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Abstract
Aspergillus flavipes has received considerable interest due to its potential to produce thera-

peutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes
survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate

diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and

modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no

previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes
sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels.

In this report, we show that sulfur limitation affects morphological and physiological

responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metab-

olism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase,

cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were

increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced

by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS

revealed similarity to many proteins involved in the sulfur metabolism pathway.

Introduction
Aspergillus flavipes is a nutritionally facultative fungus, widely distributed in the rhizosphere
[1] and as an endophyte in various plants [2]. A. flavipes has recently been explored for the pro-
duction of sulfur amino acid metabolizing enzymes such as L-methionine γ-lyase, homocyste-
ine γ-lyase, cystathionine γ-lyase, and glutathione-homocystine oxidoreductase [3–8]. These
enzymes exhibit a remarkable pharmaceutical potential for use against cardiovascular diseases
and cancer. Endophytic isolates of A. flavipes from marine plants were shown to produce sec-
ondary metabolites including spiroquinazolines, cerebrosides, isobenzofurans, cytochalasins
and butyrolactones with broad range antimicrobial, cytotoxic and antiviral activities [1, 9–12].
Gene expression and metabolomic activities of A. flavipes are affected by the availability of
nutrients, especially exogenous sulfur, which is directly incorporated into L-methionine,
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required for many essential metabolic processes [7, 13]. Metabolic adaptability based on nutri-
ent availability is increasingly reported as a major modulator of physiological behavior of this
fungus. However, detailed metabolic status of A. flavipes under sulfur limitation has not been
fully described. In this study, we addressed enzymatic, proteomic and transcriptomic responses
of this fungus under sulfur limitation conditions.

In filamentous fungi, sulfur containing amino acids, methionine and cysteine, as well as
inorganic sulfur are the most metabolized sulfur sources via the methionine-cysteine cycle
[14]. Sulfur uptake, a key step in sulfur assimilation, is mediated by plasma membrane sulfate
permease [15]. This enzyme is highly regulated by sulfur repression (metabolite repression). In
Aspergillus and Penicillium, this enzyme is encoded by two genes sutA and sutB (sulfate trans-
porter) of SulP family [15–17]. In Neurospora crassa, sulfate permease I and II are encoded by
cys-13 and cys-14, respectively [18, 19]. Transcription of the sulfate permease gene of fungi is
strongly regulated by sulfur levels and is repressed by methionine supplementation in the
medium [20]. Transcriptional regulation of sulfur metabolism is dependent on the Sulfur
Metabolite Repression (SMR) system that consists of themetR gene encoding a bZIP transcrip-
tional factor, which controls the expression of all sulfur metabolizing enzymes [14, 21, 22]. In
A. nidulans, the SMR system is controlled by four sulfur controller genes scon A, B, C and D,
since mutations in these genes cause loss of SMR gene expression [22, 23]. Once transported to
the cytosol, sulfate is first activated by ATP sulfurylase to adenosine 5'-phosphosulfate (APS),
then converted to 3'-phosphoadenosine 5'-phosphosulfate (PAPS) by APS-kinase, and then
PAPS is reduced to sulfite by PAPS reductase [14]. The sulfite molecule is further reduced to
sulfide by sulfite reductase [21]. Subsequently, sulfide is incorporated with O-acetylserine or O-
acetyl-homoserine to form cysteine and homocysteine by cysteine synthase and homocysteine
synthase, respectively [19]. Simultaneously, cysteine and homocysteine undergo transsulfura-
tion and reverse transsulfuration forming L-methionine, glutathione and polyamines [4].

Sulfur assimilation and metabolism have been extensively studied in filamentous fungi such
as A. nidulans [24], Neurospora crassa [19], and yeasts, Yarrowia lipolytica [25], Saccharomyces
cerevisiae [21] and Schizosaccharomyces pombe [26]. It plays an important role in the pathoge-
nicity and virulence of A. fumigatus [27]. From a pharmaceutical perspective, A. flavipes has
great potential for the production of sulfur amino acid metabolizing enzymes [4] and volatile
sulfur compounds [3–8]. However, there are no reports describing the kinetics of sulfate assim-
ilation and metabolism of sulfur amino acids in A. flavipes.

The objective of this work was to study the molecular expression and proteomic profiling of
A. flavipes sulfur metabolizing enzymes in response to nutritional sulfur limitation. The activity
and expression of A. flavipes enzymatic system controlling sulfur transport, assimilation and
metabolism of sulfur amino acids were assessed under sulfur starved growth conditions. Prote-
omic analysis using LC-MS/MS was conducted to identify prominently induced proteins in
response to sulfur limitation. Relationships between gene expression and enzymatic activities
of several key enzymes that were investigated in this report are discussed in the context of S
availability and limitation.

