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Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is
considered a neglected infectious disease of human and veterinary concern. Our group
has been investigating proteins annotated as hypothetical, predicted to be located on the
leptospiral surface. Because of their location, these proteins may have the ability to
interact with various host components, which could allow establishment of the infection.
These proteins act as adherence factors by binding to host receptor molecules, such as
the extracellular matrix (ECM) components laminin and glycosaminoglycans to help
bacterial colonization. Leptospira also interacts with the host fibrinolytic system, which
has been demonstrated to be a powerful tool for invasion mechanisms. The interaction
with fibrinogen and thrombin has been shown to reduce fibrin clot formation. Additionally,
the degradation of coagulation cascade components by secreted proteases or by
acquired surface plasmin could also play a role in reducing clot formation, hence
facilitating dissemination during infection. Interaction with host complement system
regulators also plays a role in helping bacteria to evade the immune system, facilitating
invasion. Interaction of Leptospira to cell receptors, such as cadherins, can contribute to
investigate molecules that participate in virulence. To achieve a better understanding of
the host-pathogen interaction, leptospiral mutagenesis tools have been developed and
explored. This work presents several proteins that mediate binding to components of the
ECM, plasma, components of the complement system and cells, to gather research
achievements that can be helpful in better understanding the mechanisms of leptospiral-
host interactions and discuss genetic manipulation for Leptospira spp. aimed at protein
function validation.
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INTRODUCTION

Leptospirosis is considered a neglected infectious disease of
human and veterinary concern. The genus Leptospira includes
both pathogenic and saprophytic species. The pathogenic group
includes the causative agents of leptospirosis disease, while the
saprophytic group consists of free-living non-disease-causing
organisms. Leptospires can be genetically classified into 4
groups: P1 (pathogenic), P2 (intermediate) and S1 and S2
(saprophytic) (Vincent et al., 2019). They are also serologically
divided, regarding serogroup and serovar status, associated with
the antigenic heterogeneity of exposed lipopolysaccharides
(LPSs) (Bharti et al., 2003). To date, more than 300 pathogenic
serovars have been identified (Adler and de la Peña Moctezuma,
2010; Vincent et al., 2019). Human infection occurs mainly
through direct contact with the urine or other biological fluids
of infected animals or via indirect contact with contaminated soil
or water (Levett, 2001; Bharti et al., 2003; Levett, 2015).

After contact with damaged skin or mucosa, pathogenic
leptospires can rapidly penetrate and breach host biological
barriers, being able to survive serum complement killing. They
can reach target organs such as the liver, lungs and mainly the
kidneys via the proximal tubules, within 1 hour of infection
(Bharti et al., 2003), showing their high invasive potential (Haake
and Levett, 2015).

The vaccines available for veterinary use are based on
inactivated whole-cell or membrane preparations of pathogenic
leptospires. These types of vaccines confer protective responses
through, but not exclusively, the induction of antibodies against
leptospiral LPS (de la Peña-Moctezuma et al., 1999; Naiman
et al., 2002; Adler and de la Peña Moctezuma, 2010). However,
these vaccines are not able to induce long-lasting protection and
do not provide cross-protective immunity against leptospiral
serovars not included in the vaccine preparation. A broad
spectrum, cost-effective vaccine against leptospirosis is
being pursued.

The number of genomes for which complete sequencing
information is available has increased exponentially in the past
two decades, including Leptospira spp. The available sequences
combined with bioinformatics tools and DNA recombinant
techniques have allowed the prediction of proteins in silico and
their production in the laboratory, regardless of their abundance
and without the need for manipulating the microorganism of
study in vitro (Sette and Rappuoli, 2010). This has increased our
understanding of the leptospiral pathogenic pathways, and the
virulence factors involved, which many research groups have
extensively investigated.

In the last years, several studies have revealed some outer
membrane proteins of L. interrogans acting as adherence factors
by binding to host receptor molecules. They can interact with
components of the extracellular matrix (ECM) of host cells, such
as laminin and glycosaminoglycans (GAGs). There are several
ECM-binding proteins that potentially contribute to the
leptospiral infection process (Vieira et al., 2014; Fernandes
et al., 2016b). These leptospiral proteins also interact with
plasma components such as plasminogen, plasmin, fibrinogen
and thrombin. Another observed mechanism is the ability of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
these bacteria to interact with host complement system
components such as C4b-binding protein (C4BP), factor H
(FH), vitronectin and terminal complement components C7,
C8 and C9, enabling them to survive serum attack (Cinco and
Bandi, 1983; Meri et al., 2005; Verma et al., 2006; Barbosa et al.,
2009; Silva et al., 2016; Siqueira et al., 2017). The process of how
these interactions occur and their consequences are detailed
throughout this article.

