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Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Using discrete disease status as the phenotype and
computing statistics at the single marker level may not be able to address the underlying biological interactions that contribute
to disease mechanism and may contribute to the issue of “missing heritability.” We performed a genome-wide association study
(GWAS) and a genome-wide interaction study (GWIS) of an amyloid imaging phenotype, using the data from Alzheimer’s Disease
Neuroimaging Initiative. We investigated the genetic main effects and interaction effects on cingulate amyloid-beta (A𝛽) load in
an effort to better understand the genetic etiology of A𝛽 deposition that is a widely studied AD biomarker. PLINK was used in the
single marker GWAS, and INTERSNP was used to perform the two-marker GWIS, focusing only on SNPs with 𝑝 ≤ 0.01 for the
GWAS analysis. Age, sex, and diagnosis were used as covariates in both analyses. Corrected p values using the Bonferroni method
were reported.The GWAS analysis revealed significant hits within or proximal toAPOE, APOC1, and TOMM40 genes, which were
previously implicated in AD.The GWIS analysis yielded 8 novel SNP-SNP interaction findings that warrant replication and further
investigation.

1. Introduction

Alzheimer’s disease (AD) is the most common neurode-
generative disorder characterized by a progressive decline
in memory and cognition. The pathologic cascade in AD
involves two primary hallmarks: amyloid-𝛽 (A𝛽) plaques and
neurofibrillary tangles [1]. Genetics plays an important role in
late-onset Alzheimer’s disease (LOAD), butmissing heritabil-
ity remains to be found according to current approximations

[2]. The last several decades of research yielded only one
genetic risk factor of large effect for LOAD: Apolipoprotein E
(APOE) with 2 copies of the 𝜀4 allele confers approximately 6-
to 30-fold risk for the disease [3]. Some recent genome-wide
association studies (GWAS) have identified several additional
AD susceptibility genes, including BIN1, CLU, ABCA7, CR1,
PICALM,MS4A6A,MS4A4E,CD33,CD2AP, and EPHA1 [4–
9]. However, these genetic factors have relatively low effect
sizes (odds ratios of 0.87–1.23) and cumulatively account for
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approximately 35% of population-attributable risk [8]. More
recently, a large scale GWAS meta-analysis identified 11 new
susceptibility loci with also small effect sizes [10].

Traditional GWAS analyses used discrete disease status as
the phenotypic trait of interest despite the fact that LOAD
is a clinically heterogeneous disorder. Recently, researchers
started to explore intermediate quantitative traits (QTs),
such as clinical or cognitive features, biochemical assays,
or neuroimaging biomarkers, in genetic association testing.
This may have the potential to address the issue of clinical
heterogeneity in LOAD. These QTs are often measured as
continuous variables and thus exhibit a higher genetic signal-
to-noise ratio. Further, most intermediate QTs are more
proximal to their genetic bases than disease status. Thus, the
incorporation of intermediate QTs can potentially increase
statistical power to detect disease-related genetic associations
[11, 12]. An ancillary benefit of using QTs is that they can
serve as effective biomarkers for monitoring disease progress
or treatment response in clinical practice or drug trials.

Over the past 10–15 years, studies have identified robust
and predictive biomarkers for AD including levels of tau and
amyloid-𝛽 peptides in cerebrospinal fluid (CSF), selective
measures of brain atrophy usingmagnetic resonance imaging
(MRI), and imaging of glucose hypometabolism and amyloid
using positron emission tomography (PET) [13]. PET
imaging can be used to quantify levels of amyloid in the brain
by utilizing a radiotracer such as florbetapir (18F-AV-45 or
AV-45) or/and Pittsburgh compound-B (PiB, N-methyl-
[11C]2-(40-methylaminophenyl)-6-hydroxybenzothiazole).
These amyloid measures have been studied as biomarkers
for classifying AD [14–17]. All these multimodal biomarkers
can potentially be served as AD relevant QTs and have been
examined in many existing quantitative genetics studies of
LOAD [18].

