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Abstract

Background: Recent years have seen an explosion in plant genomics, as the difficulties inherent in sequencing
and functionally analyzing these biologically and economically significant organisms have been overcome.
Arabidopsis thaliana, a versatile model organism, represents an opportunity to evaluate the predictive power of
biological network inference for plant functional genomics.

Results: Here, we provide a compendium of functional relationship networks for Arabidopsis thaliana leveraging
data integration based on over 60 microarray, physical and genetic interaction, and literature curation datasets.
These include tissue, biological process, and development stage specific networks, each predicting relationships
specific to an individual biological context. These biological networks enable the rapid investigation of
uncharacterized genes in specific tissues and developmental stages of interest and summarize a very large
collection of A. thaliana data for biological examination. We found validation in the literature for many of our
predicted networks, including those involved in disease resistance, root hair patterning, and auxin homeostasis.

Conclusions: These context-specific networks demonstrate that highly specific biological hypotheses can be
generated for a diversity of individual processes, developmental stages, and plant tissues in A. thaliana. All
predicted functional networks are available online at http://function.princeton.edu/arathGraphle.

Background
Plants are complex and diverse organisms and have
adapted evolutionarily to almost every ecological niche
on the planet. Agricultural and pharmaceutical applica-
tions of plant genomics have focused on understanding
the metabolic and biochemical potential of specific plant
tissues and environmental responses [1]. Arabidopsis
thaliana is the most common model organism for
plants, with a short life cycle, relatively few genes, and a
fully sequenced genome [2]. It is a multicellular organ-
ism with multiple tissue types and developmental stages,
and much of its tissue-specific and stage-specific mole-
cular biology has yet to be determined.
Many A. thaliana gene products are functional only in

a specific tissue or during a specific developmental per-
iod. [3,4]. The ability to predict tissue- or development-

stage-specific function from genomic data would aid in
appropriately targeting experimental work; doing experi-
ments on every plant structure at each of its develop-
ment stages individually would be tedious and costly.
Additionally, it would be challenging to summarize the
resulting genomic data efficiently, since the combinato-
rics of 30 developmental stages [5] by over 50 plant
structures [6] makes a large compendium of predictions
unwieldy as raw data. With this as motivation, we have
created probabilistic networks providing a data-driven
view of protein functional relationships and co-expres-
sions in A. thaliana. A functional relationship between
two genes indicates that their products are used by the
cell to perform a particular biological process (for exam-
ple, two proteins both participating in the DNA damage
response). We assign a probability of interaction
between all gene pairs in a specific biological context of
interest based on experimental data and expert annota-
tions of such relationships from controlled vocabularies.
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Tools like Genevestigator https://www.genevestigator.
com, AtGenExpress Visualization Tool http://jsp.weigel-
world.org/expviz/expviz.jsp, and ATTED-II http://atted.
jp/ enable analysis of expression patterns across micro-
arrays of different types and platforms, but none of
these three employ active gene function or functional
relationship prediction. In general, each takes a set of
genes as input and aggregates raw microarray experi-
mental results into informative plots and tables, for
example showing host experiments cluster by plant tis-
sue. ATTED-II also integrates a large collection of
microarray experiments and utilizes gene co-expression
between gene pairs to suggest genes functionally related
to a query. However, they do not provide genes related
within specific biological processes, tissues, or develop-
mental contexts. Additional tools such as Genemania
http://genemania.org, AraNet http://www.functionalnet.
org/aranet/, and STRING http://string-db.org/ do pro-
vide data integration for Arabidopsis thaliana; however,
again, none of these provide tissue, development, or bio-
logical context specific inferences. Adding such informa-
tion improves predictions, as is shown in Additional file
1, in which the inclusion of developmental-specific
information consistently improves the accuracy of func-
tional predictions.
We have integrated the abundance of genomic data