Identification and characterization of proteins that mediate
the interactions with host components are essential for the
understanding of leptospiral pathogenesis. Our research group
has been particularly interested in proteins annotated as
hypothetical, predicted to be located on Leptospira’s surface.
Using these criteria, we gathered several leptospiral proteins that
can potentially mediate the attachment of the bacteria to host
components including ECM, plasma, complement system and
host cells. Some of them are multifunctional, capable of binding
to more than one component. The aim of this study was to put
together research achievements that are helpful for further
understanding the surface-exposed proteins that mediate
leptospiral-host interactions and to ponder their possible
significance for bacterial pathogenesis, as well discuss available
genetic tools for the manipulation of Leptospira spp., with the
aim of revealing protein function.
BINDING OF LEPTOSPIRA TO ECM
AND CADHERINS

Laminin and E-Cadherin
Adhesive molecules present in bacterial systems can be divided
into fimbriae and adhesins, the latter are capable of mediating
bacterial adhesion to different elements on the surface of host
cells and ECM (Pizarro-Cerdá and Cossart, 2006; Kline et al.,
2009). Adhesins can be characterized as virulence factors, since
they are responsible for the first steps of infection, contributing
to the pathogenesis of various bacteria. Pathogenic Leptospira
spp. have a great ability to promote infection because of their
capacity to survive outside the host and the large number of
susceptible mammals. One of the invasion strategies would be
bacterial adhesion that recognizes components of the ECM and
cell receptors such as laminin and e-cadherin, followed by cell
invasion and colonization. Laminin is an adhesion glycoprotein
present in the ECM of host cells, being found mainly in the
basement membranes (Durbeej, 2010). Cadherins are
extracellular calcium-dependent adhesion glycoproteins
responsible for the formation of adherens junctions that enable
the intercellular adhesion (Gallin, 1998). The structure of
cadherins consists of and extracellular domain composed by
five cadherin repeats responsible for Ca2+ binding, a
transmembrane domain and a conserved intracellular domain
(Marie et al., 2014).

Attachment of L. interrogans to laminin was demonstrated by
microscopy in 2006 (Barbosa et al., 2006). Since then, several
leptospiral proteins have been reported as laminin-exclusive
ligands, and others have a broader range of host ligands. Lsa27
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and LIC12796 are adhesins that, among all the possible
components assayed, bind exclusively to laminin (Longhi et al.,
2009; Lima et al., 2013). OmpL47 is an adhesin that binds to
laminin, collagen III, fibronectin, aortic elastin and fibrinogen
(Pinne et al., 2010). LigB is another broad-spectrum binding
adhesin that interacts with collagen I, III and IV, laminin,
fibronectin, elastin, tropoelastin, heparin, fibrinogen, FH, FHL-1,
FHR-1 and C4bp (Choy et al., 2007; Lin et al., 2009; Castiblanco-
Valencia et al., 2012; Ching et al., 2012). There are many
leptospiral proteins described in the literature as laminin-
binding (Choy et al., 2007; Atzingen et al., 2008; Hoke et al.,
2008; Atzingen et al., 2009; Longhi et al., 2009; Oliveira et al., 2010;
Vieira et al., 2010; Mendes et al., 2011; Domingos et al., 2012;
Fernandes et al., 2012; Siqueira et al., 2013; Lima et al., 2013;
Fernandes et al., 2014; Domingos et al., 2015; Passalia
et al., 2020a).

Evangelista et al. (2014a) demonstrated that L. interrogans
strongly binds to cadherin [vascular endothelial (VE-cadherin),
epithelial (E-cadherin), neural (N-cadherin) and placental (P-
cadherin) (Navarro et al., 1998; Prozialeck et al., 2004)]. There
are a few L. interrogans proteins that have been described as
cadherin-binding. For example, LIC11574 and LIC13411 are
recombinant proteins that bind tightly to VE-cadherin
(Evangelista et al., 2014b). The recombinant protein LIC10879,
called Lsa16, interacts with E-cadherin, and when the protein is
subjected to heat denaturation, binding increases. It has been
suggested that unexposed amino acids on the secondary surface
of Lsa16 also participate in this interaction (Pereira et al., 2017).
The recombinant proteins LIC11711 and LIC12587 bind to
laminin and E-cadherin, in addition to interacting with the
fibrinolytic system (Kochi et al., 2019). It has been reported
that virulent L. interrogans was able to maintain adhesion in
renal proximal tubule epithelial cells, resulting in the E-cadherin
cleavage and later its endocytosis with the release of the N-
terminal fragment (cadherin domain repeats) into the
extracellular medium (Sebastián et al., 2021).

The leptospiral proteins that exhibit features of binding to
laminin, cadherin and other host ligands are listed in
Supplementary Table 1. It is anticipated that these proteins
are possibly virulence factors for the maintenance of adhesion
and infection processes of pathogenic leptospires in host cells. It
is observed that Leptospira, like other pathogens (Isaacs, 1994;
Breiner et al., 2009), has adhesin redundancy features, which is
probably part of their invasion strategy. Figure 1 depicts the
interactions of Leptospira with host components, cells and
possible consequences.
Proteoglycans and Glycosaminoglycans in
Leptospira Adhesion
Proteoglycans (PG) are complex macromolecules located in
various animal tissues and have a broad distribution, as they are
found within cells and at the cell membrane surface and ECM.
They are composed of two structures: a core protein and long
linear polysaccharides chain referred to as glycosaminoglycan
(GAG). GAGs are composed of disaccharide repeats, usually
hexoamine and uronic acid, where both units can be sulfated,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
increasing the PG density (Hay, 1991). Sulfation and composition
of GAGs’ backbone influence their binding to several proteins and
molecules with signal function, such as growth factors, cytokines,
chemokines, morphogens, and enzymes (Garcıá et al., 2016). In
the extracellular region, GAGs can modulate signaling by binding
to those components and presenting them to their active site,
acting in various cell processes such as cell adhesion, migration,
proliferation, differentiation and morphogenesis, ECM assembly,
tissue repair and inflammation (Garcıá et al., 2016). GAGs can also
bind to microbial pathogens, an important step for bacterial
adhesion to the host to facilitate invasion and colonization.
Several studies have shown that mainly heparan sulfate but also
chondroitin and dermatan sulfate is an important ligand for
bacteria, viruses and parasites (Rostand and Esko, 1997; Shi
et al., 2021).