In addition, most genetic association studies compute
statistics at the single marker level and ignore the pos-
sible underlying biological interactions that contribute to
the development of disease [19] and could be a possible
source for “missing heritability.” Given the quadratically
growing search space of two-way interactions, we are facing
major computational and statistical challenges. To address
this issue, one approach is to effectively explore epistatic
interactions in genome-wide data by using a priori statistical
and/or biological evidence to generate a reduced set of genetic
markers for interaction testing. Using this strategy, previ-
ous interaction studies in LOAD (e.g., [20–24]) implicated
interactions between CR1 and APOE using quantified A𝛽
PET as the outcome variable [24] and between cholesterol
trafficking genes [21, 22] and tau phosphorylation genes [20]
in case-control analyses. These studies demonstrated that the
important information could be garnered from investigating
genetic interactions in complex diseases like LOAD.

With these observations, in the present work, we con-
ducted a quantitative genetics study of an AD-associated
amyloid imaging phenotype and examined both single
marker main effects and two-marker interaction effects at
the genome-wide level. Specifically, we investigated the main
and interaction effects of genome-wide markers on cingulate

amyloid-beta (A𝛽) load in an effort to better understand the
genetic etiology of cingulate cortical A𝛽 deposition (a LOAD
biomarker).

2. Materials and Methods

Data used in the preparation of this paper were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://adni.loni.usc.edu/).TheADNI was launched
in 2003 by the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies, and nonprofit organizations, as a
$60 million, 5-year public-private partnership. The primary
goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). Determination of sensitive and
specific markers of very early AD progression is intended to
aid researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost
of clinical trials.

The Principal Investigator of this initiative is Michael
W. Weiner, M.D., VA Medical Center and University of
California, San Francisco. ADNI is the result of efforts
of many coinvestigators from a broad range of academic
institutions and private corporations, and subjects have been
recruited from over 50 sites across the US and Canada. The
initial goal of ADNI was to recruit 800 subjects but ADNI
has been followed by ADNI-GO and ADNI-2. To date these
three protocols have recruited over 1500 adults, aged 55 to
90, to participate in the research, consisting of cognitively
normal older individuals, people with early or late MCI, and
people with early AD. The follow-up duration of each group
is specified in the protocols for ADNI-1, ADNI-2, and ADNI-
GO. Subjects originally recruited for ADNI-1 and ADNI-GO
had the option to be followed in ADNI-2. For up-to-date
information, see http://www.adni-info.org/.

We applied for and were granted permission to use
data from the ADNI cohort (http://www.adni-info.org/) to
conduct genetic association and interaction analyses.

2.1. Subjects and Data. For the present work, analyses were
restricted to subjects with both genotyping data and AV-45
PET data available. The study sample (𝑁 = 602) included
190 healthy control (HC), 215 early MCI (EMCI), 152 late
MCI (LMCI), and 45 AD subjects. Table 1 shows selected
demographic and clinical characteristics of these participants
at the time of the baseline AV-45 PET scan.

2.2. Genotyping Data and Quality Control. The genotyping
data of the participants were collected using either the Illu-
mina 2.5M array (a byproduct of the ADNI whole genome
sequencing sample) or the Illumina OmniQuad array [18, 25,
26]. For the present analyses, we included single nucleotide
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polymorphism (SNP) markers that were present on both
arrays.

Quality control (QC) was performed using the PLINK
software (version 1.07) [27]. SNPs not meeting any of the
following criteriawere excluded from further analyses: (1) call
rate per SNP ≥95%; (2) minor allele frequency ≥ 5% (𝑛 = 117,
175 SNPs were excluded based on criteria 1 and 2); and (3)
Hardy-Weinberg equilibrium test of 𝑝 ≥ 10−6 (𝑛 = 997 SNPs
were excluded) using control subjects only. Participants were
excluded from the analysis if any of the following criteria were
not satisfied: (1) call rate per participant≥ 90% (3 participants
were excluded); (2) sex check (1 participant was excluded);
and (3) identity check for related pairs (3 sibling pairs were
identified with PI HAT >0.5; one participant of each pair was
randomly selected and excluded from the study).

Population stratification analysis was performed using
EIGENSTRAT [28] and confirmed using STRUCTURE [29].
It yielded 47 study participants who did not cluster with
the remaining subjects and with the CEU HapMap sam-
ples who are primarily of European ancestry (non-Hispanic
Caucasians). These 47 participants were excluded from the
analysis. After QC, 582,718 SNPs and 602 samples remained
available for genetic association and interaction analyses.