for A. thaliana (over 60 datasets) to construct a com-
pendium of biological networks describing functional
relationships and co-expression among A. thaliana
genes. This compendium demonstrates the usefulness of
data integration and includes networks that are “global”
in the sense that they describe the overall set of func-
tional interactions predicted to occur among A. thaliana
proteins, independently of plant tissue, developmental
stage, or environmental context [7]. However, most net-
works in this compendium are context-specific: they
describe only the functional relationships predicted to
occur at a specific time or in a specific tissue. Context-
specific data integration does not use all gold standard
genes for training. Rather, it trains and evaluates using a
subset of genes present in the biological process, tissue,
or development stage of interest. The integration up- or
down-weights each integrated dataset on a per-context
basis, emphasizing experimental results that are particu-
larly informative in each biological area of interest, and
it has been shown to significantly increase predictive
accuracy in other organisms [8,9]. In this way, biological
researchers can use the system to determine whether a
gene or genes of interest behave differently in various
development stages or if they are active only in specific
parts of the plant.
Here, we investigate over 300 resulting global and

context-specific functional networks generated for
A. thaliana biological processes, tissues, and developmental

stages. We evaluated these networks computationally to
determine the accuracy of their predictions, and we
found that genomic datasets are differentially informa-
tive across varied contexts. Gene products’ predicted
roles and interactions also varied, and we found valida-
tion in the literature for specific interactions for many
proteins. We highlight several of these interactions for a
diversity of developmental and physiological processes,
including those for PHOSPHOENYL PYRUVATE/
PHOSPHATE TRANSPORTER 2 (AtPPT2) during leaf
and root developmental stages, the disease resistance
proteins RESISTANCE TO PSEUDOMONAS 1 and 2
(RPS1 and RP2), the root epidermal patterning protein
WEREWOLF (WER), and the auxin hormone receptor
TRANSPORT INHIBITOR RESPONSE 1 (TIR1). Finally,
we provide an intuitive, interactive representation of
these results online at http://function.princeton.edu/
arathGraphle.

Results and Discussion
We integrated a compendium of A. thaliana genomic
data (55 microarray and 5 interaction datasets) using a
Bayesian framework [10,11] to probabilistic weight each
experimental dataset according to its relevance in
diverse biological areas (Figure 1). In addition to produ-
cing global functional networks summarizing the general
interactions occurring among A. thaliana genes, we per-
formed additional integrations reweighting the data to
emphasize various cellular, developmental, and tissue-
specific processes. Each integration is defined by one or
more curated gold standards [12], each listing genes
whose products are known to be active in the areas of
interest (e.g. the photosynthesis pathway, dry seed devel-
opmental stage, or leaf tissue). By learning how informa-
tive each dataset is with respect to each gold standard,
we reweighted the datasets, combined them to infer a
single genome-wide functional network in each context
of interest, and analyzed the resulting networks as
detailed below to generate novel biological hypotheses.

Overview of integrated functional networks inferred for
A. thaliana pathways, tissues, and developmental stages
We generated a range of networks (Table 1) addressing
questions of increasing specificity regarding A. thaliana
gene pair relationships. First, this includes two global func-
tional networks representing overall relationships occur-
ring within the A. thaliana genome independent of a
specific tissue or developmental context. The first, GLO-
BAL-PROCESS, links genes with high probability if the
integrated genomic data indicate that they are employed
by the organism in similar biological roles; that is, if they
participate in the same cellular processes. The second,
GLOBAL-DEVEL, links genes if they are expected to be
co-active during the same developmental stage(s).
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We additionally inferred two compendia of context-
specific networks, each describing functional relation-
ships between genes predicted to occur only during a
specific biological process or developmental stage.
Creating biological process-specific networks (i.e. con-
text-specificity) has been explored for the yeast and

human genomes [8,13] and provides a more specific
view of genes and their functional interactions tailored
to individual biological areas of interest. Here, we
expand context-specific inference to include develop-
mental stages and plant tissues in addition to biological
processes and pathways. As described in Table 1, this

Figure 1 Schematic of the process, tissue, and developmental stage specific genomic data integration pipeline. We used regularized
Bayesian classifiers [9] to integrate genome-scale data for A. thaliana including 55 expression datasets from GEO [38] and 5 physical and genetic
interaction datasets from BIND [39] and bioGRID [40]. Using curated biological knowledge from the Gene Ontology [14], Plant Ontology[6], and
Pfam [15], we reweighted these datasets to infer genome-wide biological networks focused on individual biological processes, developmental
stages, and plant tissues.