The binding of Leptospira to PG and GAGs still lacks
understanding about which adhesins are involved in the
bacterial interaction with those components. It is already
known that Leptospira can bind GAGs, and the binding
pattern reveals that the connection is more efficient with
chondroitin sulfate B (also known as dermatan sulfate) and C
than heparan sulfate (Breiner et al., 2009). Contrasting with the
spirochete Borrelia burgdorferi, Leptospira can bind to
chondroitin sulfate C (Isaacs, 1994; Breiner et al., 2009). The
influence of sulfation and polymer size was assessed by using
dextran sulfate of different molecular weights, and it was shown
that Leptospira had higher affinity to high molecular weight
dextran sulfate. Therefore, the sulfation and size of PG
polysaccharide chains are important characteristics for
Leptospira attachment via GAG.

Breiner et al. (2009) and Martinez-Lopez et al. (2010) used
mammalian cell cultures deficient in PG or mutant cell lines or
a-galactosidase or b-xyloside to decrease cellular GAG levels;
they showed that the adhesion of L. interrogans serovar Canicola
and serovar Copenhageni to cells was partially inhibited. These
results suggest that PG and GAGs play a role in Leptospira
attachment to epithelial and endothelial cells; however, other
receptors are also involved (Breiner et al., 2009; Martinez-Lopez
et al., 2010). The adhesins LipL32, Loa22, OmpL1, p31/LipL45
and LenA were the first proteins described as GAG-binding
proteins. From this group of proteins, only OmpL1 showed
binding to heparin/heparan sulfate and chondroitin sulfate
ABC (Robbins et al., 2015) (Figure 1). LipL21 and LipL41,
lipoproteins that are among the most expressed in the outer
membrane, were also found to bind to GAGs. LipL21 showed a
broad binding profile, by interacting with heparin/heparan
sulfate and chondroitin sulfate, while LipL41 bound effectively
to chondroitin 4 sulfate (Takahashi et al., 2021).
CELL INTERACTIONS AND ADHESION

The adhesion of Leptospira to cell culture models has been
investigated to examine localization in the host, adhesion
characterization and signaling modifications and to analyze
receptors and adhesins that participate in virulence. From the
November 2021 | Volume 11 | Article 777709
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FIGURE 1 | Schematic view of colonization, invasion and evasion mechanisms displayed by pathogenic Leptospira. Leptospires can penetrate the host via
breached skin or intact mucosa, taking advantage of many surface exposed proteins that are able to interact with a broad range of host components, including the
extracellular matrix (ECM) components and glycosaminoglycans (GAGs). During the invasion process, leptospires can directly bind to ECM components and cell
receptors, as cadherins, the latter favoring cell-cell integrity disruption (center). Leptospires interact with host plasminogen (PLG) (top and center) and induce the
endothelial secretion of urokinase-type PLG activator (uPA), which in turn converts leptospires-bound PLG to its active form, plasmin (PLA). The latter, a broad-
spectrum serine protease, is capable of degrading ECM components and immune mediators, as IgG and C3b, reducing opsonophagocytosis (top). One of the host
mechanisms to block pathogen dissemination to other sites after endothelial lesion is the formation of fibrin clot, as a result of fibrinogen (Fg) cleavage by thrombin. In
addition to Fg degradation by PLA, pathogenic Leptospira can also bind both Fg and thrombin, causing a bilateral obstruction of the fibrin clot reaction, favoring the
dissemination step (left bottom), in association with ECM degradation by endogenous proteases and surface-associated PLA (center). Once in the bloodstream,
leptospires must overcome one of the first lines of host defense, the complement, and this is achieved by a multitude of mechanisms, including binding to the
negative complement regulators Factor H (FH) and C4 binding protein (C4BP), which participate in the degradation of C3b and C4b, respectively. Binding to terminal
components C7, C8, C9 and vitronectin, would decrease membrane attack complex (MAC) formation (right bottom). Taken together, it is anticipated that these
mechanisms will facilitate invasion and dissemination of Leptospira through the hosts.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org November 2021 | Volume 11 | Article 7777094
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1960s to 1990s, studies focused on determining the localization
and cytotoxicity of Leptospira strains. In vitro cell culture started
to be assessed using primary kidney cell culture, when studies
showed that L. interrogans serovar Pomona bound more to
fibroblasts than epithelial cells, and it was also observed that
fibroblasts detached from the surface of flasks while epithelial
cells remained adhered (Harrington and Sleight, 1966; Miller
et al., 1966). Subsequently, several studies using cells from kidney
proximal tubules showed bacterial adhesion to microvilli of those
cells (Miller and Wilson, 1967; de Martino et al., 1969; Marshall,
1974; Sterling and Thiermann, 1981).