Materials and Methods

Aspergillus flavipes strain and growth conditions
Aspergillus flavipes (Bainier et Sartory), anamorph (ATCC 24487) was maintained on PDA
and Dox's medium [28]. The fungus was grown on basal minimal medium containing 1% glu-
cose, 70 mM NaNO3, 7 mM KCl, 11 mM K2HPO4, 0.25 mMMgSO4.7H2O and 1.5% agar [27].
For sulfur starvation and resupply experiments, MgSO4 was replaced with MgCl2 in the Dox’s
medium. Sulfur starvation experiments were performed as follows: One mL spore suspension
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(108 spore•ml-1) prepared from a 5-day old A. flavipes culture on PDA was added to sulfur free
basal medium [27], and incubated at 30°C for 24 h with shaking at 120 rpm. One ml of this cul-
ture was inoculated into solid and liquid media supplemented with either L-methionine (5
mM), L-cysteine (5 mM), L-cystine (5mM), MgSO4.7 H2O (2 mM) or glutathione (5 mM).
Amino acids were filter-sterilized (0.22 μmMillipore) and then added to the basal minimal
medium at desired concentrations. Cultures were incubated at the same conditions as above up
to 6 days. Fungal tissues were collected by filtration, washed with sterile potassium phosphate
buffer (pH 7.5) and kept at -20°C for subsequent physiological and proteomic analyses.

Measurement of fungal morphology, growth kinetics, sulfur uptake and
glutathione pool
The effect of sulfur starvation on morphological growth of A. flavipes was determined by grow-
ing the fungus on Dox’s medium amended with sulfur sources as mentioned above. The fungus
was incubated at 30°C and the rate of radial growth as well as colony morphology of the fungus
was photographed with a digital camera (Canon, USA). After culturing of A. flavipes, the resid-
ual concentration of L-methionine and cysteine was determined as described before [7, 29].
Total glutathione concentration of A. flavipes was determined using Ellman’s reagent [5,5'-
Dithio-bis-(2-nitrobenzoic acid)] [30, 31]. Briefly, the collected mycelial pellets (1.0 gm) were
washed two times with sterile saline solution (0.8% NaCl), ground in liquid nitrogen, vigor-
ously mixed in cold 5% 5-sulfosalicylic acid and incubated on ice for 30 min. The mixture was
centrifuged at 5000xg for 15 min at RT and the supernatant was transferred to new tubes and
neutralized with triethanolamine. Total glutathione (GSH and GSSG) of the supernatant was
measured using the DTNB assay [32]. For measuring GSH only, the mycelium was treated
with N-ethylmaleimide (NEM) to prevent autooxidation of GSH to GSSG [32].

Assessment of sulfur metabolizing enzymes activity and intracellular
protein
For assaying total intracellular protein and activity of sulfur-metabolizing enzymes, mycelial pellets
were collected and washed with 100 mM potassium phosphate (PP) buffer, pH 7.5. The mycelial
pellet (1gm) was ground in a chilled mortar and thoroughly suspended in PP buffer (5 mL) con-
taining 1 mM EDTA and 1mM PMSF. The homogenate was sonicated for 1 min at 60% ampli-
tude in a sonicator (550 Sonic Dismembrator, Fisher Scientific). The homogenate was centrifuged
at 5000xg for 15 min and the supernatant was used as a source of enzymes as describe below [7].

The activity of ATP-sulfurylase was assessed using sodium molybdate assay [33]. Assay con-
tained 0.1 M Tris-HCl (pH 7.5), 5 mM Na2MoO4, 10 mMMgCl2, 10 mM ATP and 100 μl of
enzyme extract in a total volume of l mL. Blank reactions contained 100 μl water instead of
sodium molybdate. After incubation for 20 min at 37°C, the reaction was stopped by adding
10% TCA and centrifuged at 5000xg for 10 min. A 100 μl fraction of the reaction was mixed
with 200 μl of 2.5% Na2MoO4 in 2.5 M H2SO4 and incubated for 10 min at 37°C. The mixture
was then incubated for an additional 10 min with 100 μl of Eikonogen solution (0.25% dis-
solved in 14% metabisulfite), and the developed color was measured at A660 nm in a microtiter
plate reader (Synergy H1 microplate reader, BioTek, USA).

The activity of sulfite reductase was measured by sulfide assay [34]. Briefly, the assay reac-
tion (1 ml) contained 100 mM Tris-HCl (pH 7), 0.5 mM NADP, 1.5 μM FAD, 5 mM glucose-
6-phosphate, 0.5 mM sodium bisulfite and 100 μl of enzyme extract. Blank reactions contained
water instead of sodium bisulfite. The reaction was incubated at 37°C for 20 min and stopped
by cooling on icebath for 15 min. Immediately after cooling, 2 mMN,N-dimethyl-p-phenyle-
nediamine (in 6.5 N HCl) and 20 mM FeCl3 (in 1.2 N HCl) was added to each reaction [35].
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After 20 min, the developed methylene blue color was measured at A670 nm a microtiter plate
reader. Enzyme activity was expressed in units (U), which is defined as 1 μmole of sulfide
released per min. Absorbance values (A670 nm) were converted to sulfide amounts (μmoles)
from the plot of standard curve of a series of sulfide concentrations (μM) against A670 nm
absorbance.

The activity of cysteine synthase was determined [36]. Each reaction contained 100 mM
potassium phosphate (pH 7.8), 5 mM O-acetylserine, 3 mM sodium sulfide, 10 mM DTT and
100 μl of enzyme extract in 1 ml total reaction volume. After incubation at 37°C for 20 minutes,
the reaction was stopped by adding 500 μl acidic Ninhydrin reagent (1% ninhydrin in HCl: gla-
cial acetic acid, 1:4 (v/v)) [37]. The mixture was boiled for 5 min and the developed color was
measured at 550 nm. The activity unit was defined as the amount of enzyme releasing 1 μmole
of cysteine per min, determined from the curve of absorbance against cysteine standards.