Table 1 Global and context-specific functional relationship networks

Compendium
Type

Compendium Description Number of
Networks

Evaluation
(AUC range)

GLOBAL-
PROCESS

Global functional network linking genes active in similar biological pathways and processes 1 0.54

GLOBAL-DEVEL Global functional network linking genes active in the same developmental stage(s) 1 0.63

PROCESS Networks linking genes active in similar pathways only within the context of each specific
biological process

208 0.46 - 0.79

DEVEL Networks linking genes active in similar developmental stages only within the context of each
specific developmental stage

19 0.43 - 0.74

PROCESS-DEVEL Networks linking genes active in the same pathways during the same developmental stage 40 0.46 - 0.82

TISSUE-DEVEL Networks linking genes active in the same plant tissues during the same developmental stage 44 0.5 - 0.78
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resulted in the PROCESS and DEVEL compendia of net-
works. Each PROCESS network represents the func-
tional relationships predicted to occur during a specific
biological process (e.g. autophagy, the cell cycle, photo-
synthesis, and so forth), and genes linked with high
probability are expected to co-participate in this process.
Each DEVEL network represents a plant developmental
stage (germination, senescence, etc.), and genes linked
with high probability are expected to be co-active in
that stage.
Finally, in order to investigate the interactions among

biological processes, temporal developmental stages, and
spatial locality in tissues, we generated two additional
network compendia. The first, PROCESS-DEVEL,
includes 40 networks each specific to a process/develop-
mental stage pair (e.g. photosynthesis during leaf senes-
cence). Only 40 of the ~4,000 possible pairs were
analyzed due to a lack of curated training data for the
remaining process/stage combinations. Similarly, the
TISSUE-DEVEL compendium includes 44 networks,
each predicting gene pairs expected to be co-active in a
specific tissue location and at a specific time during
development. All networks in these compendia were
inferred using probabilistic Bayesian reweighting of 60
genomic datasets, and the results are analyzed in detail
below.

Context-specific data integration improves predictive
accuracy
We evaluated our genome-wide functional network pre-
dictions using gold standards based on the Gene Ontol-
ogy [14], Plant Ontology [6], and Pfam A [15]. This let
us determine how accurate each network was in assign-
ing high probability to known functional interactions
(i.e. gene pairs co-annotated in GO, PO, etc.) As seen in
Figure 2, both the GLOBAL-PROCESS and GLOBAL-
DEVEL networks were particularly accurate in the low
recall, high precision area of greatest biological interest.
Additionally, GLOBAL-DEVEL slightly outperforms
GLOBAL-PROCESS, suggesting that gene pairs co-
active during the same developmental stages are easier
to predict from integrated genomic data than are gene
pairs participating in the same biological processes. This
is supported intuitively by the fact that developmental
expression programs are, in many cases, more sharply
defined than are biological pathways and processes, and
quantitatively by the fact that several of the integrated
datasets explicitly incorporate developmental-stage-spe-
cific experiments.
We further found that the context-specific networks

usually performed better than the global networks
(Figure 3). As the network generation process is data-
driven, the accuracy of each integration depends on
(1) whether relevant biological signals are present in the

data and (2) the availability of a sufficiently comprehen-
sive gold standard. We determine the performance
using an AUC (area under the receiver-operator curve)
value, which measures the probability that our classifier
ranks a functional relationship better than a random
classifier. For example, the floral organ development
stage context with 34 genes has an AUC of 0.51. Con-
texts with very limited prior knowledge or a small num-
ber of genes annotated to them sometimes perform
marginally. Overall more than half (55%) of develop-
mental-stage specific integrations had AUCs over 0.63,
that of the GLOBAL-DEVEL network. Many (74%) of

Figure 2 Performance of the GLOBAL-PROCESS and GLOBAL-
DEVEL Networks. The two global networks were evaluated using
5-fold cross-validation with a 20% holdout gene set to test their
ability to accurately recover functional and developmental-stage-
specific protein interactions. The higher precision of the GLOBAL-
DEVEL network suggests that co-functionality during developmental
stages can be more accurately inferred from high-throughput data
than can more general functional relationships, although both
networks are predicted with significant accuracy.

