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This study is aimed at investigating the cytotoxicity, anti-inflammatory, and angiogenic activities of two Boswellia serrata extracts
on primary culture of porcine aortic endothelial cells (pAECs). Chemical characterization of a dry extract (extract A) and a
hydroenzymatic extract (extract G) of B. serrata was performed by HPLC using pure boswellic acids (BAs) as standard. In
cultured pAECs, extract G improved cell viability, following LPS challenge, in a dose-dependent manner and did not show any
toxic effect. On the other hand, extract A was toxic at higher doses and restored pAEC viability after LPS challenge only at lower
doses. Pure BAs, used at the same concentrations as those determined in the phytoextracts, did not contrast LPS-induced
cytotoxicity. Extract A showed proangiogenic properties at the lowest dose, and the same result was observed using pure AKBA
at the corresponding concentration, whereas extract G did not show any effect on the migration capacity of endothelial cells. In
conclusion, an anti-inflammatory activity of B. serrata extracts on endothelial cells was reported, though cytotoxicity or
proliferative stimulation can occur instead of a protective effect, depending on the dose and the formulation.

1. Introduction

The endothelium, uniquely positioned at the interface
between the vascular wall and the blood, regulates multiple
functions such as maintenance of normal vascular tone,
modulation of coagulation, and immune responses [1]. It is
widely demonstrated that the exposure of endothelial cells
to proinflammatory stressors results in the production of
molecules correlated with a proadhesive, prothrombotic,
and proinflammatory phenotype that contributes to vascular
disorders [2, 3], including cardiovascular diseases (CVDs).

Since ancient times, the extracts from the oleo-gum resin
of Boswellia serrata Roxb. ex Colebr. (family Burseraceae),
also identified as Indian frankincense or Salai Guggal, have
been used in traditional Ayurvedic medicine for the treat-
ment of inflammatory diseases, including osteoarthritis and
chronic bowel diseases [4–8].

The oleo-gum resin, obtained by incision of the bark,
is composed by essential oil (5–9%), mucopolysaccarides

(21–22%), and pure resin (65–85%), containing tetracyclic
and pentacyclic triterpene acids, of which boswellic acids
(BAs) are the most important bioactive molecules [4, 9, 10].
In particular, 11-keto-β-boswellic acid (KBA) and 3-O-ace-
tyl-11-keto-β-boswellic acid (AKBA) were proposed to act
as inhibitors of 5-lipoxygenase (5-LO) [11, 12]. Recently,
other components of the phytocomplex, such as β-boswel-
lic acid (βBA), have been suggested as anti-inflammatory
molecules, acting through inhibition of serine protease
cathepsin G (catG) and microsomal prostaglandin E syn-
thase (mPGES) [9].

Differences in the relative amount of BAs and other com-
ponents of the phytocomplex are related to the existence of
different species of the genus Boswellia, to environmental
conditions (e.g., soil composition, season, and air humidity),
and to the extraction procedure [13] leading to herbal prod-
ucts of different composition and quality. In a previous study,
seven B. serrata extracts were compared for their AKBA con-
tent and antioxidant power, highlighting wide variations
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[14]. In particular, one of the extracts obtained by biolique-
faction based on enzyme biocatalysis (hydroenzymatic
extract) [15] showed interesting peculiarities. A lower con-
tent of AKBA and antioxidant power but higher activity in
ex vivo tests on peripheral blood mononuclear cells (PBMCs)
was determined in comparison with the dry extract [14]. In
recent years, attention has also been focused on the role of
other BAs, namely, KBA and βBA [16, 17], suggesting a pos-
sible pharmacological activity also for these BAs. Preliminary
data showed wide variability in the concentration of BAs in
different extracts [18]; therefore, the present research is
aimed at deepening the chemical characterization of the
two extracts previously studied, focusing on HPLC quantifi-
cation of KBA and βBA. The effect of different formulations
will be evaluated in comparison with the individual pure BAs
in an interesting in vitro model: primary culture of porcine
aortic endothelial cells (pAECs). With pig as an excellent
model for translational medicine in the cardiovascular field
[19, 20], we have previously isolated and cultured endothelial
cells from thoracic aortas [21]. These primary cultures main-
tain a stable phenotype, and they prove to be an excellent
model of study for the vascular response to different stressors
[22, 23]. Therefore, pAECs were chosen as an ideal in vitro
model to study the anti-inflammatory and angiogenic prop-
erties of the two B. serrata extracts in comparison with pure
AKBA, KBA, and βBA, either individually or mixed together.