The activity of methionine γ-lyase and cystathionine β, γ-lyases were determined using 5,5’-
dithiobis (2-nitrobenzoic acid) (DTNB) reagent [7, 8]. Glutathione reductase was assayed
based on NADH oxidation [31]. Each reaction contained 1 μM FAD, 0.1 mM NADH, and
10 mM oxidized glutathione (GSSG) and 100 μl of the enzyme extract in 1 ml total volume.
After 10 min incubation at 30°C, the decrease of NADH concentration was measured at 340
nm using a microtiter plate reader.

Glutathione peroxidase activity was based on measuring the residual concentration of gluta-
thione (GSH) using the DTNB assay [38]. Each reaction contained 1 mM GSH, 1 mMH2O2

and 100 μl enzyme extract in potassium phosphate buffer (pH 7.0) as described above. After
incubation at 30°C for 10 minutes, residual GSH was determined. The activity of glutathione
peroxidase was determined from the residual GSH concentrations, since no chemical reaction
occurs between DTNB reagent and GSSG [38].

The concentration of total intracellular protein was assessed by Bradford assay (Bio-Rad
Assay Kit, cat#500–0006) using bovine serum albumin as standard.

Reverse Transcription quantitative (RT-qPCR) analyses of sulfur
metabolizing enzyme genes, and themetR and scon genes
Pivotal enzymes implicated in sulfur assimilation and sulfur amino acid metabolism are sulfate
permease, ATP-sulfurylase, sulfite reductase, APS-kinase, APS-reductase, arylsulfatase, methi-
onine permease, cystathionine β, γ-lyase, methioninase, cysteine synthase, S-adenosylhomo-
cysteinase, homocysteine synthase, glutathione reductase and glutathione peroxidase [14].
Differential expression of these genes as well as those of the sulfur transcriptional activator
metR and sulfur controller scon genes [14, 22] in response to sulfur starvation was determined
using qPCR. The primer sequences for qPCR analysis of these genes are listed in Table 1. The
A. flavipes actin gene, actaA, was used as internal standard for normalizing total amount of
RNA between samples.

A. flavipes was cultured on the desired S-starving conditions as mentioned above for 24 h.
After incubation of the liquid fugal cultures under control and S-starvation conditions, the
mycelial fungal pellets were collected by centrifugation at 5000xg, washed with sterile 100 mM
potassium phosphate buffer (pH 7.0) and stored at -80°C until further use. Total RNA was iso-
lated from these samples using the RNeasy Plant Mini Kit (QIAGEN, USA). The concentration
and purity of RNA was assessed by NanoDrop (Thermo Scientific) and running on 1% agarose
gel. Total RNA (1 μg) was first treated with RNase-free DNAse I (Fermentas), and then reverse
transcribed using the SuperScript III First Strand Synthesis Kit (Invitrogen) according to the
manufacturer instructions. The first strand cDNA was then used as template in qPCR reactions
using iQTM SYBR Green Supermix (Bio-Rad). qPCR reactions were performed in a real time
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PCR machine (Light Cycler 480, Roche, USA) using the following thermal profile: Initial dena-
turation at 95°C for 3 min, followed by 50 cycles of 95°C for 15 s, 55°C for 30 s (annealing),
72°C for 1 min (extension). Melting curve analyses were performed at 55–95°C. Each sample
was run in triplicate. Data were normalized using the constitutively expressed actin-encoding
gene (actaA) of A. flavipes as endogenous control. Relative fold change of the target genes was
calculated from the standard curve of relative quantification (Bookout et al., 2006). Statistical
comparisons were conducted using the Student’s t-test and p-value� 0.05 were considered sig-
nificant. Data are presented as fold change between the S-starved and non-starved fungal
cultures.

SDS-PAGE protein profiling
Total protein from each sample at the tested nutritional conditions was extracted by grinding
fungal tissues in a chilled mortar followed by suspension in protein extraction PP buffer (100
mM, pH 7.5) containing 1 mM EDTA, 1% 2-mercaptoethanol and 1mM PMSF [7]. The intra-
cellular protein was extracted from the sulfur starved cultures grown on various sulfur sources,
in addition to the positive controls (non-starved) and negative controls (grown on sulfur free
medium). The total extracted protein was electrophoresed by gradient SDS-PAGE (Criter-
ionTM, 4–20% Tris-HCl, Bio-Rad), and stained with Coomassie Brilliant Blue (Bio-Rad) [39].

Proteomic analysis
Effect of sulfur starvation on the kinetics of A. flavipes proteome was analyzed using Liquid
Chromatography-TandemMass Spectrometry nanospray ionization (LC-MS/MS) at the Bio-
molecular and Proteomics Mass Spectrometry Facility, University of California, San Diego,
UCSD, USA. Spores of A. flavipes were first starved for different incubation periods (6, 12, 24,
36, 48 hr), and then added to media amended with 5mM L-methionine as described above.
These cultures were incubated for 5 days in a growth chamber at 30°C with continuous shaking
at 130 rpm. Total intracellular proteins were extracted as above, and electrophoresed on a gra-
dient SDS-PAG, as described above. Gels were stained with coomassie blue, and a protein
band, which was prominently over-induced in response to sulfur starvation, was excised and
in-gel digested with trypsin according to a published protocol [40]. After trypsin digestion,
dried peptides were dissolved in 20 μl of trifluoroacetic acid prior to proteomic analysis [40].

