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As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions be-
comes more common, there is a great need to assess the test–retest reliability of the pain-related BOLD fMRI sig-
nal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI
brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures:
(1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The
ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain
areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the
ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex.
Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability;
these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula.
Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide
useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was per-
formed by the same subjects in the same sessions as the painful heat stimuliwere delivered. Intersession reliabil-
ity of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial
overlap and ICCmeasures, providing support for the validity of the analytical approach used to assess intersession
reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as
ameasure of reliabilitymay not be sufficient, as the underlying variance structure of an fMRI dataset can result in
inappropriately high ICC values; a method to eliminate these false positive results was used in this study and is
recommended for future studies of test–retest reliability.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Functional magnetic resonance imaging (fMRI) studies in chronic
pain patients have the potential to provide valuable information about
the neural mechanisms and efficacy of analgesic therapies, including
drug treatments, acupuncture, brain stimulation, distraction tasks,
mindfulness meditation, and cognitive-behavioral interventions. Fur-
thermore, fMRI studies in healthy individuals have provided insights
into neural mechanisms of pain modulation, such as the placebo effect
and conditioned pain modulation. Such studies rely on the assumption
that brain responses to pain are consistent in sessions conducted on
separate days before, during, and after therapeutic interventions. De-
spite this common practice, only one study specifically addressing the
intersession reliability of pain-related fMRI activation has been pub-
lished. Taylor and Davis (2009) examined the spatial reliability of fMRI
activation associated with painful mechanical stimulation of the hand
. This is an open access article under
in 6 subjects across four biweekly sessions, finding high across-session
spatial repeatability in second somatosensory cortex (S2), but lower
andmore variable spatial repeatability in primary somatosensory cortex
(S1) and thalamus (Taylor and Davis, 2009); other areas that are part of
the cortical network classically activated by pain (as reviewed in
Duerden and Albanese, 2013) were not examined in the study. Further-
more, studies examining across-session reliability of the amplitude
(percent signal change) of pain-related fMRI responses have not yet
been published. Gaining a better understanding of the stability of re-
peated, intersession measures of responses to pain (both spatial extent
and BOLD signal amplitude) in the entire cortical pain network will en-
hance the ability to interpret data collected in studies of pain-reducing
manipulations. Thus, characterization of test–retest reliability of pain-
related fMRI activation is a critically important issue to address.

High test-retest reliability of fMRI responses across two ormore ses-
sions has been reported for a wide variety of tasks, including motor,
auditory detection, language, learning, and memory (Atri et al.,
2011; Bennett and Miller, 2010; Cacares et al., 2009; Chen et al.,
2007; Fliessbach et al., 2010; Freyer et al., 2009; Gorgolewski et al.,
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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2013; Gountouna et al., 2010; Havel et al., 2006; Kiehl and Liddle, 2003;
Maitra et al., 2002; McGregor et al., 2012; Yoo et al., 2005). However,
poor test–retest reliability of fMRI responses has been found for other
tasks such as mouth movements (Havel et al., 2006), reward (Fliessbach
et al., 2010), and spatial attention (Gorgolewski et al., 2013). While
these results may reflect differences in reliability across tasks, they may
also reflect differences in statistical approaches used to assess reliability.
Approaches have included measuring spatial extent or spatial overlap
of significant task-related activation at the individual or group level,
performing voxelwise group-level contrasts of the blood oxygenation
level-dependent (BOLD) response, and calculating voxel-wise intraclass
correlation coefficients (ICC) based on the amplitude of the BOLD
response.

The first objective of this study was to characterize the intersession
reliability of pain-related fMRI activation elicited by painful contact
heat stimuli in healthy volunteers, considering both spatial extent and
amplitude measures. To address the possibility that reliability of pain-
related fMRI responses may vary across brain regions, the study sepa-
rately evaluated reliability of responses in cortical areas that are part
of the network classically activated by pain (as reviewed in Duerden
and Albanese, 2013), including: S1, S2, pregenual anterior cingulate
cortex (pACC), anterior midcingulate cortex (aMCC), insular cortex
(INS, distinguishing anterior and posterior), supplementary motor
area (SMA), and several frontal lobe regions; the thalamus was also
examined.

Stimulus paradigms using painful heat vary across studies, with
some protocols using fixed temperatures for all subjects (resulting in
highly variable perceived pain intensity reports across the group) and
others using subject-specific temperatures that produce consistent per-
ceived pain intensities across the group. A recent study reported no dif-
ference in pain-related fMRI activation produced by fixed temperature
stimuli and individually-determined contact heat pain stimuli (van
den Bosch et al., 2013); however, the question of whether these differ-
ent stimulus paradigms produce equally reliable results across sessions
remains unanswered. A second objective of this study was to compare
the reliability of pain-related fMRI responses for fixed temperature
stimuli with that of subject-specific temperatures to address whether
one or the other approach provides for more reproducible results.