Figure 3 Context-specific functional networks are often more
accurate than global networks. AUC values for 208 biological
process contexts (PROCESS networks) and 19 development contexts
(DEVEL networks). The lines indicate the GLOBAL-PROCESS and the
GLOBAL-DEVEL networks’ performance.
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the biological process specific integrations had AUCs
over 0.54, that of the GLOBAL-PROCESS network. In
addition to providing increased predictive power, these
context-specific networks focus a very large collection of
A. thaliana genomic data into individual areas of inter-
est, enabling rapid and directed biological hypothesis
generation.
Table 2 details the combinations of developmental

stages and tissues/biological processes in the TISSUE-
DEVEL and PROCESS-DEVEL compendia for which
adequate gold standards were available for evaluation.
Networks in plant structures such as embryo and carpel
were generally predicted with higher accuracy than
those in structures such as leaf and root. AUCs were
particularly high in all development contexts and the
leaf tissue and were particularly low in all tissues/biolo-
gical processes for the germination development stage.
The globular stage and meristem combination net-

work has the highest AUC in the TISSUE-DEVEL com-
pendium, and the globular stage is indeed when primary
meristems produce new cells that will ultimately differ-
entiate and patterning of the shoot and root apical mer-
istems begins [16]. The globular stage also has a high
AUC with other tissues (leaf, root, and seed) and biolo-
gical processes (the organismal physiological process,
the reproductive physiological process, and transcrip-
tion), suggesting that meristem activity in these tissues
is prominent and significant. Other predictions for the
meristem [17] are also informative: in the bilateral stage,
the meristems become distinguished as shoot and root
meristems; in the embryo development stages, the
embryo develops radial patterning and primary shoot
meristems are formed; and in the flower development
stage, floral meristem genes help the transition from
shoot to floral meristem [18]. All of these TISSUE-
DEVEL networks achieve high AUCs. In contrast, a spe-
cialized tissue like the carpel has both low and high pre-
dictive powers across development stages. Since the
stigma, not carpel, is the receptive tissue where pollen

germination happens [19], accuracy is low in the pollen
germination development stage but higher in the flower
development stage and floral organ development stages.

Bayesian integration highlights experimental datasets
informative in specific biological contexts of interest
We summarize the “weight” given to each dataset
during Bayesian integration by calculating its overall
influence on the posterior probability of functional rela-
tionship. This provides a measure of how informative
each dataset is within each context of interest (Figure 4).
Highly specific datasets such as physical interactions
tend to be informative in many process and develop-
mental contexts. The GLOBAL-PROCESS network,
which is the most diffuse and difficult to predict, is not
strongly influenced by most datasets and focuses on
those that are particularly large and/or diverse. The
GLOBAL-DEVEL network, unsurprisingly, is highly
influenced by expression datasets incorporating develop-
mental-stage-specific exposures (e.g. hormone treat-
ments and the A. thaliana expression atlas [20]). The
heterogeneity of dataset contributions increases as con-
text size shrinks, until the smallest contexts are heavily
influenced by particularly relevant data (e.g. chemical
treatments of seedlings is highly informative in the dry
seed stage).