2. Materials and Methods

2.1. Chemicals and Reagents. Human endothelial SFM
medium, heat-inactivated fetal bovine serum (FBS), antibi-
otic-antimycotic, and Dulbecco’s phosphate-buffered saline
(DPBS) were purchased fromGibco-Life technologies (Carls-
bad CA, USA). Dimethyl sulfoxide (DMSO), trypsin EDTA
solution, lipopolysaccharide (LPS) (E. coli 055: B5), glycerol,
methanol, phosphoric acid, acetonitrile, and AKBA (batch
number BCBN2928V and CAS number 67416-61-9) were
purchased from Sigma-Aldrich Co. (St Louis, MO, USA).
KBA and βBA (batch numbers 15020106 and 15010405
and CAS numbers 17019-92-0 and 631-69-6, resp.) were
obtained from PhytoPlan (Heidelberg, Germany). Six out of
seven samples (extracts A–F) are dry extracts of B. serrata
oleo-gum resin. The powder is insoluble in water but soluble
in methanol and dimethyl sulfoxide (DMSO). Extract G is an
aqueous extract obtained by a process of bioliquefaction
based on enzyme biocatalysis [15]. Briefly, the gum resin
from B. serrata was suspended in water (1 : 10 w/v) and sub-
jected to enzymatic digestion by xylanase, α-amylase, and
glucosidase for 24hours. One ml of hydroenzymatic extract
is obtained from 145mg of B. serrata resin (145mg resin/ml).

2.2. Qualitative and Quantitative Characterization of B.
serrata Extracts. Qualitative and quantitative analyses of B.
serrata extracts were performed by a reversed-phase high-
performance liquid chromatography (HPLC) method using
the HPLC system (Beckman Coulter, Brea, CA, USA), com-
prising a 116 pump, a 507 automatic autosampler, a UV-
Diode Array 168 detector, and integration software 32 Karat
as reported by Beghelli et al. [14]. Seven samples (A–G) were

analyzed for KBA and βBA concentrations and were pre-
pared by dissolving extracts in methanol. KBA and βBA stan-
dard stock solutions were prepared by dissolving 5mg of
analytical standard in methanol (5mL). The calibration
curves were obtained by analyzing six serial dilutions
(50 ppm, 25ppm, 10 ppm, 5 ppm, 2.5 ppm, and 1 ppm) of
the stock solution and by plotting the peak area measured
at 260nm against KBA concentrations and at 210 nm against
βBA concentrations. The following equations of the curves
were obtained:

KBA = 77361x + 44918, r2 = 0 999,
βBA = 26532x + 721 54, r2 = 0 999

1

The KBA and βBA peaks in the samples were identified
on the basis of the retention time on the chromatogram
at 260nm and 210 nm, respectively. All measurements
were performed in triplicate and data were reported as
mean ± SD.

2.3. Cell Culture and Treatment. Porcine aortic endothelial
cells (pAECs) were isolated and maintained as previously
described by Bernardini et al. [21]. All experiments were per-
formed with cells from the third to the eighth passage. The
first seeding after thawing was always performed in T-25 tis-
sue culture flasks (3× 105 cells/flask) (T-25, BD Falcon,
Franklin Lakes, NJ, USA), and successive experiments were
conducted in 24-well plates (scratch test) or 96-well plates
(cell viability) with confluent cultures. Cells were cultured
in human endothelial SFM medium, added with FBS (5%)
and antimicrobial/antimycotic solution (1x) in a 5% CO2
atmosphere at 38.5°C. Extract A was dissolved in DMSO at
10mg dry extract/ml (stock solution) and then diluted in cul-
ture medium to obtain four doses containing 0.1, 1, 10, and
100μg of dry extract/ml, respectively. Extract G, which is
an aqueous solution, was directly diluted in culture medium
to obtain four doses referring to 2.4, 24, 240, and 2400μg of
resin/ml. These doses were chosen and normalized on the
basis of AKBA concentration in extracts as reported in [14]:
for both extracts, the lowest dose contained 3.8 ng/ml of
AKBA and the highest dose contained 3.8μg/ml of AKBA.

