% false-positive
rate). A slight decrease in the prediction power was observed for HK2
and HPSE, whereas the results for the 7 GeneSet lie on the random
guess line (�50% accuracy at 40% false-positive rate).
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known for having an unusually high rate of cytoplasmic
transcript turnover (c-Myc mRNA half-life �30min) (53).
A true understanding of the relative rate of prediction

for the model between genes would require each possible
siRNA sequence within a gene to be tested and the total
proportion of actual inactive siRNAs determined. This
would then allow a true enrichment rate over random
selection for each gene to be computed. Unfortunately,
this is not feasible, and the typical use case more closely
resembles the current study, where only a handful of
siRNA will be made for any one target. The results for
these seven genes show that for the majority of targets, a
reasonable tool siRNA can be generated with a limited
number of compounds; however, certain targets are
likely to be more difficult.
To allow the performance of the SVM model generated

here to be compared easily with previously published
models, it was also profiled against three widely used
data sets. The data sets studied were from Reynolds (244
siRNA targeting seven genes) (13), Vickers (76 siRNA
targeting two genes) (25) and Harboth (44 siRNA target-
ing one gene) (26). These same data sets were used by
Saetrom and Snove (54) and Ichihara et al. (17) to
compare a wide variety of published models (Table 2).
For the Reynolds data set, the SVM model has an R2 of
0.54, which is consistent with the best of the other avail-
able models, DSIR (15) 0.54, i-score (17) 0.54 and
GPboost (54) 0.55. For the Vickers data set, the results

are similar, with an R2 of 0.52 for the SVM model,
comparing well with the models with the highest R2s,
including Ui-Tei et al. (12) 0.58, and i-score 0.58. For
the smaller Harboth data set, the SVM model performed
better than the other models, with an R2 of 0.54 as
compared with 0.51 for DSIR and 0.43 for Biopredsi.
Unlike many of the other available models, the SVM
model produces fairly consistent results across each of
the external validation data sets.

CONCLUSION

Predicting amenable sites for RNAi intervention along the
mRNA sequence of a target gene has been the focus of
recent experimental and computational biology efforts.
The finding that not all regions of a gene can be used to
effectively trigger specific mRNA degradation lead to the
investigation of statistical algorithms based on diverse
nucleic acid descriptors for the selection of efficient and
selective siRNA molecules. Although several factors were
previously identified, which seem to contribute to the
efficacy of siRNAs (thermodynamics of terminal duplex
stability, preference of specific nucleotides at given pos-
itions in the duplex, sequence motifs recognition and
sense/antisense competing reactions), it has become clear
that these features do not provide an exhaustive descrip-
tion of the key determinants of siRNA potency. In this
article, we described the application of 3D descriptors to

Figure 7. Rationally designed siRNAs targeting the mRNA of seven genes (7 GeneSet). All siRNAs were evaluated for silencing efficiency by
measuring mRNA levels 24 h after transfection at 10-nM concentration. Model performance by gene shows a strong target dependency with cases
like BIRC5 and CTNNB1, where all the designed sequences passed the 70% knockdown cut-off, whereas only one of five and one of nine active
siRNAs were found for BRAF and MYC, respectively.
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capture RNA strain and flexibility, which have been
shown to play an important role during the reversible
adsorption of the antisense strand into RISC. These par-
ameters describe near-equilibrium geometric deformations
for RNA duplexes and were derived from MD simulations
using state-of-the-art simulation conditions and last-
generation force fields. Although the statistical perform-
ance of a model based only on 3D descriptors is on the
same level of accuracy as models built on any other
individual descriptor block, when combined together
with other types of descriptors, an overall increase in
model performance was observed. This can be explained
by the variance in each block contributing independently
with siRNA efficacy data. Among the statistical algo-
rithms studied, the kernel regularized approach SVM con-
sistently outperformed both linear (PLS) and non-linear
(RF) regression techniques, and was chosen for the final
model, which has been made available through the
PFRED Open Source project.

The final model including 3D information shows
equivalent or better performance in comparison with pre-
viously published algorithms, with increased consistency
across multiple data sets; however, the fraction of
sequences that do not translate from potent in silico
siRNAs to in vitro functionally active siRNAs is still con-
siderable for all of the available siRNA models. This
suggests that further improvements may require a more
fundamental understanding of the RNAi pathway at the
molecular level. Obviously other phenomena, which have
not been included in this study, such as hybridization
kinetics, sense versus antisense competing reactions,
mRNA turnover rate, local target accessibility and off-
target effects may also need to be considered in a single
workflow for a more accurate design. Room for improve-
ment is also possible related to the extension of the

prediction algorithm to incorporate the use of modified
oligonucleotides. Our methodology is flexible enough as
to allow an easy integration of non-coding nucleotides
with a small cost of parameterization (mostly derivation
of experimental stability descriptors, and a few MD simu-
lations for calibration), which is where our efforts are cur-
rently focused.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–4.
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