Regularization of Bayesian network parameters using
dataset mutual information efficiently increases
prediction accuracy
Naïve Bayesian models assume independence between
all input datasets, which can artificially inflate predicted
probabilities when this assumption is violated (e.g.
when multiple very similar datasets are integrated).
Conversely, a full Bayesian model accounting for natu-
rally-occurring dependencies (similar experimental con-
ditions, platform and lab effects, etc.) would be inefficient
to learn and evaluate using dozens of whole-genome
datasets. Our solution to this issue was to regularize the

Table 2 Development stages and tissues/biological processes of interest

Development Stage Tissue/Biological Process AUC Level

C globular stage meristem 0.822 Strong interaction with development

leaf 0.818

seed 0.754

D bilateral stage embryo dev stages flower dev stages meristem 0.816 Strong interaction with development

0.8

0.79

0 germination flora organ dev stages flower dev stages carpel 0.66 Weak interaction with development

0.73

0.71

These nine tissue/process contexts had sufficient overlapping curated information to evaluate our accuracy in predicting functional relationships occurring during
a specific developmental stage within one tissue. For example, the meristem activates gene programs to differentiate into shoot and root tissues during the D
bilateral stage [20], and we accurately recover these predicted interactions.
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Bayesian learning process using mutual information
between datasets as a prior to upweight or downweight
the total possible contribution of each dataset. This
mixes a uniform prior with each dataset’s predictions,
weighted relative to the amount of information it shares

with other datasets, and does so as a preprocessing stage
without diminishing the efficiency of naive Bayesian
learning and inference. We show in Additional file 2 that
regularization is critical to the accuracy of our networks
(the GLOBAL-PROCESS network substantially

Figure 4 Weights automatically determined for each dataset contributing to predictions in each context. Weights are calculated as the
influence of each dataset on the posterior probability in the process or development network’s Bayesian classifier, where a higher number
indicates a greater influence.
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outperforms the GLOBAL-PROCESS without regulariza-
tion; similarly, the GLOBAL-DEVEL network outper-
forms the GLOBAL-DEVEL without regularization).
Additional file 3 shows normalized pairwise mutual

information scores between all datasets. As expected,
physical interaction datasets cluster together and are
quite different from the main body of microarray
expression data. Microarray data falls into several large
classes: abiotic stresses, biotic stresses, chemical treat-
ments, hormone treatments, and physical protein-
protein interactions. Abiotic treatments are the most
similar (and thus downweighted), since they evoke
strong transcriptional responses that are easy to detect
during the integration process [21-23]. Similarly, other
abiotic treatments - different temperature treatments of
seeds and hormone treatment - basic hormone treat-
ment of seeds are similar and share more data than
most dataset pairs. These datasets are unique in that
they stress A. thaliana seeds as opposed to seedlings,
and their upweighting (Figure 4) may indicate that the
response to these stresses is easier to detect in seeds
than in other experimental conditions.

Development-specific networks enable biological
hypothesis generation
As an example of biological hypothesis generation using
the DEVEL networks, we investigated the most confi-
dent interactions predicted for a specific protein,
AtPPT2 (AT3G01550) within two development stages.
AtPPT2 encodes a PHOSPHOENOLPYRUVATE (PEP)/
PHOSPHATE TRANSLOCATOR (PPT) [24] that med-
iates cytosol-plastid PEP transport [25]. It is highly asso-
ciated with several genes in the leaf development stage
(Additional file 4), but it lacks the same activity in the
root development stage. Given this difference, we inves-
tigated its top 5 predicted interaction partners in each
tissue context. In root development, we found that data-
sets containing experiments done on the root contribu-
ted over 2 times more information (based on posterior
probability, Figure 5) than the same experiments done
on the shoots. The opposite effect was observed in the
leaf context, with experiments on roots downweighted
and leaf experiments upweighted. For both root and leaf
development, the protein-protein interaction datasets
did not have much influence at all compared to the
microarray datasets on any of the pairs.
An interesting case study is the predicted functional

relationship between genes AT4G37930 and AtPPT2 in
the leaf development stage, which is most influenced by
the following datasets: 1) a study of drought stress in
shoots [20], 2) salt stress in shoots [20], 3) UVB stress
in shoots [20], 4) osmotic stress in shoots [20], and 5)
cold stress in shoots [20]. A clear hypothesis implied by
this prediction is thus that AT4G37930 and AtPPT2

both play a role in the cellular response to stress in
shoots. Additional experiments not included in our
input data [25] show that AtPPT2 is highly expressed
only in leaf development stages and not in the root
development stages.