Localization assays not only referred to tissue specificity but
indicated in which part of cell the interactions occurred. The first
results suggested that Leptospira could be an intracellular
pathogen in cell culture, as bacteria were found in the
cytoplasm in microscopy assays (Rose et al., 1966; Vinh et al.,
1984; Thomas and Higbie, 1990). However, an assay using
translocation of polarized MDCK (Madin-Darby canine
kidney) monolayer cells showed that the bacteria were invasive
but not intracellular, and they were not found in intercellular
junctions (Barocchi et al., 2002).

Virulent and saprophytic strains were compared regarding
adherence to MDCK, L929 and other cultured kidney cells, as
demonstrated by microscopy, and the virulent strains more than
the saprophytic ones were found to be bound to the cells, while
nonspecific adherence to plastic and glass surfaces occurred with
the saprophyte L. biflexa (Tsuchimoto et al., 1984; Vinh et al.,
1984; Ballard et al., 1986; Ito and Yanagawa, 1987). Later, during
the 1990s, adhesion to epithelial and endothelial cells was
quantified by radiolabeled bacteria, showing that pathogenic
strains bound 1.8 to 5 times more than the saprophytic strains
(Thomas and Higbie, 1990). Pathogenic Leptospira binding to
PMN (polymorphonuclear) leukocytes and CHO (Chinese
hamster ovary) mutants for Mac-1 (the CR3 integrin) was also
demonstrated, indicating bacterial binding via integrins (Cinco
et al., 2002). One study compared L. interrogans serovar
Portlandvere and L. borgpetersenii serovar Jules in binding to
HEp-2 (human epithelial) cells under different cell treatments
(Andrade and Brown, 2012). Interestingly, Breiner et al. (2009)
and Evangelista et al. (2014a) showed that L. interrogans bound
more to cells than to ECM produced by cultured epithelial and
endothelial cells (Breiner et al., 2009; Evangelista et al., 2014a).

The evaluation of cytotoxicity of Leptospira was assessed by
the cytopathic effects induced by bacterial culture supernatant in
cells (Miller et al., 1970; Yam et al., 1970; Finn and Jenkin, 1973).
Other toxic effects of intact bacteria or membrane and secreted
proteins were then observed in cell culture. Hemolysin SphH was
able to form pores in erythrocytes, and there was lactate
dehydrogenase release after 2 hours of incubation and cell lysis
after 6-8 hours when using Vero, A529, H1299 and L132 cells
(Lee et al., 2002). LipL32 showed the same cytotoxic profile when
incubated with ECV304 cells by the release of lactate
dehydrogenase and nitric oxide (Huang et al., 2008).

There are also several studies reporting an increase in PMN
cell adherence and receptors in HUVEC (human umbilical vein
endothelial) cells after stimulus with pathogenic bacteria,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
suggesting involvement in the inflammatory processes
activation and host defense in vascular endothelium (Dobrina
et al., 1995). Both virulent and saprophytic Leptospira, and the
proteins LIC10365, LIC10507, LIC10508, LIC10509 and
LIC12690 were also capable of stimulating HUVEC cells, as
assessed by the increase in E-selectin and ICAM-1 receptors,
which are involved in cell-cell and cell-ECM adherence and
recruitment and migration of neutrophils to vascular
endothelium (Vieira et al., 2007; Gómez et al., 2008;
Atzingen et al., 2009). Another study observed an increase in
von Willebrand factor when HUVEC cells were incubated with
virulent bacteria, but no upregulation of E -selectin or ICAM-1
(Goeijenbier et al., 2015). The methods used were FACS and
ELISA, which can produce differences in the detection of
the receptors.

Modification of the cytoskeleton of cells was found in
microarray and immunofluorescence using endothelial cells
and virulent strains, showing a decrease in the expression of b-
actin and of proteins involved in focal adhesions, leukocyte
migration and ECM interaction pathways, suggesting that the
virulent strain promotes actin remodeling and detachment of
cells from ECM (Martinez-Lopez et al., 2010). The assays using
immunofluorescence of endothelial cells were further
investigated, showing morphological disruptions, as found in
ZO-1 in tight junctions, and a decrease in the levels of VE-
cadherin and catenins in adherence junctions was detected,
indicating the VE-cadherin—catenin complex as a primary
target for pathogenic L. interrogans (Sato and Coburn, 2017).

Receptors for adhesion to epithelial and endothelial cells were
identified by assays using enzymes, lectins, integrins and
saccharides (Cinco et al., 2002; Andrade and Brown, 2012).
Assays using protein array technologies were an interesting tool
to identify and screen receptors important to pathogen adherence.
The evaluation of receptors by mass spectroscopy and protein
array identified the family of cadherins as receptors for Leptospira,
and in this work, several cell lines were evaluated and showed
binding (Evangelista et al., 2014a). In phage display assays,
LIC11574 showed binding to epithelial and endothelial cells,
and also bound to VE-cadherin (Evangelista et al., 2014b), and
LIC12976, a laminin-binding protein, bound to fibroblasts and
epithelial cells (Lima et al., 2013). LIC10831 was also assessed as an
E- and VE-cadherin ligand using different cell lines, including
CHO mutants expressing the receptor and endothelial cells
(Eshghi et al., 2019). The terminal repeats of the proteins LigA
and LigB, which interacted with the gelatin binding domain of
fibronectin, were able to bind to MDCK cells and inhibited the
ligation of L. interrogans serovar Pomona to the monolayers (Lin
et al., 2010). Also, LigB and a mutant of L. biflexa expressing LigA
showed binding to human embryonic lung cells and these
interactions were blocked in the presence of human tropoelastin
up to 68% and 61%, respectively (Hsieh et al., 2017).