Pure analytical grade BAs (KBA, AKBA, and βBA) were
dissolved in methanol (stock solution 1mg/ml) and then in
culture medium to obtain the required concentrations. Two
doses were chosen: low, corresponding to 3.8 ng/ml AKBA,
3 ng/ml KBA, and 8ng/ml βBA, and high, corresponding to
380 ng/ml AKBA, 300 ng/ml KBA, and 800ng/ml βBA. For
each treatment, the same concentration of the specific vehicle
was used as control.

2.4. Effect of B. serrata Extracts on pAEC Viability. pAECs
were seeded in a 96-well plate (6× 103 cells/well) and exposed
to four increasing doses of B. serrata extracts for 24h. Cell
viability was measured using tetrazolium salt (MTT assay).
The formazan absorbance was measured at a wavelength of
570 nm, using Infinite® F50/Robotic absorbance microplate
readers from TECAN (Life Sciences). The background absor-
bance of multiwell plates at 690nm was also measured and
subtracted from the 570nm measurements.
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2.5. Effect of B. serrata Extracts on LPS-Induced pAEC Death.
pAECs seeded in a 96-well plate (6× 103 cells/cm2) were
exposed to lipopolysaccharide (LPS) (25μg/ml) for 24 h
either in the presence or in the absence of extracts A and G
or pure BAs at the concentrations reported above. Cell viabil-
ity was evaluated by MTT assay.

2.6. Effect of B. serrata Extracts on pAEC Migration Capacity.
pAECs were seeded in a 24-well plate (4× 104 cells/well).
When cells reached confluence, a wound was induced
scratching the surface by a pipette tip, then the detached
cells were removed by washing with DPBS. Complete
medium containing low and high doses of extract A (0.1μg
dry extract/ml and 10μg dry extract/ml) and extract G
(2.4μg resin/ml and 240μg resin/ml) and pure BAs at low
(3 ng/ml KBA, 3.8 ng/ml AKBA, and 8ng/ml βBA) and high
(300 ng/ml KBA, 380ng/ml AKBA, and 800ng/ml βBA)
concentrations were added. Microscopic phase-contrast
pictures and three measurements of the damaged areas
were taken immediately after the scratches (T0) and after
6 h (T1) and 24 h (T2). Images were acquired using a Nikon
epifluorescence microscope equipped with digital camera
(Nikon, Yokohama, Japan).

2.7. Statistical Analysis. Each treatment was replicated three
times (migration capacity) or eight times (cell viability and
LPS challenge). Data were analyzed with a one-way analysis
of variance (ANOVA) followed by the Tukey post hoc com-
parison test or Student’s t-test. Differences of at least p < 0 05
were considered significant. Statistical analysis was carried
out using R software (http://www.R-project.org).

3. Results

3.1. KBA and βBA Quantification by HPLC-DAD Analysis.
Representative chromatograms of KBA, AKBA, and βBA
analytical standards as well as extracts A and G analyzed at
210 and 260nm are reported in Figure 1.

Both extracts presented two major peaks at 260nm: the
first one, at Rt of 13.2min, identified as KBA by the use of
the analytical standard, and the second one, at Rt of 26min,
previously identified as AKBA. Other components of the B.
serrata phytocomplex were only visualized at 210nm, and
the peak at Rt of 49min was identified as βBA by the use of
the analytical standard. KBA, AKBA, and βBA concentra-
tions, calculated based on the peak area and the calibration
curve, are shown in Table 1.