Table 1. List of Primers for Real-Time PCR analysis.

Enzyme Gene ID Primers (F;R)

Sulfate Permease KF483582.1 5'- GAGCCGGTCTATCTTCTTGC- 3'; 5'- TCGGTGTAGTGATTGGCATT- 3'

APS-Kinase XM001825217 5'- CAAGTCTACCATTGCCGTTG- 3'; 5'- ACCGAGGTCCTTGTTGAGTC- 3'

Arylsulfatase XM743459.1 5'- ACCCTTTCTTCCAAACAACG- 3'; 5'- TAGGACGCTCGGAAAGAAAT- 3'

ATP-Sulfurylase XM002383898.1 5'- TGAGATCAAGGGCTTCACTG- 3'; 5'- ACATCGACAGTGAGGTGAGC- 3'

Cysteine Synthase XM742230.1 5'- AACTTCGAAGCAGGAAAGGA- 3';5'- GCACTGCTACTTCCAACGAA- 3'

Homocysteine Synthase XM742825.1 5'- TAAGCACGCTGACAGATTCC- 3'; 5'- AAGGATCTCAACCCGAACAC- 3'

S-Adenosylmethionine Synthase XM001825239.2 5'- GAGGGATGTTACGGCGTTAT- 3'; 5'- TTGTCCGAAGCACAGCTTAC- 3'

METR A. fumigatus Af293 bZIP XM747080.1 5'- TCAACCTCGATGCTGAACTC- 3'; 5'- CCGTTGTCTTTGCACTGTCT- 3'

METR A. oryzae XM001821377.2 5'- GTGGAGAGCGACAGAATGAA- 3'; 5'- CTGAATAATCGGGCATGTTG- 3'

ActA A. fumigatus Af293 XM749985.1 5'- GACTGGTTTGGCAATTGATG- 3'; 5'- GCATCAGTGATCTCACGCTT- 3'

(scon-2) gene XM957732.2 5'- ACAAGGGAGGGTCACAGAAC- 3'; 5'- GCTTTCCATGTTGATTGACG- 3'

Methionine Permease XM001817382.2 5'- TCCTATCTCGTTTCGCCAATCTTC- 3'; 5'-TCGCACATCGATAGTGACAAGATG-3'

Cystathionine γ-Lyase XM742148.1 5'-ATGACTGCATCTTCCAACGGTCACG-3';5'-TCCGTTCTCCAACTGCCTGGCTAGCGA-3'

doi:10.1371/journal.pone.0144304.t001
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LC-MS/MS analysis were conducted on the AB SCIEX TripleTOFTM 5600 system fitted with a
Nanospray source, and coupled with Tempo nano-flow HPLC using 5-μmC18 Zorbax bead
column (10cm x 100μm) (Agilent Technology) [40]. A linear gradient of acetonitrile (ACN)
buffer (5.0–60%) with flow rate 250 μl min-1 was used for eluting peptides from the column
into the mass spectrometer. The ACN gradient buffer was made by mixing buffer A (ACN 2%,
formic acid 0.2%, TFA 0.005% in H2O) and buffer B (ACN 100%, formic acid 0.2% and TFA
0.005%). MS/MS data were acquired independently in which the MS1 data were acquired for
250 ms at m/z 400–1250, and the MS/MS data were acquired at m/z 50–2000 Da. The raw MS/
MS data files were extracted and analyzed using Protein Pilot 4.0 (ABSCIEX) [41] for peptide
identification. Since the genome of A. flavipes is not available, protein identifications were
based on the genome of A. fumigatus [42] (http://www.ncbi.nlm.nih.gov/genome). The identi-
fication criteria included at least five peptide fragment ions per protein with E-values< 0.05.
Molecular, biological and cellular functions of the identified proteins were annotated and cate-
gorized using the Blast2GO (Ver 3.0.10) gene ontology software [43].

Results

Morphological and physiological response of A. flavipes to sulfur
starvation
To investigate effect of sulfur (S) starvation and re-supply of various S sources on morphologi-
cal and physiological characteristics of A. flavipes, fungal spores were first grown in sulfur-free
liquid medium [27], and then subsequently transferred to media containing various sulfur
sources: MgSO4, L-Methionine, L-Cysteine, L-Cystine or Glutathione. After 2 days of incuba-
tion, non-starved cultures displayed brown pigmentation both on solid media in petri-plates
and in liquid media, whereas S starved cultures appeared white. On the 5th day of incubation
both starved and non-starved had similar morphology and whitish color on solid plates,
whereas, in liquid cultures, non-starved controls still displayed brown pigmentation and
starved cultures were white (Fig 1).