The major proteins from Leptospira, previously characterized
as adhesins (LipL32, Loa22, OmpL1, p31/LipL45 and LenA) were
evaluated in epithelial and endothelial cells, and only OmpL1
displayed a significant difference in binding to Hep-2 and
EA.hy926 cells (Robbins et al., 2015).
November 2021 | Volume 11 | Article 777709
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BINDING OF LEPTOSPIRA TO PLASMA
COMPONENTS

Leptospiral Proteins That Bind to
Plasminogen
The interaction of Leptospira with the host fibrinolytic system
has been demonstrated to be a powerful tool for invasion
mechanisms. Plasmin is the major component of the
fibrinolytic system, a broad-spectrum serine protease that is
activated after plasminogen cleavage by tissue-type (tPA) or
urokinase-type (uPA) plasminogen activator. Plasminogen is
found in human tissues and plasma in high amounts; its
structure contains five kringle domains, which mediate binding
to several ligands via their lysine residues (Castellino and Ploplis,
2005). The ability of Leptospira spp. to bind plasminogen on its
surface and convert it to plasmin in the presence of an exogenous
activator, can provide leptospires with certain advantages.
Leptospira associated with plasmin have the capacity to cleave
ECM proteins and degrade complement components, such as
C3b and IgG, interfering with the deposition of these molecules
on the bacterial surface and consequently disrupting the
opsonophagocytosis process, which facilitates bacterial immune
evasion (Figure 1) (Vieira et al., 2009; Vieira et al., 2011; Vieira
et al., 2013; Verma et al., 2020)

In the last few years, several proteins experimentally
described as located on the Leptospira surface have been
identified as plasminogen-binding. Interactions have been
demonstrated to occur mainly via the lysine residues in
proteins and plasminogen kringle domains, since the
interactions were inhibited by a lysine analog, as observed by
in vitro assay (Domingos et al., 2012; Teixeira et al., 2015;
Fernandes et al., 2016b; Vieira and Nascimento, 2016; Pereira
et al., 2017; Passalia et al., 2020a; Passalia et al., 2021). Among
many proteins already identified as a plasminogen receptor,
the major outer membrane lipoproteins LipL32, LipL21 and
LipL41 and the transmembrane protein OmpL1 are included
(Fernandes et al., 2012; Vieira et al., 2010; Takahashi et al.,
2021). As reported for the bacteria, plasminogen bound to
recombinant proteins is converted to active plasmin in the
presence of an exogenous activator. Also, proteins such as
rLIC11711, rLIC13259, Lsa24.9, rLIC13086 and LipL41 were
able to acquire plasminogen from human serum, suggesting
the viability of these interactions under physiological
conditions and their possible role in leptospiral virulence
(Cavenague et al., 2019; Kochi et al., 2019; Rossini et al.,
2020; Passalia et al., 2021; Takahashi et al., 2021). Leptospiral
immunoglobulin-like proteins, known as Lig proteins, have
also been identified as plasminogen-binding. It was observed
that plasminogen bound to these proteins was converted to
active plasmin and able to degrade fibrinogen and complement
proteins C3b and C5 (Oliveira et al., 2013; Castiblanco-
Valencia et al., 2016)

Although the major proteins identified as plasminogen-
binding are described as being outer membrane or secreted
proteins, cytoplasmic proteins have also been identified as
plasminogen-binding (Vieira et al., 2012; Nogueira et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
2013). Enolase is described as a metabolic enzyme, but in
Leptospira, it was shown to be secreted and have the ability to
interact with plasminogen (Nogueira et al., 2013). The role of
cytoplasmic proteins in host-pathogen interactions is still
undefined, but proteins such as DnaK, glutamine synthetase
and acetyltransferase were also identified as plasminogen ligands
(Vieira et al., 2012). It is speculated that, at some point, these
proteins are exported to the bacterial surface or after cell lysis
these proteins could find plasminogen, helping surviving cells to
disseminate in host tissues.

Most of the plasminogen-binding proteins identified until
now do not display exclusive interaction with this component.
They have the ability to interact with other host components,
which characterize them as multifunctional molecules. In
contrast, some proteins such as LipL46, Lp30 and Lp49 show
plasminogen-exclusive binding properties (Figure 1) (Vieira
et al., 2010; Oliveira et al., 2011; Santos et al., 2018). The
reason why some proteins bind exclusively to plasminogen and
others do not is still unclear. Thus, it is possible that the multiple
binding characteristics observed by surface membrane proteins
may contribute to leptospiral pathogenesis. The main features of
proteins identified as plasminogen-binding and their
interactions with other host molecules are summarized in
Supplementary Table 1.

Leptospiral Protein Interactions With
Fibrinogen and Thrombin
Fibrinogen is a homodimeric glycoprotein complex synthetized
primarily in hepatocytes, and it circulates in plasma at high
concentrations (2-5 mg/mL) in healthy individuals. In
coagulation, fibrinogen is enzymatically converted to insoluble
fibrin by proteolytic cleavage of N-terminal fibrinopeptides
mediated by thrombin. Clot formation, stability and structure
are influenced by several factors such as concentrations of
anticoagulants, procoagulants, metal ions and fibrinogen-
binding proteins during fibrin formation (Doolittle, 1984;
Weisel 2005; Wolberg and Campbell, 2008).