The subjects in this study also performed a simple motor task
(finger-thumb opposition) in the same sessions as they experienced
painful heat. To evaluate the appropriateness and validity of the
analytical approach used to assess intersession reliability of pain-
related fMRI responses, this study used the same approach to assess
the across-session reliability of motor-related fMRI activation and
compared the results with those previously published.

2. Methods

2.1. Subjects

Fourteen subjects (mean age 44.3 years, SD 19, range 22–75; 7male)
participated in the study. All subjects were healthy, with nomajormed-
ical, neurological, or chronic pain disorders. Young female subjects were
tested during the follicular phase of their menstrual cycle (days 3 to 10)
to reduce variance potentially related to effects of gonadal hormone
fluctuations on pain perception. All postmenopausal women (n = 4)
were not using hormone replacement therapy. Informed consent was
obtained from all subjects prior to experimentation. The protocol for
this studywas approved by the University of Maryland Institutional Re-
view Board for the Protection of Human Subjects.

2.2. Stimulation

Painful heat stimuli were delivered to the left dorsal forearm of each
subject using an MR-compatible Peltier thermal probe with a 2.6 cm2

contact surface (TSA-II, Medoc Ltd., Israel). The probe was held in
place during testing with a Velcro strap. Two temperatures of painful
heat were delivered to each subject: (1) 48 °C and (2) a subject-
specific temperature perceived as moderately painful, which was de-
fined as the temperature the subject rated as 50 on a 100-point comput-
erized visual analog scale (VAS) for pain intensity. These stimuli will be
referred to as 48 °C and 50VAS throughout this manuscript. Tempera-
tures that evoked the perception of moderate pain (50VAS) ranged
from 47.5 to 50.0 °C (mean 49.0 °C, SD 1.0).

2.3. Experimental Protocol

2.3.1. Training session
Subjects participated in a training session in a laboratory room ded-

icated to psychophysical assessments at least one day prior to scanning.
During the training session, subjects were first presented with an as-
cending series of thermal stimuli ranging from42 to 50 °C. Each temper-
aturewas presented for 15 s (including rampup anddown time at a rate
of 2.7 °C/s), followed by a 30-s interstimulus period of nonpainful
warmth (37 °C). Subjects were then presented with a series of heat
stimuli expected to be in the painful range (46–50 °C), with temperatures
presented twice each in a randomized order. After each stimulus, subjects
used an MR-compatible trackball (Fellowes, http://www.fellowes.com) to
rate peak pain intensity on a computerized VAS, which consisted of a ver-
tical scale labeled “no pain” at the bottom and “most intense pain imagin-
able” at the top (DAPSYS, Brian Turnquist, Johns Hopkins University,
http://www.dapsys.net). VAS ratings were converted to numerical values
ranging from 0 to 100. Individual subject ratings for the range of temper-
atures were used to interpolate the subject-specific temperature that
evoked a perception of moderate pain (50VAS) and to confirm that the
48 °C stimulus was perceived as painful.

2.3.2. Scanning sessions
Each subject participated in three scanning sessions conducted on

separate days, with the mean interval between sessions 15 days (SD
18). The high variance in the between-session interval was mainly at-
tributable to two women who were scanned across multiple months
to ensure testing was conducted during the follicular phase of themen-
strual cycle. Most scans occurred between 4 and 9 pm and lasted about
90 minutes; each of the 3 sessions for an individual subject began at
about the same time each day to reduce circadian variability in percep-
tion and hormone levels. During each scanning session, information
about functional brain responses was collected using BOLD fMRI and in-
formation about brain anatomywas collected usingMR imaging (details
below). The fMRI portion of the session consisted of two scans in which
painful heat stimuli were delivered, separated by a 30-minute interval.
The painful heat stimulus protocol for each fMRI scan consisted of deliv-
ering the two temperatures (48 °C and the subject-specific temperature
perceived as moderately painful) six times each in a randomized order.
Each temperature was presented for 15 s (including ramp up and down
time at a rate of 2.7 °C/s), followed by a 30-s interstimulus period of
nonpainful warmth (37 °C). After each stimulus, the computerized
VASwas presented to the subject throughMRVision 2000 goggles (Res-
onance Technologies, Van Nuys, CA) and the subject rated peak pain
intensity using the MR-compatible trackball. The duration of each stim-
ulus cyclewas 45 s: painful heat application (15 s), VAS rating task (15 s,
or less if the subject responded more rapidly), and rest period (15 s, or
more if the subject completed the rating task in less than 15 s).