Quantitative and qualitative differences were present.
The concentrations of BAs in extract G were two orders of
magnitude lower than in extract A, and the chromatogram
of extract G was characterized by a major number of peaks
resolved at 210nm. Data on KBA and βBA concentrations
in other additional five dry extracts (B–F) are reported in
Table S1 in the Supplementary Material.

3.2. Effect of B. serrata Extracts on pAEC Viability. Extract A
was cytotoxic at higher concentrations, resulting in a
reduction in cell viability of 12 and 47%, respectively,
while lower concentrations did not affect cell viability
(Figure 2(a)). Extract G did not show any toxic effect on

pAECs (Figure 2(b)). In the presence of pure BAs, a sig-
nificant (p < 0 05) cytotoxic effect was detected at the con-
centrations studied (Figure 2(c)). Only AKBA presented a
dose-dependent effect.

3.3. Effect of B. serrata Extracts on LPS-Induced pAEC Death.
LPS challenge determined a significant 30% reduction of cell
viability. Extract A significantly (p < 0 05) reduced the cyto-
toxicity induced by LPS at the lower concentrations
(Figure 3(a)). The highest concentration elicited a significant
exacerbation of LPS cytotoxicity resulting in 70% reduction
of cell viability, while the lowest concentration showed a sig-
nificant proliferative effect, resulting in a 40% increase in cell
viability. Extract G significantly (p < 0 05) restored pAEC
viability after LPS treatment at all the concentrations ana-
lyzed (Figure 3(b)), without a dose-dependent effect. None
of pure BAs, individually or mixed together, was able to
contrast LPS cytotoxicity (Figure 3(c)).

3.4. Effect of B. serrata Extracts on pAEC Migration Capacity.
Extract A reduced the damaged area at T1 (6 h) and restored
completely the monolayer at T2 (24 h) at the lower concen-
tration, while at 10μg dry extract/ml no significant effect
on cell proliferation was measured (Figure 4(a)). The incuba-
tion with extract G did not determine the recovery of the
damage (Figure 4(b)). Pure BAs showed a significant
wound-healing effect at the end of the incubation at the lower
concentration (Figure 4(c)). In particular, AKBA at 3.8 ng/ml
completely restored the monolayer.

4. Discussion

The gum resin obtained from B. serrata, used in Ayurvedic
medicine for the treatment of a variety of diseases, is consid-
ered a promising natural source of anti-inflammatory mole-
cules, in particular BAs [4, 9].

The quantification of these active molecules is a prerequi-
site for testing any biological effect of a phytoextract from B.
serrata. Therefore, the first aim of this study was to better
characterize the BA profile through the quantification of
KBA and βBA in addition to AKBA. The concentrations of
BAs determined in extract A are in the range of those
reported by other authors [24–26]. AKBA and KBA are used
as markers to ensure the quality of B. serrata dry extracts, but
their concentrations show wide variability in commercial
products, which in general claim 65% of BAs. In general,
BAs represent only a percentage of total organic acids,
whose concentrations are determined by unspecific titra-
tion methods and, as a consequence, the claimed content
of 65% BAs is absolutely unrealistic as recently pointed
out also by other authors [24, 25]. Very low percentages
of KBA and βBA were found in extract G compared to
extract A. This aqueous extract was also characterized by
low AKBA and low polyphenol concentrations [14], con-
firming again the importance of the extraction procedure
on the phytocomplex composition.

To evaluate the possible biological effects of these differ-
ent formulations, extracts A and G, normalized on the basis
of AKBA content, were used for in vitro analyses to assess
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cytotoxicity, anti-inflammatory activity, and angiogenic
properties in comparison with pure BAs. Cytotoxic effects
of B. serrata dry extracts and BAs were reported in sev-
eral studies in different cancer cell lines, such as leukemia
cells, prostate cancer cells, and gastrointestinal cancer
cells [7, 27–30]. As regards the biochemical mechanism

of cell death, Liu et al. [31] reported that BAs are able
to induce apoptosis in Hep-G2 cells through the activa-
tion of caspase-8, while Bhushan et al. [32] found that
a triterpendiol derived from BAs induced apoptosis in
HL-60 cells through the activation of Bcl-2 and caspase-3.