Several bacterial pathogens have mechanisms to overcome
clotting in the fibrinolytic system; this can be achieved through
degradation of host components by secreting proteases or using
host plasminogen (Lähteenmäki et al., 2001). Fibrinogen acts as
the major component in clot formation during vascular injury
and tissue damage, besides stopping bacterial dissemination
(Chierakul et al., 2008; Wagenaar et al., 2010). It has been
reported that pathogenic Leptospira spp. are able to bind either
fibrinogen or thrombin, promoting a bilateral obstruction,
thereby reducing fibrin clot formation. Additionally, the
degradation of coagulation cascade components by secreted
proteases or by acquired surface plasmin could also play a role
on reducing clot formation, thereby facilitating dissemination
during the establishment of infection. In leptospirosis patients,
activated coagulation is observed, with increased levels of fibrin
degradation products and plasma fibrinogen and reduced levels
of antithrombin, associated with tissue damage and vascular
injury (Figure 1) (Oliveira et al., 2013; Fernandes et al., 2015;
Fernandes et al., 2016a).
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The interaction of Leptospira spp. with fibrinogen is mediated by
several outer membrane proteins. To date, the fibrinogen-binding
proteins identified include: LigA and LigB (Choy et al., 2011; Lin
et al., 2011), OmpL37 (Pinne et al., 2010), Lsa33, Lsa25, Lsa30 and
OmpL1 (Oliveira et al., 2013), Lsa23, Lsa36 (Siqueira et al., 2013),
Lsa37 (Silva et al., 2016), rLIC10508 (Siqueira et al., 2015), Lsa25.6
and Lsa16 (Pereira et al., 2017), ErpY (Ghosh et al., 2019),
rLIC10774 (Passalia et al., 2020a), and rLIC13086 (Passalia et al.,
2021). The interactions with most of these proteins were found to
be dose-dependent and specific. The inhibitory effect of fibrin clot
formation was, however, only observed with LigB fragment 9-11
(Choy et al., 2011) and LigBCen2 (amino acids 1014–1165 of LigB)
(Lin et al., 2011), Lsa33, rLIC12238, Lsa36, OmpL1, Lsa37, Lsa25.6,
ErpY and rLIC13086 (Figure 1), and it was incomplete, reaching a
maximum of 90%. Although these results differ from other bacterial
fibrinogen-binding proteins, ClfA of Staphylococcus aureus (Liu
et al., 2005) and SdrG of Staphylococcus epidermidis (Davis et al.,
2001), leptospires may use their redundant multifunctional proteins
to overcome the clotting barrier.

Leptospires can interact with different components of the
fibrinolytic system during the dissemination process. The
binding to thrombin, observed to a higher degree in virulent
strains, followed by culture-attenuated ones, occurs via the
substrate-binding exosite I, and it was demonstrated that fibrin
clotting is inhibited (Fernandes et al., 2015). The only reported
protein to bind thrombin was LIC10774, but this interaction did
not block clot formation. Additionally, leptospiral BatA and the
serine protease BatB proteins were able to cause a disorder in
platelet aggregation, another mechanism that leptospires can
overcome in blood to disseminate (Fang et al., 2018; Passalia
et al., 2020b).
COMPONENTS OF
COMPLEMENT SYSTEM

The complement system is considered one of the first lines of
defense against invading microorganisms because of its opsonic,
inflammatory and lytic capacities. Complement effector
functions result from the activation of three different pathways:
classical, alternative, and/or lectin pathways (CP, AP and LP,
respectively). Once activated, C5b initiates the terminal pathway
and allows the association of C6 and C7 molecules. Component
C7 is inserted into the lipid bilayer of the microorganism
membrane and the interaction of C8 leads to stability of the
C5b-7 complex. The association of several C9 molecules forms
MAC, generating the C5b-9 complex and subsequently causing
cell lysis (Kim and Song, 2006; Ricklin et al., 2010).

It has been shown that L. biflexa is rapidly killed in the presence
of normal human serum (NHS), while pathogenic species are able
to resist serum attack (Cinco and Bandi, 1983; Meri et al., 2005).
This is due to the ability of these bacteria to interact with host
complement system regulators, such as FH (Meri et al., 2005;
Verma et al., 2006), C4BP (Barbosa et al., 2009), vitronectin
(da Silva et al., 2015) and terminal complement components C7,
C8 and C9 (Figure 1) (Siqueira et al., 2017).
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Several leptospiral proteins have been identified as FH and
C4BP receptors. Endostatin-like (Len) proteins A (LenA) and B
(LenB) (Stevenson et al., 2007), EF-Tu protein (Wolff et al., 2013)
and Erp-Y-like lipoprotein (Ghosh et al., 2019) were identified as
ligands of FH. Among these proteins, only LenA and EF-Tu
showed the ability to inactivate C3b. The interaction with C4BP
was demonstrated by Lsa30 (Souza et al., 2012), rLIC10774
(Passalia et al., 2020a) and rLIC13086 (Passalia et al., 2021),
but only Lsa30 was assayed and shown to mediate C4b
inactivation (Souza et al., 2012). Several proteins were able to
interact with both regulators and inactivate C3b and C4b, such as
the LigA and LigB (Castiblanco-Valencia et al., 2012), LcpA (da
Silva et al., 2015), enolase (Salazar et al., 2017) and Lsa23
(Siqueira et al., 2016; Siqueira et al., 2017). The fine mapping
of the interaction between C4BP and outer membrane proteins,
LigA and LigB was assessed by Breda et al. (2015). The fragments
LigA7-8, LigA9-10, LigA10-11, LigB7-8, LigB9-10 and LigB11-12
were able to interact with host protein.