In the 30-minute interval between pain fMRI scans, subjects rested
quietly for approximately 10 minutes, performed a simple motor task
(right hand finger-thumb opposition at approximately 1 Hz) in a
block design (24 s opposition alternating with 24 s rest) for 6 minutes
and 54 s while fMRI data were acquired, then rested quietly for the re-
mainder of the interval.

2.3.2.1. Image acquisition. Imageswere collected using a 1.5 Tesla Phillips
Eclipse scanner (Phillips Healthcare, Cleveland, OH). Functional MR
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images were acquired using a single-shot echo planar imaging
T2*-weighted sequence with an echo time (TE) of 35 ms and flip angle
of 90°. Acquired image resolution was 3.2 × 3.2 mm over a 24-cm field-
of-view (FOV). The images were zero padded to 128 × 128 pixels to pro-
vide a resolution of 1.875×1.875mm. The repetition time (TR) of 3 s pro-
vided full brain coverage using 24 axial slices (6 mm thick with no gaps
between slices) prescribed parallel to the anterior-posterior commisural
plane. High-resolution T1-weighted volumetric scans (4.5 ms TE, 29 ms
TR, 110 slices, slice thickness 1.5 mm, 0.938 × 0.938mm in-plane resolu-
tion, 24-cm FOV) were acquired in the same plane as the functional im-
ages for anatomical detail.

2.3.2.2. Image processing and analysis
2.3.2.2.1. Preprocessing. Image processing was performed using the

software package Analysis of Functional Neuroimages (AFNI; Cox,
1996). The first four volumes of each functional scan were discarded
to exclude images acquired prior to stabilization of the magnetic reso-
nance signal. The remaining volumes were corrected for slice timing
differences. Data from the 2 functional pain scans conducted within
each session were concatenated for analysis. Functional images were
motion-corrected by spatially registering the volumes from all function-
al scans to the first remaining volume (AFNI routine 3dVolreg). To
minimize effects from possible spike-related artifacts, signals greater
than 2.5 SDs of the overall BOLD signal were reduced (AFNI routine
3dDespike). Time series were temporally smoothed to reduce high
frequency noise using a moving 3-point weighted (0.15-0.70-0.15) av-
erage. Images were spatially smoothed to increase the signal-to-noise
ratio using a 5-mm full width half-maximum Gaussian kernel. Trends
in the time series (linear, second-order, and third-order) were re-
moved on a voxelwise basis to reduce low frequency noise compo-
nents. Functional and anatomical images were transformed to
common space (Tailairach and Tournoux, 1988), and the voxels
resampled to 2 × 2 × 2 mm. Voxelwise normalization was per-
formed by dividing the signal intensity at each time point by the
voxel’s mean intensity.

2.3.2.2.2. Statistical analysis. For each individual subject, a general lin-
ear modeling (GLM) approach was used to identify brain regions in
which the time course of the BOLD signal was significantly related to
the task, either the painful stimulus or the motor task (AFNI script
3dDeconvolve). The GLM for the pain scans consisted of three temporal-
ly independent regressors (one for each temperature of painful heat and
for the VAS rating task) each represented by a delayed boxcar function
convolved using the AFNI BLOCK function to account for hemodynamic
delay. The GLM also included 6motion correction parameters as regres-
sors. Though the GLM included a regressor for the VAS rating task, re-
sults for this regressor are not presented because brain activity during
the VAS rating task is not a variable of interest in this study. The GLM
for the motor scans consisted of a regressor for the motor task as well
asmotion correction parameters. Voxelwise regression of the BOLD sig-
nal time course with the appropriate model resulted in statistical para-
metricmaps for pain-related activation andmotor-related activation for
each individual subject.

Group maps of significant pain-related activation were calculated
separately for each stimulus type (48 °C and 50VAS) using regression
coefficients from the GLM, collapsed across sessions, in a one-sample
t-test (AFNI routine 3dttest). The resulting group statistical parametric
maps (one for the 48 °C stimulus and one for the 50VAS stimulus)
were thresholded to identify significant activation associated with
each type of painful heat using a cluster threshold approach to correct
for multiple comparisons across the brain. The cluster threshold criteri-
on was determined using Monte Carlo simulations to estimate the like-
lihood of detecting false positives over multiple comparisons (AFNI
routine 3dClustSim). Based on the simulations, which were derived
from whole-brain analyses, a significant cluster (overall corrected
p b 0.05) was defined as a minimum cluster size of 190 mm3 of contig-
uous voxels, each with a voxelwise p b 0.05. The cluster threshold
criterion was applied to maps for the t-statistic for each stimulus type
(48 °C and 50VAS) to identify the voxels that responded significantly
to each type of painful heat, resulting in two thresholded maps for
each subject: (1) voxels responding significantly to 48 °C stimuli and
(2) voxels responding significantly to the 50VAS stimulus. Statistical
parametric maps for the motor task were thresholded using the same
approach to identify voxels responding significantly during the motor
task. The pain-related and motor-related maps that resulted from this
stage of analysis differed in spatial extent. Accordingly, cluster size
thresholding for subsequent analyses (described below) involved dif-
ferent spatial threshold criteria for the pain- and motor-related activa-
tion maps.