The anti-inflammatory activity of Boswellia extracts was
demonstrated in microvascular endothelial cells by prevent-
ing TNFα-induced expression and activity of MMP-3,
MMP-10, and MMP-12 [33]. Moreover, previous studies
have shown that B. serrata extracts and BAs antagonize the
inflammatory effect of LPS in human and mouse macro-
phages, monocytes, and PBMCs [34–36]. Our results demon-
strated for the first time the protective effect of B. serrata
extracts against LPS inflammatory stimulus in endothelial
cells. In particular, extract G was the most effective,
restoring completely cell viability at all the doses studied
without any cytotoxicity. On the contrary, increasing
concentrations of extract A lead to opposite results ranging
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Figure 1: Representative chromatograms of pure analytical grade BAs (KBA, AKBA, and βBA) (25 ppm each) (a), extract A (b), and extract G
(c) at 210 (pink chromatogram) and 260 nm (black chromatogram).

Table 1: KBA, βBA, and AKBA quantification in Boswellia serrata
extracts. Data are reported as mean ± SD (n = 3). Concentration is
expressed in mg/g of dry extract (extract A) or mg/ml of
hydroenzymatic extract (extract G). For each BA, significant
differences between extracts are indicated by ∗(p < 0 05, Student’s
t-test) and by ∗∗(p < 0 001, Student’s t-test).

Extract KBA§ βBA AKBA§

A 15.86± 0.56∗∗ 33.53± 7.23∗ 38.30± 1.01∗∗

G 0.19± 0.02 0.50± 0.03 0.29± 0.04
§Data of AKBA concentrations are reported in Beghelli et al. [14].
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Figure 2: Effect of increasing doses of B. serrata extract A (0.1, 1, 10, and 100μg dry extract/ml) (a), extract G (2.4, 24, 240, and 2400 μg
resin/ml) (b), and pure BAs (low, corresponding to 3.8 ng/ml AKBA, 3 ng/ml KBA, and 8 ng/ml βBA, and high, corresponding to 380 ng/ml
AKBA, 300 ng/ml KBA, and 800 ng/ml βBA) (c) on pAECs. Cell viability was measured by MTT assay. Data are reported as mean ± SD
of 8 independent replicates. Different letters above the bars indicate significant differences (p < 0 05 ANOVA post hoc Tukey’s test).
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Figure 3: Effect of increasing doses of B. serrata extract A (0.1, 1, 10, and 100μg dry extract/ml) (a), extract G (2.4, 24, 240, and 2400 μg
resin/ml) (b), and pure BAs (low, corresponding to 3.8 ng/ml AKBA, 3 ng/ml KBA, and 8 ng/ml βBA, and high, corresponding to
380 ng/ml AKBA, 300 ng/ml KBA, and 800 ng/ml βBA) (c) on pAEC viability, in the presence of LPS (25 μg/ml), measured by MTT assay.
Data are reported as mean ± SD of 8 independent replicates. Different letters above the bars indicate significant differences (p < 0 05
ANOVA post hoc Tukey’s test).
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Figure 4: Effect of B. serrata extracts on pAEC migration capacity. Cells were scratch wounded and then treated with extracts A and G and
pure BAs. Photographs were recorded at 0 h (T0), 6 h (T1), and 24 h (T2) after scratching. (a) Representative microscopic phase-contrast
pictures showing the size of the scratch wound in different treatment groups compared with control. Scale bar, 200μm. The extent of the
damaged area (%) is reported for treatment with extract A (0.1 and 10 μg dry extract/ml) (b), extract G (2.4 and 240μg resin/ml) (c), and
pure BAs (low, corresponding to 3 ng/ml KBA, 3.8 ng/ml AKBA, and 8 ng/ml βBA, and high, corresponding to 300 ng/ml KBA, 380 ng/ml
AKBA, and 800 ng/ml βBA) (d). Data are reported as mean of 3 replicates ± SD. Inside each experimental time (T1 and T2), different
letters above the bars indicate significant differences among treatments (p < 0 05, ANOVA post hoc Tukey’s test).
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from hyperproliferative effect (the lowest dose) to cytotoxic
effect (the highest dose). Interestingly, in our model the use
of pure KBA, βBA, and AKBA, either individually or mixed
together, failed to protect endothelial cells from LPS
toxicity and are only partially in accord with data reported
by Henkel et al. [35]. In a cell-free assay, those authors
suggested a direct molecular interaction between LPS and
BAs lacking the keto moiety, in particular βBA, underlying
the anti-inflammatory effect of Boswellia extracts.