In addition to binding to FH and C4BP, LcpA also interfered
with the complement cascade by interacting with vitronectin and
preventing C9 polymerization and MAC formation (da Silva
et al., 2015). In the same way, Lsa23 was also able to interact with
terminal complement components C8 and C9 (Siqueira et al.,
2017), while rLIC10774 (Passalia et al., 2020a) and rLIC13086
were able to bind to C7, C8 and C9, and rLIC13086 also could
recruit these components directly from NHS (Passalia et al.,
2021). Furthermore, rLIC11711 exhibited binding to vitronectin
and C8 (Kochi et al., 2019), while rLIC12587 and rLIC13259
showed binding to vitronectin, C7, C8 and C9 (Kochi et al., 2019;
Cavenague et al., 2019). The recombinant proteins were able to
capture the complement system components from NHS, and
inhibit MAC formation, thus possibly contributing to leptospiral
immune evasion (Figure 1) (Cavenague et al., 2019; Kochi
et al., 2019).
MUTAGENESIS IN LEPTOSPIRA SPP. FOR
PROTEIN FUNCTION VALIDATION

Properties displayed in vitro by purified recombinant protein do
not necessarily reflect the native counterpart role in Leptospira
spp. Accordingly, functional genomic and host-pathogen
interaction analysis require genetic mutations in particular
genes to assess the resulting phenotype (Shapiro et al., 2018).
Gene knockout or knockdown in pathogenic species of Leptospira
should ideally lead to a loss of function phenotype, which can be
measured by interaction assays with purified host ligands and/or
cultured cells, translocation assays or even challenge with host
serum, for evaluating the outcome of leptospiral binding to
complement regulators. On the other hand, the expression of
pathogen-specific genes in the saprophyte L. biflexa has offered
an alternative for studying protein function by gain-of-function
phenotypes and, in some cases, has offered a complementation to
results obtained by L. interrogans mutants (Figure 2).

The application of mariner-based transposon mutagenesis
revealed Loa22 as a virulence factor of Leptospira since the
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transposon disruption in the loa22 gene resulted in an avirulent
mutant (Ristow et al., 2007). Likewise, disruption of the flaA1
and flaA2 genes or just flaA2 resulted in reduced bacterial
motility and less virulent mutant strains, indicating that
motility is associated with leptospiral invasion (Lambert
et al., 2012).

Mutation in the surface-exposed LruA resulted in attenuation of
the virulence of L. interrogans compared to the wild-type strain in a
hamster model of infection (Zhang et al., 2013). Interestingly,
mutations in the genes encoding the L. interrogans serovar
Manilae proteins LipL32 (Murray et al., 2009) and LipL41 (King
et al., 2013), two of the most abundant and highly conserved outer
membrane proteins in pathogenic Leptospira species, did not alter
leptospiral virulence or symptoms of acute leptospirosis in infected
hamsters. Accordingly, the lipL32mutant displayed no difference in
binding to a commercially available ECM preparation, laminin or
collagen type I, in comparison to a control intergenic mutant
(Murray et al., 2009), highlighting the functional redundancy
displayed by leptospires. Binding assays were not performed for
the lipL41 mutant (King et al., 2013).

Croda et al. (2008) performed site-directed mutation in
pathogenic Leptospira by allelic exchange, utilizing a suicide
plasmid to deliver a spectinomycin resistance cassette flanked
by two “homology arms” corresponding to the ligB coding
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
region. In vitro adherence of the ligB mutant to MDCK
monolayers showed no difference between this and the wild-
type strain. Accordingly, disruption of ligB did not affect
virulence and persistence in animal models, probably because
of functional redundancy to the ligA gene product.

Site-directed inactivation of the mce (mammalian cell entry,
LA2055, homologous to LIC11859) in L. interrogans serovar Lai
by Zhang et al., 2012 resulted in significantly diminished
adherence invasion of murine J774A.1 macrophages in
comparison to wild type strain; attenuation of virulence was
also observed for the mce knockout mutant.

Pappas and Picardeau (2015) used a transposon-delivered
cassette containing the Xanthomonas transcription activator-like
effector (TALE) targeting both ligA and ligB genes, aiming the
blockage of gene transcription (knockdown), thereby reducing
but not abolishing the levels of LigA and LigB proteins. Though
the authors did not perform any functional characterization of
the mutants regarding interaction with host components,
attenuation in the hamster model could be observed, indicating
that both proteins are required for virulence (Pappas and
Picardeau, 2015).

Concomitant and complete silencing of both LigA and LigB
proteins by CRISPR-interference (CRISPRi) resulted in a drastic
reduction of L. interrogans survival upon serum challenge,
corroborating their interaction with complement regulators
(Fernandes et al., 2021). In addition, this augmented serum
susceptibility resulted in avirulent leptospires (Fernandes et al.,
2021, manuscript in preparation), as previously demonstrated
(Pappas and Picardeau, 2015).