Effect of sulfur starvation and of different S sources on the physiology of A. flavipes was
assessed by comparing fungal fresh weight, intracellular and extracellular proteins, and total
glutathione in starved and non-starved control cultures (Fig 2). Statistical analyses of the data
showed that fresh weights were significantly affected by S starvation and S sources when resup-
plied in the culture medium. Compared to–S control, fresh weight was significantly increased
on MgSO4 containing media (Fig 2A, p<0.001). Unlike the relative higher fresh weights of
starved and non-starved cultures of A. flavipes grown on cystine, all the other S sources did not

Fig 1. Growth of A. flavipes in response to non-starved control and sulfur starved conditions. The
spores of A. flavipeswere starved of sulfur for 24 h, then inoculated into Dox’s medium amended with
MgSO4. Sulfur starved fungal spores (Lower) and control (Upper) after 2 days and 5 days. Negative control
was cultured on–S Dox’s media.

doi:10.1371/journal.pone.0144304.g001
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display any significant difference from–S control (p>0.1). Fresh weights of cultures on all
other S sources did not display any significant difference from–S control (p>0.1). Similarly,
fresh weights of starved and non-starved spores were also not different when resupplied with
any of the tested S sources (P>0.5). In response to S starvation and S sources, total intracellular
and extracellular proteins of A. flavipes cultures were variable (Fig 2B and 2C). In comparison
to–S control, total intracellular protein increased by approximately 30% on media containing
MgSO4 (for both starved and non-starved spores) and on cystine (only starved spores)
(p<0.001). A pair-wise comparison of starved versus non-starved control spores on each of
S sources revealed that only on cystine-containing media, starved cultures had less total intra-
cellular protein than non-starved control. Except for a slight decrease on cysteine-containing
media compared to–S control, total extracellular protein was not affected by S starvation,
S source or whether spores were starved or not (Fig 2C).

The most dramatic effect of S starvation was observed with total glutathione concentration.
Total glutathione concentrations increased significantly (3 to 5.7 fold) on all S sources com-
pared to–S controls. The highest increase was observed with starved spores when resupplied
with methionine, and the least increase was observed with starved spores when resupplied with
cystine (Fig 2D, P<0.001). Pairwise comparison between starved and non-starved cultures
revealed that the concentration of glutathione in the S starved spores was approximately 1.63x
more than in non-starved spores when grown on L-methionine. On the other hand, when
grown on L-cystine, glutathione concentration for starved spores was 1.4x less than non-
starved spores (Fig 2D).

Protein profiles of A. flavipes responding to sulfur starvation conditions
Effect of S starvation and of various S sources on differential protein expression was analyzed
using SDS-PAGE of total intracellular proteins extracted from 5-day old submerged A. flavipes
cultures on different S sources. As shown in Fig 3, substantial changes in protein profiles were
observed when cultures were grown on different S sources. The most pronounced changes
were observed between the 50 and 70 kDa size range, which in general corresponds to the pre-
dicted sizes of enzymes involved in Smetabolism. These observations led us to assess the activ-
ity of several key enzymes involved in sulfur uptake and assimilation.

Activities of the sulfur metabolizing enzymes under sulfur starvation
An overall pathway illustrating position of key enzymes involved in the assimilation of sulfur
and sulfur amino acids in fungi is presented in Fig 4 [14, 21, 44]. We hypothesized that some of
the differentially expressed protein bands, which fluctuated substantially with different S
sources (Fig 3) might correspond to these sulfur amino acids metabolizing enzymes. To test
this hypothesis, we assayed the activity of several of these key enzymes including ATP-sulfury-
lase, sulfite reductase, cysteine synthase, cystathionine β-lyase, cystathionine γ-lyase, methio-
nine γ-lyase, glutathione reductase and peroxidase. Spores of A. flavipes were grown in–S or +S
(MgSO4) media for 24 h, then resupplied with various sulfur sources and activities of the above

Fig 2. Physiological responses of A. flavipes to S starvation. Spores of A. flavipeswere starved of sulfur
(cultured on Dox’s medium with no S compounds) or non-starved control (cultured on Dox’s liquid medium
with 5 mMMgSO4) for 24 h, then inoculated to Dox’s liquid medium amended with MgSO4, L-Methionine,
L-Cysteine, L-Cystine and Glutathione.–S control represents culture on Dox’s medium with no sulfur
compounds. Fresh weight (A) and concentration of total intracellular proteins (B), extracellular proteins (C),
and total glutathione (D) were determined after fives day of culture. Data shown are means ± SD of three
replications.

doi:10.1371/journal.pone.0144304.g002
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enzymes were assessed as described in the Materials and Methods. In general, all sulfur assimi-
lating enzymes displayed higher activity in response to S limitation.

Compared to–S control, ATP-sulfurylase activity significantly increased on all tested S
sources (Fig 5A). The highest activity of this enzyme was measured for the starved A. flavipes
grown on L-methionine. Statistical comparison of starved and non-starved treatments revealed
that activity of this enzyme in the starved spores increased when transferred to media with L-
methionine, decreased with cystine, and remained unchanged for the rest of S sources.

Relative to–S control, the activity of sulfite reductase (SR) increased for the starved cultures
when resupplied with MgSO4, L-methionine and L-cysteine; no significant change in SR activ-
ity was observed for the remaining treatments. Compared to non-starved spores, SR activity in
the S starved spores increased significantly (25%, p<0.05) when resupplied with MgSO4, L-
methionine or L- cystine (Fig 5B).

Cysteine synthase (CS) and cystathionine β-lyase (CBL) followed more or less similar pat-
terns of enzyme activity in response to S starvation and to different S sources (Fig 5C and 5D).
Compared to–S control, both enzymes displayed significantly higher activities in the starved
spores when resupplied with MgSO4 or L-methionine, but not with any of the other S sources.
Similarly, activities of these two enzymes on MgSO4 or L-methionine were also higher (25 to
38%) in starved spores than in non-starved spores. CS activity was 4.0 U/ml (sulfur starved)
and 3.2 U/ml (non-starved), when resupplied with MgSO4, and 3.5 U/ml (sulfur starved) and
2.2 U/ml (non-starved) with L-methionine. A similar pattern was observed for CBL, which dis-
played 4.6 U/ml (sulfur starved) and 3.1 U/ml (non-starved) on MgSO4, and 5.3 U/ml (sulfur
starved) and 3.3 U/ml (non-starved) with L-methionine. The activities of these enzymes for the
rest of the treatments were not changed substantially.