Predicted interactions in several networks are literature-
validated
RPM1 INTERACTING PROTEIN 4 (RIN4), RESISTANCE
TO PSEUDOMONAS SYRINGAE pv. MACULICOLA 1
(RPM1) and RESISTANCE TO PSEUDOMONAS SYRIN-
GAE 2 (RPS2) were predicted to be co-active in the GLO-
BAL-PROCESS network and in the vegetative growth
stages. RIN4 has been shown to physically interact with
RPM1 and RPS2, and the three proteins are part of the
plant’s defense response to the bacterium P. syringae
[26,27]. In the vegetative stage, RIN4 is also predicted to be
co-active with NDR1, which physically interacts with RIN4
in vivo [28]. Further, in the GLOBAL-DEVEL network,
RIN4 is predicted to be co-active with NPR1-like protein 4
(NPR4). Mutations in NPR4 result in susceptibility to P.
syringae, and although NPR4 has not previously been
shown to associate with RIN4, our predicted network sug-
gests these proteins may interact.
Our GLOBAL-DEVEL network predicts an interaction

between the root hair patterning regulator WEREWOLF
(WER) and additional proteins in the root hair develop-
ment pathway, including CAPRICE (CPC), GLABRA3
(GL3), and ENHANCER OF GLABRA3 (EGL3). In addi-
tion, this network predicts that GL3 and EGL3 interact,
and that CPC is interacts with EGL3 and GL3. WER is
known to regulate expression of CPC [29], and both
WER and CPC regulate expression of EGL3 and GL3
[30]. Further, GL3 and EGL3 physically interact [31].
We also found that the transcription factors (TFs)
MAGPIE (MGP), NUTCRACKER (NUC) and JACK-
DAW (JKD) are co-active in the seedling growth stage,
while MGP and NUC are co-active in the root develop-
ment stages. These three proteins are part of a network
involved in ground tissue patterning in the root [32,33].
MGP and NUC are downstream direct targets of the
ground tissue patterning regulator SHORTROOT (SHR)
[32]. JKD and MGP physically interact both with each
other and with SHR and another key ground tissue pat-
terning transcription factor (TF), SCARECROW (SCR)
[33]. MGP transcription depends on SHR and SCR,
while JKD transcription in embryogenesis is independent
of SHR and SCR, but becomes dependent on these TFs
at later stages [33]. Though mgp mutants do not have a
phenotype, jkd mutants show a small reduction in root
length compared to wild type plants. Additionally, redu-
cing MGP expression in the jkd mutant showed that
these proteins have opposing effects on SHR and SCR
in the ground tissue [33].

Pop et al. BMC Systems Biology 2010, 4:180
http://www.biomedcentral.com/1752-0509/4/180

Page 7 of 11



A third predicted network involves the plant hormone
auxin. TRANSPORT INHIBITOR RESPONSE 1 (TIR1),
encodes an auxin receptor that regulates auxin-mediated
transcription [34,35]. TIR1 has been shown to interact
with ASK1, ASK2, AtCUL1, and AUX/IAA proteins
[36,37], all of which are predicted to be co-active in the
GLOBAL-DEVEL network. Our network further pre-
dicts that TIR1 interacts with proteins not known to
associate with the receptor, such as AT3G23640, a het-
eroglycan glucosidase involved in carbohydrate metabo-
lism, and AT2G36720, an uncharacterized transcription
factor, suggesting that these proteins may be involved in
auxin related processes.
Together, these results show that our networks can

accurately predict interactions in different plant develop-
mental stages in a wide array of physiological processes.