Results obtained with mutants in L. interrogans agreed with
the phenotypes observed by expression in the surrogate L.
biflexa, favoring the elucidation of the complement resistance
displayed by pathogenic leptospires and how LigA and LigB
proteins fit in the scenario. L. biflexa individually expressing
LigA or LigB gained the ability to sequester the negative
complement regulators FH and C4BP, which retained the
cofactor activity on the leptospiral surface. As a result, the
recombinant L. biflexa displayed enhanced survival upon
human serum challenge (Castiblanco-Valencia et al., 2016).

Zhang et al. (2012) used L. biflexa expressing the Mce protein
to confirm the results obtained with the allelic exchange mutant
in L. interrogans, showing that the recombinant bacteria
displayed increased capacity for binding to murine
macrophages. In addition, the heterologous expression of
lmb216 (under lipL32 promoter) and ligB (under borrelial flaB
promoter) in L. biflexa resulted in enhanced adhesion to
fibronectin and phagocytic uptake, confirming the results
obtained with the respective transposon mutants in L.
interrogans (Toma et al., 2014).

The L. biflexa surrogate system was also employed to
validate Lig protein binding to ECM molecules and host cells
(Figueira et al., 2011). Constitutive expression of LigA driven
by the borrelial flgB promoter resulted in enhanced adherence
of the recombinant bacteria to MDCK cells, in comparison to
the wild-type strain; neither LigA nor LigB expression
influenced the bacterial translocation across MDCK
FIGURE 2 | Genetic tools and mutant evaluation of Leptospira. As the
saprophytic L. biflexa lacks most of the virulence-associated proteins, it is
used as a surrogate for the expression of pathogen-specific proteins and
gain-of-function phenotype evaluation. Increased binding to ECM and plasma
components has been observed in recombinant L. biflexa expressing L.
interrogans proteins. Contrarily to this strategy, knockout (KO) or knockdown
(KD) in the pathogenic L. interrogans has been used to evaluate loss-of-
function phenotypes, in comparison to the wild-type strain. Reduced virulence
in animal model was observed for KD double LigA/LigB, KO Loa22 and KO
Mce mutants. KO of LipL32, the major lipoprotein of pathogenic leptospires,
did not alter virulence or ECM binding.
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monolayers. Recombinant L. biflexa expressing LigA or LigB
displayed increased interaction with plasma and cellular
fibronectin and laminin but not with elastin or collagens
(Figueira et al., 2011), and also enhanced binding to human
fibrinogen (Choy et al., 2011).

Overexpression of the pathogen-specific LIC11711 gene by
genetic fusion of the coding sequence to the strong and
constitutive lipL32 promoter strengthened the adhesin
properties displayed by the recombinant counterpart according
to in vitro assays, since this protein was suggested to be involved
in leptospiral binding to laminin and plasminogen (Kochi et al.,
2019). L. biflexa expressing LIC11711 on its surface showed
increased binding to laminin and plasminogen compared to the
wild-type or empty plasmid-containing strains. LIC11711-bound
plasminogen was capable of being converted to plasmin in the
presence of uPA (Kochi et al., 2020), where this was the first time
that a mutant was used to validate a leptospiral plasminogen
receptor (Figure 2).
CONCLUDING REMARKS

We offer here an overview of many proteins possibly involved in
the pathogenesis of Leptospira. The interaction of these proteins
with ECM components can mediate the attachment of Leptospira
to mammalian host cells, starting the process of invasion/
colonization. Some proteins bind plasminogen at the bacterial
surface, which is then converted to plasmin; surface plasmin
gives the bacteria proteolytic capability, contributing to the
invasion process. In addition, surface plasmin prevents C3b
and IgG deposition on the leptospiral surface, reducing
opsonophagocytosis. Pathogenic Leptospira spp. can also bind
fibrinogen and thrombin, causing a bilateral obstruction and
reduction of fibrin clot formation, leading to possible
hemorrhage foci. In addition, these bacteria can resist serum
attack, which has been linked to their ability to interact with host
complement system components, namely C4BP, FH, vitronectin,
C7, C8 and C9, contributing to immune evasion. The adhesion of
Leptospira to cell culture models to investigate localization in the
host has contributed to determining receptors and adhesins that
are involved in virulence.

We highlight the progress in the arsenal of genetic tools now
available for gene knockout or knockdown in Leptospira spp.,
both pathogenic and saprophytic. These advances in confluence
with the numerous data on recombinant proteins will greatly
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
expand our understanding of the host-pathogen interaction.
With the constantly increasing available data on leptospiral
host-pathogen interaction, it became yet more evident how
multifunctional these pathogens are, illustrated by not only the
vast range of pathophysiologic mechanisms that they participate,
but also by the numerous and redundant surface bacterial
receptors. As future expectations, application of genetic tools
to demonstrate “true” virulence determinants amongst all
described leptospiral adhesins will narrow down the array of
vaccine candidates. Due to the established leptospiral functional
plasticity, it is anticipated that the best strategy will be merging
these adhesins, proved to be required for virulence, as chimeric
constructions, ultimately leading to a more rational vaccine
development for controlling leptospirosis.
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