Compared to–Smedia, higher CGL activity was observed in the sulfur starved (14.0 U/ml)
and non-starved (11.2 U/ml) cultures when grown on media containing L-methionine (Fig
5E). Significantly higher CGL activity was observed in the starved spores compared to non-
starved spores when cultured on MgSO4. Other than this, the activity of CGL was similar on–S
media, and for starved and non-starved cultures when grown on L-cysteine, cystine and gluta-
thione. Except significantly higher activity (10 U/ml) in starved spores when grown on L-
methioninase, activity was not changed on any of the other treatments (Fig 5F).

Fig 3. Intracellular protein profile of A. flavipes in response to sulfur starvation. The sulfur starved
(lanes labelled as ‘S’) and non-starved (lanes labelled as ‘NS’) spores of A. flavipes were inoculated to the
basal medium containing the indicated sulfur compounds. Total intracellular protein was run on a gradient
SDS-PAGE gel. *, indicates the 50 to 70-kDa region of the gel with prominent changes in the intensity of
protein bands.

doi:10.1371/journal.pone.0144304.g003
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Glutathione reductase (GR) and glutathione peroxidase (GPO) displayed more or less simi-
lar activity patterns in response to S starvation and S sources (Fig 5G and 5H). Both these
enzymes displayed higher activities in starved spores compared to non-starved spores when
grown on media containing MgSO4 or L-methionine.

RT-qPCR analysis of genes encoding sulfur metabolizing enzymes and
transcriptional regulators
To determine if the enzyme activity results described above could be due to higher transcrip-
tion activity, we analyzed effect of S starvation and S sources on the transcription of genes
encoding these enzymes using Reverse Transcriptase qPCR. S starvation and S source experi-
ments were performed exactly as described above for assaying the enzyme activities. List of
primers used in the qPCR of the analyzed genes is provided in Table 1. qPCR data showed that
the transcription of genes encoding sulfate permease, arylsulfatase, ATP-sulfurylase, APS-
kinase, methionine permease, cystathionine γ-lyase and the transcriptional regulator genes was
changed in response to sulfur starvation. Similar to the enzyme activities profiles, transcrip-
tional profiles also varies substantially on each S source, ranging from 6-fold induction to
3-fold repression (Fig 6). In general, transcription of most enzyme genes was increased by S
starvation; however, there were several notable exceptions. Arylsulfatase was repressed when
cultured on cystine (3.5 fold) and L- methionine (2-fold), whereas ATP sulfurylase and APS
kinase were repressed on cysteine and MgSO4, respectively. In response to S starvation, sulfate
permease displayed the highest transcriptional induction among all the genes on most of tested
S sources suggesting that this enzyme plays a key role in overall Smetabolism. Transcription of

Fig 4. Proposed sulfur metabolism pathway A. flavipes. This pathway highlights major enzymes involved
in the metabolism of sulfur and sulfur amino acids [4].

doi:10.1371/journal.pone.0144304.g004
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Fig 5. Activity of key A. flavipes enzymes involved in sulfur and sulfur amino acid metabolism in response to sulfur starvation. Spores of A. flavipes
were starved of sulfur (cultured on Dox’s medium with no S compounds) or non-starved control (cultured on Dox’s liquid medium with 5 mMMgSO4) for 24 h,
then inoculated to Dox’s liquid medium amended with MgSO4, L-Methionine, L-Cysteine and L-Cystine.–S control represents culture on Dox’s medium with
no sulfur compounds as described in the Methods and Materials section. Enzyme activity of ATP-Sulfurylase (A), sulfite reductase (B), cysteine synthase (C),
Cystathionine β- lyase (D), cystathionine γ-lyase (E), L-methioninase (F), Glutathione reductase (G), and glutathione peroxidase (H) were determined as
described in Materials and Methods. Data shown are means ± SD of three replications.

doi:10.1371/journal.pone.0144304.g005
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CGL in starved spores strongly increased by 3 fold when resupplied with L-methionine, com-
pared to only 1-fold on all other S sources.

Transcription of the sulfur transcriptional regulator gene,metR, was induced in S starved
spores when cultured on all tested sulfur sources with the strongest induction (2 fold) on L-
methionine and slight induction (1.2 fold) on MgSO4, cysteine and cystine (Fig 6). In contrast,
transcription pattern of scon-2 gene under sulfur limitation conditions was variable; it was
induced in starved spores by two folds when cultured on MgSO4 and cystine, but down regu-
lated when cultured on L-methionine and cysteine.