Conclusions
Here, we present an ensemble of genome-wide func-
tional relationship networks predicted for A. thaliana
using Bayesian integration of 60 experimental datasets.
ArathGraphle is a hypothesis generation tool that inte-
grates information from a variety of experiments to find
consistent co-activities that might otherwise go unno-
ticed. We infer six classes of networks: one GLOBAL-
PROCESS network predicting genes participating in
related biological roles; one GLOBAL-DEVEL network
predicting genes co-active in the same developmental
stage(s); a compendium of PROCESS networks, each
containing relationships specific to one biological pro-
cess or pathway; a compendium of DEVEL networks,
each predicting co-activity within an individual develop-
mental stage; and the PROCESS-DEVEL and TISSUE-

Figure 5 Information contributed by root and shoot experiments in the leaf and root development contexts. Predicted interaction
partners for AtPPT2 in the leaf and root development stages. In the former case, experiments in shoots are approximately twice as informative
as those in roots; the reverse is true in the latter case. This suggests that our network inference process can correctly learn which datasets are
most informative in specific contexts.
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DEVEL compendia calling out processes and tissue-
specific activity occurring during individual developmental
stages. Each network reweights the genomic data compen-
dium to yield predictions tailored to an individual biologi-
cal context of interest. The leaf- and root-specific
networks predicted that the AtPPT2 protein functions
during leaf development but not root development, which
has since been confirmed experimentally [25]. We further
identified several literature-validated interactions among
our predicted interactions.
We anticipate that these context-specific predictions

of A. thaliana functional relationships will be useful to
drive future hypotheses generation regarding protein
function and interactions as they change among
A. thaliana tissues and developmental stages. With these
networks, biologists can pose questions regarding indivi-
dual genes’ interactions within isolated plant tissues and
at only one (or more) time(s) during development,
allowing them to discover novel functional interactions
more rapidly. A web interface to our predictions, avail-
able at http://function.princeton.edu/arathGraphle, pro-
vides these networks in a convenient interface accessible
to the wider biological and bioinformatics communities.

Methods
The experimental framework for this study consisted of
the following processes: three primary gold standards
were created indicating genes related or unrelated within
biological processes, developmental stages, or plant tis-
sues; A. thaliana genomic data was assembled and inte-
grated using regularized Bayesian classifiers; and the
resulting predicted genome-wide functional networks
were evaluated computationally and experimentally.

Gold standard generation
We created three gold standards, each containing sub-
sets of positive (related) and negative (unrelated) protein
pairs. For the GLOBAL-PROCESS standard, we selected
a set of interesting terms from the Gene Ontology as
described by [12]. Gene pairs co-annotated to one of
these terms were considered to be related, and pairs
containing genes annotated to some term (but not co-
annotated) were considered to be unrelated. For
details, see [11]. This resulted in 188,343 positive and
1,183,813 negative pairs in the GLOBAL-PROCESS
standard.
The GLOBAL-DEVEL standard was created similarly,

save that genes were required to be co-annotated to a
development stage in the Plant Ontology. These gold
standards were decomposed into subsets for the PRO-
CESS and DEVEL compendia by limiting positive pairs
to individual processes and development stages, respec-
tively, and randomly sub-sampling ten times as many
negatives. The PROCESS-DEVEL and TISSUE-DEVEL

standards intersected these PROCESS and DEVEL gold
standards with an identically generated pathway- and
tissue-specific standard using 43 PO terms.

Bayesian data integration
Each functional relationship network was predicted by a
corresponding Bayesian classifier trained as detailed in
[11] and [9]. Briefly, a naive classifier was constructed
for each gold standard as described above: one each for
GLOBAL-PROCESS and GLOBAL-DEVEL, 208 PRO-
CESS terms from the Gene Ontology, 19 DEVEL terms
from the Plant Ontology, and 40 PROCESS-DEVEL
intersections and 44 TISSUE-DEVEL intersections (each
containing at least 10 genes).
Each classifier integrated the same data, broadly com-

prising coexpression data, protein sequence families, and
physical and genetic protein-protein interactions 55
microarray datasets were gathered from AtGenExpress
[20] and GEO [38] and converted into pairwise scores
by Pearson correlation, z-transformation to obtain a