2.3. Quantitative Traits. A previous AV-45 PET study [30]
showed that both AD and amnestic MCI subjects had
higher standardized uptake value ratio (SUVR) in global
cortical, precuneus, frontal, occipital, and posterior cingu-
late areas. We focused this study in one of these regions,
which is cingulate. UC Berkeley extracted baseline SUVR
mean measure from the cingulate cortical region (version
2014.7.30) that was downloaded from the ADNI database
(http://adni.loni.usc.edu/) for 987 ADNI-GO/2 participants.
We also downloaded the cerebellum SUVRmeasure and used
it to normalize the cingulate SUVRmeasure.The normalized
SUVRwas used as the quantitative trait (QT) in our analyses.
After excluding 383 participants due to the lack of genotyping
data, 602 individuals remained in the further analysis.

In addition, amyloid-𝛽 1-42 peptide (A𝛽-42), total tau (t-
tau), and tau phosphorylated at the threonine 181 (p-tau181p),
measured in CSF samples, are potential diagnostic biomark-
ers for AD [31–33]. Among the 602 individuals, 504 have
both AV-45 data and CSF data. Following a previous GWAS
study onCSF biomarkers [34], QCwas performed on the CSF
data to reduce the potential influence of extreme outliers on
statistical results. Mean and standard deviation (SD) of Aß1-
42 and 2 ratios (t-tau/Aß1-42 and p-tau181p/Aß1-42) were
calculated, blind to diagnostic information. Subjects who had
at least one value greater or smaller than 4 SDs from themean
value of each of 3 CSF variables were regarded as extreme
outliers and removed from the analysis. This step removed
5 additional participants, resulting in 499 valid CSF samples.

2.4. Genetic Association Studies: Main Effects and Interac-
tion Effects. For GWAS examining the main effects, linear
regression was performed using PLINK to determine the
association of each SNP to the AV-45 measure. An additive
genetic model was tested with covariates including age,

gender, and diagnosis (through four binary dummy variables
indicating HC, EMCI, LMCI, or AD). Manhattan plots and
Q-Q plots were generated using Haploview (http://www
.broad.mit.edu/mpg/haploview/) and R (http://www.r-proj-
ect.org/), respectively.

For GWIS examining the interaction effects, the INTER-
SNP software [35] was applied to the genotyping data and
phenotypic AV-45 measure. First, a single marker 𝑝 value for
the main effect was computed for each SNP. Top 10,000 SNPs
with the smallest 𝑝 values were selected and included in the
subsequent interaction analysis. An explicit test for additive
interaction (the full model including both additive and dom-
inance effects plus interaction term versus reduced model
that does not contain interaction terms) was performed on
all possible SNP pairs among the top 10,000 SNPs, using two-
marker analysis. The computation was conducted in a linear
regression framework.We examined the association between
SNP-SNP interactions and the AV-45 measure while control-
ling for relevant covariates at the baseline scan, including
age, sex, and clinical diagnosis. This resulted in a total of
approximately 50 million unique SNP pairs to be tested from
the ADNI dataset. Interactions were considered significant if
their Bonferroni corrected 𝑝 value < 0.05.

2.5. Post Hoc Analysis. For identified significant interactions,
we applied hierarchical linear regression using IBM SPSS 20
to estimate the amount of variance (𝑅2) in the AV-45measure
accounted for by these interaction terms. We first included
the same set of covariates (age, gender, and diagnosis) in
the linear model. After that, we included APOE status, the
closest SNP to the BCHE SNP identified in a prior amyloid
GWAS study [36], and the two SNP main effects from
the identified SNP pair. Finally, we included the SNP-SNP
interaction term to calculate additional variance explained by
the interaction term. The difference in 𝑅2 for the significant
models was calculated in SPSS as Δ𝑅2 = 𝑅2 (full model with
interaction term) −𝑅2 (reduced model without interaction
term). Significant effects were plotted in SPSS as well.

In addition, based on the identified interactions associ-
ated with AV-45, we further evaluated their main and inter-
action effects on the CSF levels related to amyloid, including
A𝛽1-42, t-tau181p/A𝛽1-42, and p-tau/A𝛽1-42. These three
CSF measures were used as the QTs in 3 separate genetic
analyses, following the same method and steps for analyzing
AV-45 phenotype as described above.