Effect of sulfur starvation on the kinetics of protein expression of A.
flavipes
Enzymatic and transcriptional profiling of Smetabolism genes as described above suggest that
S starvation and S sources profoundly affect kinetics of gene expression and enzyme activity.
We further analyzed protein kinetics in response to S starvation using 1D PAGE. We used L-
methionine as a standard sulfur source to conduct proteomic analysis of A. flavipes in response
to sulfur limiting conditions. Fungal spores were starved of S for 6, 12, 24, 36 and 48 h by grow-
ing on–Smedia, then transferred to the basal medium containing L-methionine (5 mM),

Fig 6. Effect of sulfur starvation on the transcription of sulfur metabolism genes of A. flavipes. Sulfur starved and non-starved spores of A. flavipes
were transferred to basal Dox’s medium containing MgSO4, L-methionine, cysteine, and cystine. Total RNA from the fungal cultures of these treatments was
reverse transcribed and used as template in Reverse Transcription (RT)-qPCR using gene-specific primers for the indicated enzymes. Transcription levels
were normalized to the transcription of constitutively expressed Actin A gene. Fold changes in transcription of starved cultures were calculated relative to
non-starved controls.

doi:10.1371/journal.pone.0144304.g006
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followed by incubation on a shaker for 5 days. Total intracellular protein from these cultures
was profiled by SDS-PAGE.

Visual observation of the stained gel, with each lane loaded with equal amount (20 μg) of
total protein, revealed that a band of approximately 50 kDa size was strongly induced by sulfur
starvation at 24 h and later time points of S starvation (Fig 7A). The expression of this protein
band was undetectable at the 6 h and 12 h intervals. Quantification of the intensity of this band
revealed approximately 3-fold increase at the 24 h and later time points over the 6 and 12 h
time points (Fig 7B). Interestingly, this 50 kDa protein under denaturing PAGE for A. flavipes
is approximately of similar size of several sulfur amino acids assimilating pyridoxal 5'-phos-
phate dependent enzymes [3–8].

Proteomic analysis of A. flavipes in response to sulfur starvation
The S starvation-induced band (50 kDa Fig 7A) was subjected to proteomic analysis using
LC-MS/MS. Since the A. flavipes genome is not available, we searched the identified peptides in
the translated proteome of the closely related A. fumigatus genome and in the NCBI non-
redundant protein database. These analyses revealed similarity to more than 100 proteins (S1–
S4 Tables). Similarity and coverage of these peptides to the matching predicted proteins in the
A. fumigatus genome are summarized in S1 Table and S2 Table. Among these proteins,

Fig 7. Effect of sulfur starvation on protein expression of A. flavipes. Spore suspension of A. flavipes
was starved of sulfur for 6, 12, 24, 36, 48 and 60 h, and then transferred to media containing 5 mM L-
methionine as the S source. (A) SDS-PAGE profile of total intracellular protein from these cultures. (B)
Intensity quantification of a protein band of approximately 50 kDa (red rectangle) shows progressive increase
of this band by 24 h and later time points.

doi:10.1371/journal.pone.0144304.g007
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methionine synthase, adenosyl homocysteinase, homocysteine synthase and ATP sulfurylase
belonged to the Smetabolism pathway. Two representative LC-MS/MS spectra of peptide frag-
ments displaying 100% identity with the target proteins are shown in Fig 8. These proteins
were well covered with high similarity by the identified peptides. Consistent with the PAGE gel
data, the predicted molecular weight of most of these identified proteins ranged around 50
kDa. Full length amino acid sequence of A. fumigatus proteins that matched the identified pep-
tide fragments with higher similarity are shown in Fig 8. These analyses suggest that some of
these proteins could be overexpressed upon sulfur starvation. Gene ontology analyses of these
proteins showed that most belonged to the catalytic and binding group in the molecular

Fig 8. LC-MS/MS analyses of Adenosylhomocysteinase (A) and Methionine synthase (B) induced by S starvation.Upper panels showmass spectra
of two representative peptides for each protein. Lower panels show amino acid sequence of A. fumigatus full length protein and its coverage by the mass
spec peptides. Green colored fragments represent 100% identity of identified peptide with the annotated protein, whereas red, yellow and gray colors
represent < 15, 30 and 50% similarity, respectively.

doi:10.1371/journal.pone.0144304.g008
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function category, to the metabolic, cellular and single-organism process in the biological pro-
cesses category, and to intracellular cell functions (S1 Fig).

Discussion
A. flavipes is considered an important source of sulfur amino acid metabolizing enzymes, some
of which could be used for therapeutic purposes [4–8]. Various physiological conditions, abi-
otic stresses and toxic metals are suggested to affect sulfur metabolic pathways in fungi [45,
46]. Availability of sulfur amino acids have been reported to modulate tRNA thiolation and
consequently protein expression [47]. Availability of sulfur nutrients have been suggested to
affect cellular translational machinery, and rRNA and tRNA synthesis in fungi [48]. Similarly,
sulfur availability and metabolism plays an important role in modulating the activity of
enzymes in the sulfur metabolism pathways [4–8]. In this report, we investigated how S starva-
tion and S sources affect activity and expression of key enzymes in sulfur metabolism in A. fla-
vipes. In addition, we also conducted targeted proteomic profiling of A. flavipes in response to
S starvation, which suggested that in addition to Smetabolism other proteins involved in vari-
ous cellular processes might also be affected by S starvation.

In our analyses, we found that S limitation affects various morphological and physiological
characteristics of A. flavipes. Interestingly in our analyses, S starved cultures appeared whitish
indicating a loss of pigment synthesis. Pigments in Aspergillus spp. are suggested to play a vari-
ety of roles in virulence and resistance to environmental stresses such as UV irradiation [49–
51]. Loss of pigments in response to S starvation suggests that S limitation might adversely
impact virulence and resistance to mutagens and other pigmentation-dependent processes in
A. flavipes. It would be interesting to conduct detailed investigations of the role of S limitation
in pigment synthesis using high throughput transcriptomic and pathological analyses in future
studies.