normal distribution Z
p
p

= +
−

1
2

1
1

log , and z-scoring to

distribute this with mean 0, standard deviation 1 for
each dataset. These coexpression scores were discre-
tized into 7 bins from -∞ to -1.5, -1.5 to -0.5, -0.5 to
0.5, 0.5 to 1.5, 1.5 to 2.5, 2.5 to 3.5, 3.5 to ∞. Protein
families were drawn from the automatically generated
PFam B [15], and protein interactions were taken from
BIND [39], BioGRID [40], computational predictions
and enzyme assays used for functional annotations
[41], and annotations extracted from literature in
TAIR (The Arabidopsis Information Resource); all
were binarized to indicate the presence or absence of
an interaction. This resulted in 60 total datasets inte-
grated in each classifier.

Regularization using mutual information
Naive Bayesian classifiers assume that all datasets are
independent, which becomes increasingly less true as
large amounts of biologically similar data are integrated.
As detailed in [9], this leads to overconfident and less
accurate predictions, which we resolve without loss of
efficiency by regularizing the naive classifiers. This pro-
cess mixes in a uniform prior with weight exponentially
proportional to the amount of information shared by
each dataset, thus downweighting datasets with less
unique information. Mutual information was calculated
between each pair of datasets I(Dk; Di) using the discre-
tization described above and, for each dataset pair, con-
verted to a fraction by dividing by the total amount of
possible shared information, I’(Dk; Di) = I(Dk; Di)/min(H
(Dk), H(Di)). These fractions were summed for each

dataset, U I D Dk k i
i k

= ′ ( )
≠
∑ ; , and exponentially
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weighted as ak = 2Uk+1 - 1. In combination with Laplace
smoothing tune-able with parameter bk = 2, this yields a
regularized classification probability between genes gi
and gj:

P
P D d g g

D di j
k k k i j k

k k k kk

n

,

,

| | | |
FR( ) ∝

= ( )( ) +

+
=

∏
 

 
1

where Pi, j(FR) is the probability that genes i and j
have a functional relationship, dk(gi, gj) is the supporting
data for a dataset k between a pair of genes gi and gj , P
(Dk = dk(gi, gk)) is the probability of the dataset k con-
taining some value for a pair of genes.

Computational performance evaluation
We randomly withheld 20% of genes from the positive
pairs and 20% from the negative pairs in our gold stan-
dard set, using any gene pair including at least one of
these genes as a test set excluded during training. All
performance evaluations were performed exclusively on
test sets selected this way using 5-fold cross validation.

Additional material

Additional file 1: Precision-recall plot showing the performance of
AraNet versus and GLOBAL-DEVEL. We show that AraNet does not
outperform our GLOBAL-DEVEL network when tested on the
developmental gold standards, thus reiterating that adding
developmental information improves predictions more than if no
developmental information was used.

Additional file 2: Precision-recall plot showing the performance of
regularized versus unregularized networks. To account for possible
dependencies between datasets, we used mutual information to
regularize the data. We show that the precision-recall plots for the
GLOBAL-PROCESS and GLOBAL-DEVEL networks do better than the
corresponding networks without having performed regularization.

Additional file 3: Normalized pairwise mutual information scores
between all datasets. To regularize the Bayesian classifiers used in this
study, we calculated the mutual information between each pair of
datasets. These values were normalized as fractions of the total possible
shared information and used to exponentially downweight datasets
containing a large fraction of redundant information. The raw mutual
information values are shown here and serve to group datasets that are
related for technical (e.g. similar microarray platform) or biological (e.g.
similar experimental treatment) reasons.

Additional file 4: Functional interactions of AtPPT2 in leaf and root
development stages. To determine whether AtPPT2 was more
functionally active in the leaf development stage or the root
development stage, we queried the protein AtPPT2 in these two
development contexts. We show that the top interactions of this gene
are higher in the leaf context than in the root context.
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