3. Results and Discussion

3.1. GWAS Results. Table 1 shows selected demographic and
clinical characteristics of 602 ADNI participants analyzed in
this study, where the EMCI group is slightly younger than
the other groups. Figure 1 shows the Q-Q plot, indicating no
evidence of spurious inflation. Figure 2 shows theManhattan
plot. As expected, significant associations were identified
between loci on chromosome 19 and the AV-45 measure.
The top association is from rs4420638 (𝑃 = 5.11 × 10−21),
which codes for theAPOC1 [37]. A few other SNPs within the
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Table 1: Selected demographic and clinical characteristics of participants at the time of AV-45 PET scan.

HC (𝑁 = 190) EMCI (𝑁 = 215) LMCI (𝑁 = 152) AD (𝑁 = 45)
Age (years) 74.51 (5.74) 71.43 (7.28) 73.03 (7.49) 74.87 (9.05)
Women 94 (49%) 95 (44%) 62 (41%) 17 (38%)
Education (years) 16.53 (2.64) 15.95 (2.66) 16.32 (2.90) 15.67 (2.70)
APOE e4 allele present 54 (28%) 87 (40%) 78 (51%) 33 (73%)
CDR-SOB 0.03 (0.13) 1.22 (0.72) 1.73 (0.94) 4.36 (1.64)
Mini mental status examination 29.07 (1.20) 28.39 (1.46) 27.25 (1.77) 22.93 (2.08)
Logical memory immediate recall (WMS-R) 14.46 (3.08) 10.96 (2.77) 7.32 (3.06) 4.40 (2.52)
Logical memory delayed recall (WMS-R) 13.55 (3.27) 8.90 (1.72) 4.22 (2.75) 2.02 (2.17)
Normalized SUVR of cingulate amyloid burden 1.211 (0.21) 1.273 (0.23) 1.274 (0.27) 1.48 (0.24)
AD: Alzheimer’s disease; CDR–SOB: clinical dementia rating-sum of boxes; EMCI: early mild cognitive impairment; HC: healthy control; LMCI: late mild
cognitive impairment; PET: positron emission tomography; WMS-R: Wechsler Memory Scale-Revised. Data are shown in the format of “number (%)” or
“mean (SD).”
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values from the GWAS of cingulate cortical Aß load versus those
expected under the null hypothesis.

APOE region, including adjacentAPOC1 andTOMM40, were
significantly associated with the AV-45 level in cingulate.

3.2. SNP-SNP Interaction Results. The INTERSNP model
we tested included age, sex, and diagnosis as covariates.
Eight SNP pairs showed significant interaction effects
on the cingulate AV45 measure (corrected 𝑝 value <
0.05) (Table 2): rs2194938 (CLSTN2)-rs7644138 (FHIT),
rs7916162 (TACC2)-rs2326536 (𝑃𝑅𝑁𝑃∗), rs2295873
(TACC2)-rs7794838 (𝐼𝐺𝐹𝐵𝑃3∗), rs2295874 (TACC2)-
rs2326536 (𝑃𝑅𝑁𝑃∗), rs13056151 (BCR)-rs17594541 (MAGI2),
rs13426621 (LOC388942)-rs7037332 (𝑇𝑌𝑅𝑃1∗), rs16936424
(LOC387761)-rs10504164 (N/A), and rs16939265 (𝐻𝑁𝐹4𝐺∗)-
rs6854047 (𝑅𝑊𝐷𝐷4∗).

3.3. Post Hoc Analysis. Table 2 also shows the results of post
hoc analysis on cingulate amyloid deposition. Age, gender,
and diagnosis were first included in themodel and accounted
for 11% of variance in the amyloid QT. APOE status was then
accounted for an additional 16.1% of variance, followed by the
closest SNP to the BCHE SNP identified in [36] accounted for
an additional 1.8% of variance. For each interaction, we ran
a hierarchical linear regression model. We first added in the
genetic main effects and then the genetic interaction term to