Highest growth of the starved fungal spores was observed on MgSO4, followed by L-methio-
nine, cysteine, cystine and glutathione. This could be due to higher sulfate transporter activity
and/or accelerated incorporation into S containing molecules [15]. Consistent with the mor-
phological observations, qPCR analysis also showed increased expression of sulfate permease.
These observations are consistent with previous reports in N. crassa and P. chrysogenum,
where sulfate permease I and II were highly expressed under sulfur limitation [17–19]. Simi-
larly, L-methionine could also be transported by the same transporter that transports sulfate,
albeit with different affinity [19], which could partially account for the higher fungal growth of
S starved spores on these two sulfur sources. In presence of organic sulfur compounds, cells
switch off ATP-sulfate transporters (sulfate permease) and switch on other transporting mech-
anisms [15]. Lower fungal growth observed on cysteine might be ascribed to complex transport
mechanism of cysteine across the plasma membrane [52, 53]. Interestingly, intracellular pool
of glutathione of sulfur starved A. flavipes was significantly more increased than non-starved
controls on all tested sulfur sources (Fig 2). It could be argued that sulfur starvation expedited
the assimilation of these compounds via activation of plasma membrane transporters partially
resulting from their increased transcription, which would consequently enhance the flow of
these compounds into the glutathione synthesis pathway [21].

Glutathione biogenesis, but not uptake, has been implicated in fungal virulence and patho-
genesis, particularly in the context of sulfur and iron metabolism [27, 54, 55]. In our analysis,
activity of glutathione reductase and glutathione peroxidase was increased in sulfur starved A.
flavipes cultures than the non-starved ones when resupplied with MgSO4 and methionine. This
finding is plausible, because negative effects of reactive oxygen species, which results from sul-
fur stress, could be cancelled by these enzymes via the glutathione oxidation and reduction
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acting as a cellular redox buffering [31, 56, 57]. However, the activity of glutathione S-transfer-
ase was similar under sulfur starving and non-starved cultures of A. flavipes, which is consistent
with previous results [13, 58].

Protein profiling of A. flavipes displayed pronounced fluctuations in response to S starvation
and culture on different S sources. This suggested that A. flavipes adjusts its protein expression
and cell processes to adapt to the existing nutritional status. These observations are consistent
with previous proteomic profiling studies, which reported substantial shift in proteome in
response to various nutrient limitations in several fungi [25, 27, 44, 59–61]. These shifts in pro-
tein profiles are likely to fulfill the need for specific enzymes and other proteins that are specific
for a particular nutritional limitation.

In this report, the activity and expression of key enzymes in sulfur assimilation and metabo-
lism such as ATP- sulfurylase, sulfite reductase, cysteine synthase, cystathionine β-lyase (CBL),
cystathionine γ-lyase (CGL), methionine γ-lyase, glutathione reductase and glutathione peroxi-
dase were increased in S starved cultures of A. flavipes than the non-starved control, when
resupplied with various sulfur sources (Figs 5 and 6). The increased activity could have resulted
from the enhanced transcription or expression of these enzymes. Enhanced activity could be
partially because of higher activity of sulfur transcriptional activatormetR, which also dis-
played higher expression under the S starvation conditions. This is consistent with previous
reports showing that metR enhances transcription of sulfur metabolism genes encoding sulfate
permease, methionine permease, sulfite reductase, ATP-sulfurylase, homocysteine synthase
and cysteine synthase [19, 22, 24].

Expression of cysteine synthase was increased in starved cultures compared to non-starved
cultures. Cysteine synthase displayed higher activity and expression when grown on MgSO4

than on other S compounds (Fig 5), probably because of the direct incorporation of O-acetyl-
serine into sulfide (Fig 4) [62]. The expression of L-methioninase, CBL and CGL was slightly
increased in sulfur starved cultures of A. flavipes than in non-starved, which is consistent with
our previous studies [6, 7, 13] and with the increased expression of N. crassa CGL under sulfur
starvation [63]. The higher induction of CGL in S starved cultures when resupplied with L-
methionine is reasonable, because CGL is a key enzyme in the trans-sulfuration pathway con-
verting homocysteine to cystathionine [13].

Protein expression kinetics of A. flavipes using L-methionine sulfur source [64] showed a
strongly induced band of 50 kDa size range. Proteomic analyses of this band showed similarity
to several proteins. Some of these proteins are understandably associated with Smetabolism,
but many other proteins are not (S2 Table) suggesting that Smetabolism affects other cellular
processes. In future studies it would be interesting to investigate the role of some of these pro-
teins using gene-knock-out and overexpression analyses.

Conclusions
In conclusion, this study provides detailed analyses of responses of A. flavipes sulfur starvation
at the physiological, enzymatic, gene expression and proteome levels. Our data show that sulfur
starvation affects growth, nutrient uptake and expression of various enzymes related to sulfate
transport, sulfur assimilation and metabolism. Our analyses suggest that A. flavipes adjusts its
response to sulfur starving conditions by reprogramming its metabolic pathways to cope with
the S limitation and S-induced stress. This study could provide information about how to
enhance therapeutic uses of this fungus, especially its production of sulfur amino acid metabo-
lizing enzymes and various antimicrobial compounds.
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