Our results support the hypothesis that the anti-
inflammatory effect of Boswellia extracts is not strictly
dependent on the presence of the most studied BAs, but
it can be related to other bioactive molecules. Other triter-
penes, as incensole, could be considered interesting candi-
dates for the pharmacological properties of frankincense,
accordingly to suggestions previously reported by other
authors [9, 37, 38]. Beyond these bioactive terpenes, the
gum resin does contain polysaccharides. These molecules
are likely to be minor components in dry extract A, whereas
they can be more concentrated in extract G, due to the
different polarity of the extraction medium. A water-soluble
fraction extracted from the gum resin of B. serrata
containing galactose, arabinose, and D-glucuronic acid was
suggested to act as a potent enhancer of humoral and cell-
mediated immune response [39], while the potential anti-
inflammatory activity of these polysaccharides has not yet
been explored. We cannot exclude that the polysaccharide
fraction present in extract G can develop additional
modulatory effects on pAECs.

The migration ability of endothelial cells is critical in the
physiological and pathological angiogenesis [40]. Our results
obtained with an in vitromodel of physiological angiogenesis
showed proangiogenic activity of extract A at the lowest con-
centration, in agreement with a proliferative effect of the
same dose recorded in LPS challenge. In addition, incubation
with pure AKBA at the same concentration as that measured
in extract A determined the same proangiogenic effect, indi-
cating a possible involvement of this BA in promoting angio-
genesis. In contrast, incubation in the presence of extract G
containing the same concentrations of AKBA did not show
any effect on endothelial cell migration capacity, indicating
one more time the existence of complex molecular interac-
tions, which can modify the biological effect of the phytoex-
tract. Contrasting results are also reported in literature.
Lulli et al. [41] observed that AKBA reduced proliferation,
migration, and tube formation in human retinal microvascu-
lar endothelial cells (HRMECs) stimulated with exogenous
vascular endothelial growth factor (VEGF). On the other
hand, Wang et al. [17] reported that β-BA can attenuate
endothelial cell injury in a blood stasis model and protect
human umbilical vein endothelial cells (HUEVCs) against
cell death induced by oxygen and glucose deprivation. Differ-
ent regulation pathways could be involved in the repairing
activity of Boswellia extracts, and further investigations will
be necessary to explain why different formulations determine
different effects on endothelial cells pathophysiology.

How extracts of B. serrata gum resin should modulate
the cardiovascular system has been scarcely investigated,
so far. Kokkiripati et al. [42] reported that antioxidant

and antithrombotic activities of extracts from B. serrata
gum resin determined the inhibition of human monocytic
cell activation and platelet aggregation. However, recently
Siemoneit et al. [43] pointed out the complex agonizing
and antagonizing effects of BAs on human platelet aggre-
gation and prompted for careful evaluation of B. serrata
extract safety in cardiovascular disease-risk patients.

In conclusion, our results demonstrate that different
formulations (e.g., dry and hydroenzymatic extracts)
obtained from the same botanical species show significantly
different biological effects on endothelial cells. The anti-
inflammatory activity of B. serrata extracts on endothelial
cells suggests a potential pharmaceutical application for
cardiovascular health, though cytotoxicity or proliferative
stimulation can occur instead of a protective effect, depend-
ing on the dose and the formulation. This aspect should be
carefully considered when these herbal products are used in
human and animal phytotherapy.
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