determine the variance associated with the interaction term
alone. For rs2194938 (CLSTN2)-rs7644138 (FHIT), the SNP
main effects accounted for 3.4% of variance, and the interac-
tion term accounted for 4.9% of variance (8.3% combined).
For rs7916162 (TACC2)-rs2326536 (𝑃𝑅𝑁𝑃∗), the main effects
accounted for 2% of variance, and the interaction accounted
for 4.9% of variance (6.9% combined). For rs2295873
(TACC2)-rs7794838 (𝐼𝐺𝐹𝐵𝑃3∗), the main effects accounted
for 3.7% of variance, and the interaction term accounted for
4.1% of variance (7.8% combined). For rs2295874 (TACC2)-
rs2326536 (𝑃𝑅𝑁𝑃∗), the SNPmain effects accounted for 3.7%
of variance, and the interaction term accounted for 4.1% of
variance (7.8% combined). For rs13056151 (BCR)-rs17594541
(MAGI2), the main effects accounted for 3.5% of variance,
and the interaction term accounted for 2.6% of variance
(6.1% combined). For rs13426621 (LOC388942)-rs7037332
(𝑇𝑌𝑅𝑃1∗), the main effects accounted for 4.2% of variance,
and the interaction accounted for 2.3% of variance (6.5%
combined). For rs16936424 (LOC387761)-rs10504164 (N/A),
themain effects accounted for 3.7% of variance, and the inter-
action term accounted for 1.7% of variance (5.4% combined).
For rs16939265 (HNF4G∗)-rs6854047 (RWDD4∗), the main
effects accounted for 2.7% of variance, and the interaction
term accounted for 1.3% of variance (4.0% combined).

Using a slightly reduced sample (𝑁 = 499) with
CSF biomarker data available, all 8 identified interactions
remained statistically significant when performing hierarchi-
cal linear regression using the CSF phenotypes (one baseline
measure: A𝛽, two ratios: t-Tau/A𝛽 and p-Tau/A𝛽) instead
of the AV-45 measure as outlined earlier (Table 3). We also
repeated the same AV-45 analysis on the reduced sample and
achieved a very similar result (Table 4).

3.4. Discussion. In this study, we performed both GWAS
and GWIS analyses of the cingulate AV-45 florbetapir PET
measure, using a sample of 602 subjects from the ADNI
database. To our knowledge, this is the first genome-wide
study on examining SNP-SNP interaction effects on cingulate
amyloid deposition in a substantially large sample. In the
single marker analysis, as expected, SNPs in APOE, APOC1,
and TOMM40 genes (Figure 2) exhibited genome-wide
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𝑝 values from the GWAS of cingulate cortical A𝛽 load. More than 580,000 SNPs were tested

for association with cingulate cortical A𝛽 burden under an additive model, with age, gender, and diagnosis as covariates. Genome-wide
significant associations (exceeding the threshold represented by the red line and determined by Bonferroni correction) were identified on
chromosome 19 within the APOE and its neighboring regions.

significant associations to the cingulate cortical Aß level.
Two-marker interaction analyses revealed 8 SNP pairs,
which had significant genetic interactions (corrected
𝑝 ≤ 0.05) with cingulate amyloid burden. The risk variants
at these pairs had low main effects but explained a relatively
high-level variance of the amyloid deposition in cingulate
(Table 2).

In addition,missing heritability can partially be explained
by the interaction effects that are not examined in traditional
GWAS analyses. Genetic risk underlying diagnosis of LOAD
is considered to be manifested from multiple genes which
interact with each other. We have performed a post hoc
analysis investigating the effects of the identified SNP-SNP
interactions LOAD related quantitative phenotypes including
amyloid deposition and CSF biomarkers (A𝛽, t-tau/A𝛽, p-
tau/A𝛽). Given amyloid and tau phosphorylation as major
AD hallmarks, it is not surprising to observe the genetic
interaction effects on both the amyloid load and relevant CSF
biomarkers (Tables 2–4). Our results suggest that significant
SNP-SNP interactions could exist between SNPs with low
and insignificant main effects, and these interactions could
be associated with altered amyloid burden and explain high-
level risk in AD.

In line with our hypothesis, we identified multiple signif-
icant genetic interactions associated with cingulate amyloid
deposition. Several genes found in this study have already
been implicated in AD, thus lending confidence to the
analytic procedure and results. These genes include PRNP
[38, 39], IGFBP3 [40, 41], and MAGI2 [42, 43]. For example,
Guerreiro et al. reported a nonsense mutation in PRNP
associated with clinical Alzheimer’s disease [38]. Ikonen et
al. showed that interaction between the Alzheimer’s survival
peptide humanin and insulin-like growth factor-binding
protein 3 (IGFBP3) regulates cell survival and apoptosis

[40]. Potkin et al. identified an MAGI2 SNP associated with
hippocampal atrophy using the ADNI data [42]. Perhaps
more importantly, this study also identified a number of SNPs
that had not yet been associated with AD in conventional
GWAS studies. Thus, this study exposes several potential
candidate genes that could be explored in future replication
samples.

This study had several methodological and technical
advantages over other imaging genetics studies in addition
to the above interesting findings. (1) To our knowledge this
is the first genome-wide study to explore how SNP-SNP
interactions influence cingulate amyloid burden, measured
using florbetapir PET scan information. (2)Using continuous
quantitative traits as phenotypes confers higher statistical
power than using conventional clinical status. (3)The sample
in this study included HC, EMCI, LMCI, and AD, thus
providing a continuous and wide spectrum of the disease
progression in the dataset. (4) Our approach embraced,
rather than ignored, the confounding factors including age,
sex, diagnosis, and previously identified risk genesAPOE and
BCHE and providedmore accurate estimate of the interaction
effects on amyloid burden. (5) CSF data were used in this
study to cross-check the identified interactions, which had
the potential to serve as an indirect validation strategy or
provide complemental information.

Our study has several limitations. (1) We used single
marker main effect value to select SNPs for interaction
analysis, which could miss significant interactions between
SNPs with insignificant main effects. (2) The small cell size
in the interaction analyses might introduce false positives.
(3) Our approach is mostly data-driven, without utilizing
any existing biological knowledge (e.g., pathways, networks,
and other functional annotation data), which may reduce the
statistical power and result interpretability.
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4. Conclusions

We performed GWAS and GWIS using amyloid imaging
as the quantitative phenotype and investigated the genetic
interaction effects on cingulate amyloid-beta (A𝛽) load. The
single marker analyses revealed significant hits within or
proximal to APOE, APOC1, and TOMM40 genes, which
were previously implicated in AD. The interaction analyses
yielded a few novel interaction findings associated with
cingulate amyloid burden, such as those between CLSTN2
and FHIT, between TACC2 and PRNP, between TACC2 and
IGFBP3, and between BCR and MAGI2. Each of these SNP
pairs demonstrated significant interaction effects while their
individual main effects were not prominent. This suggests
that searching for interaction effects may help solve the
problem ofmissing heritability to some extent. Future studies
should attempt to replicate these results in independent
datasets with neuroimaging and genetic data, as they become
available. Additional pathway analysis and gene sets enrich-
ment analysis could be performed to help understand the
genetic interactions between SNPs on amyloid imaging phe-
notypes and potentially provide critical functional evidence
in support of the statistical association findings.
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[21] E. Rodŕıguez-Rodŕıguez, I. Mateo, J. Infante et al., “Interaction
between HMGCR and ABCA1 cholesterol-related genes mod-
ulates Alzheimer’s disease risk,” Brain Research, vol. 1280, pp.
166–171, 2009.

[22] E. Rodriguez-Rodriguez, J. L. Vázquez-Higuera, P. Sánchez-
Juan et al., “Epistasis between intracellular cholesterol
trafficking-related genes (NPC1 and ABCA1) and Alzheimer’s
disease risk,” Journal of Alzheimer’s Disease, vol. 21, no. 2, pp.
619–625, 2010.

[23] M. E. I. Koran, T. J. Hohman, and T. A. Thornton-Wells,
“Genetic interactions found between calcium channel genes
modulate amyloid load measured by positron emission tomog-
raphy,” Human Genetics, vol. 133, no. 1, pp. 85–93, 2014.

[24] M. Thambisetty, Y. An, M. Nalls et al., “Effect of complement
CR1 on brain amyloid burden during aging and its modification
byAPOEgenotype,”Biological Psychiatry, vol. 73, no. 5, pp. 422–
428, 2013.

[25] A. J. Saykin, L. Shen, T. M. Foroud et al., “Alzheimer’s disease
neuroimaging initiative biomarkers as quantitative phenotypes:

genetics core aims, progress, and plans,” Alzheimer’s & Demen-
tia, vol. 6, no. 3, pp. 265–273, 2010.

[26] L. Shen, S. Kim, S. L. Risacher et al., “Whole genome association
study of brain-wide imaging phenotypes for identifying quan-
titative trait loci in MCI and AD: a study of the ADNI cohort,”
NeuroImage, vol. 53, no. 3, pp. 1051–1063, 2010.

[27] S. Purcell, B. Neale, K. Todd-Brown et al., “PLINK: a tool set
for whole-genome association and population-based linkage
analyses,” American Journal of Human Genetics, vol. 81, no. 3,
pp. 559–575, 2007.

[28] A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A.
Shadick, and D. Reich, “Principal components analysis corrects
for stratification in genome-wide association studies,” Nature
Genetics, vol. 38, no. 8, pp. 904–909, 2006.

[29] J. K. Pritchard, M. Stephens, and P. Donnelly, “Inference of
population structure using multilocus genotype data,”Genetics,
vol. 155, no. 2, pp. 945–959, 2000.

[30] K.-L. Huang, K.-J. Lin, I.-T. Hsiao et al., “Regional amy-
loid deposition in amnestic mild cognitive impairment and
Alzheimer’s disease evaluated by [18F]AV-45 positron emission
tomography in Chinese population,” PLoS ONE, vol. 8, no. 3,
Article ID e58974, 2013.

[31] W. J. Jagust, S. M. Landau, L. M. Shaw et al., “Relationships
between biomarkers in aging and dementia,”Neurology, vol. 73,
no. 15, pp. 1193–1199, 2009.

[32] L. M. Shaw, H. Vanderstichele, M. Knapik-Czajka et al.,
“Cerebrospinal fluid biomarker signature inAlzheimer’s disease
neuroimaging initiative subjects,” Annals of Neurology, vol. 65,
no. 4, pp. 403–413, 2009.

[33] H. Hampel, K. Blennow, L. M. Shaw, Y. C. Hoessler, H.
Zetterberg, and J. Q. Trojanowski, “Total and phosphorylated
tau protein as biological markers of Alzheimer’s disease,” Exper-
imental Gerontology, vol. 45, no. 1, pp. 30–40, 2010.

[34] S. Kim, S. Swaminathan, L. Shen et al., “Genome-wide associ-
ation study of CSF biomarkers A𝛽1-42, t-tau, and p-tau181p in
the ADNI cohort,” Neurology, vol. 76, no. 1, pp. 69–79, 2011.

[35] C. Herold, M. Steffens, F. F. Brockschmidt, M. P. Baur, and T.
Becker, “INTERSNP: genome-wide interaction analysis guided
by a priori information,” Bioinformatics, vol. 25, no. 24, pp.
3275–3281, 2009.

[36] V. K. Ramanan, S. L. Risacher, K. Nho et al., “APOE and BCHE
asmodulators of cerebral amyloid deposition: a florbetapir PET
genome-wide association study,” Molecular Psychiatry, vol. 19,
no. 3, pp. 351–357, 2014.

[37] E. H. Corder, A. M. Saunders, W. J. Strittmatter et al., “Gene
dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s
disease in late onset families,” Science, vol. 261, no. 5123, pp. 921–
923, 1993.

[38] R. Guerreiro, J. Brás, A.Wojtas, R. Rademakers, J. Hardy, andN.
Graff-Radford, “A nonsense mutation in PRNP associated with
clinical Alzheimer’s disease,” Neurobiology of Aging, vol. 35, no.
11, pp. 2656.e13–2656.e16, 2014.

[39] C. Sassi, R. Guerreiro, R. Gibbs et al., “Investigating the
role of rare coding variability in Mendelian dementia genes
(APP, PSEN1, PSEN2, GRN, MAPT, and PRNP) in late-onset
Alzheimer’s disease,” Neurobiology of Aging, vol. 35, no. 12, pp.
2881.e1–2881.e6, 2014.

[40] M. Ikonen, B. Liu, Y. Hashimoto et al., “Interaction between the
Alzheimer’s survival peptide humanin and insulin-like growth
factor-binding protein 3 regulates cell survival and apoptosis,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 100, no. 22, pp. 13042–13047, 2003.



BioMed Research International 11

[41] P. Kochunov, J. Charlesworth, A. Winkler et al., “Transcrip-
tomics of cortical gray matter thickness decline during normal
aging,” NeuroImage, vol. 82, pp. 273–283, 2013.

[42] S. G. Potkin, G. Guffanti, A. Lakatos et al., “Hippocampal
atrophy as a quantitative trait in a genome-wide association
study identifying novel susceptibility genes for Alzheimer’s
disease,” PLoS ONE, vol. 4, no. 8, Article ID e6501, 2009.

[43] M. W. Weiner, D. P. Veitch, P. S. Aisen et al., “The Alzheimer’s
disease neuroimaging initiative: a review of papers published
since its inception,” Alzheimer’s and Dementia, vol. 9, no. 5, pp.
e111–e194, 2013.