To evaluate reliability of pain- and motor-related fMRI activation
across the three sessions conducted in this study, two measures were
calculated for voxels that showed significant pain-related activation,
separately for each stimulus type (48 °C and 50VAS), or significant
motor-related activation: (1) spatial reliability coefficients based on
spatial localization and extent of activation and (2) intraclass correla-
tion coefficients (ICC) based on the GLM regression coefficients, which
reflect fMRI response amplitude. Spatial reliability coefficients are
based on the number of voxels commonly activated in all sessions
(Rombouts et al., 1998); voxels significantly activated by painful stimuli
or the motor task were identified in each session using regression coef-
ficients from the GLM in a one-sample t-test. Spatial reliability coeffi-
cients were calculated separately for the 48 °C stimulus, the 50VAS
stimulus, and the motor task, using the formula R = (3 × number of
voxels commonly activated in all 3 sessions)/(sum of activated voxels
in all 3 sessions) (Havel et al., 2006). Spatial reliability coefficients for
the painful stimuli were also calculated across the two stimulus types
(48 °C and 50VAS) using the formula R = (2 × number of voxels com-
monly activated by both stimulus types)/(sum of activated voxels by
both stimulus types). Spatial reliability coefficients can range in value
from 0 to 1, with 0 indicating poor spatial reliability and 1 indicating
perfect spatial overlap across sessions or conditions.

ICCs were calculated using the regression coefficients from the GLM
(which reflect BOLD response amplitude) separately for the 48 °C stim-
ulus, the 50VAS stimulus, and themotor task, resulting in three reliabil-
ity maps (one for the 48 °C stimulus, one for the 50VAS stimulus, and
one for themotor task). ICCs were calculated separately for each painful
stimulus type and the motor task (AFNI routines 3dCalc and 3dMean)
using the formula described in McGraw and Wong (1996) for the de-
gree of absolute agreement among repeated measurements:

ICCðA;1Þ ðBMS−EMSÞ
BMS þ ðk−1ÞEMSþ k

nðWMS−EMSÞ

The ICC thereforemeasures the correlation of themagnitude of pain-
or motor-related fMRI responses between sessions using a two-way
mixed ANOVA framework, where the variance is divided into between
subject variance (BMS), within subject variance (WMS), and residual
sources of variance (EMS), k is the number of repeated sessions, and n
is the number of subjects within a session. An F-statistic and p-value as-
sociated with each voxel’s ICC were calculated based on the approach
described in (McGraw and Wong, 1996). The F-statistic maps were
then thresholded using a cluster threshold approach to correct formulti-
ple comparisons across the voxels that survived the initial thresholding
step (described above) (AFNI routine 3dClustSim). As previously noted,
the pain- andmotor-related maps differed in spatial extent after the ini-
tial thresholding step; as a result, different cluster size threshold criteria
were calculated for these maps in these subsequent analyses. For pain-
related maps, a significant cluster (overall corrected p b 0.05) was de-
fined as a minimum cluster size of 127 mm3 of contiguous voxels, each
with a voxelwise p b 0.05. For motor-related maps, a significant cluster
(overall corrected p b 0.05) was defined as a minimum cluster size of
148 mm3 of contiguous voxels, each with a voxelwise p b 0.05. The
thresholding step was conducted separately for each stimulus type and
for the motor task, resulting in three statistical parametric maps (one
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Fig. 1. Box plots of pain intensity ratings for 48 °C stimulus and perceptually-equalized
stimuli (50VAS)where the temperature that produced a rating of 50 on a 0–100 visual an-
alog scalewas selected individually for each subject (n=14). Ratingswereobtained in the
scanner on separate days (sessions 1–3). Median values are represented by solid lines.
Solid circles represent individual outliers. No significant session effects were found for ei-
ther measure (Friedman test, p N 0.05 for each stimulus type).
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for the 48 °C stimulus, one for the 50VAS stimulus, and one for themotor
task) of brain areas with significantly reliable pain- or motor-related ac-
tivation. Thesemapswere thenmasked to exclude voxels wherewithin-
subject variance contributed tomore than 1% of the total variance (calcu-
lated using AFNI’s 3dICC_REML routine). The purpose of this step was to
eliminate voxelswith artifactually high ICCs (such aswould be the case if
BMS was high, WMSwas high, and EMS was low), thereby reducing the
possibility of false positives (Chen et al., 2007). EMS represents random
variance with unknown sources that might include MRI-related noise,
physiological noise, or cognitive processes unrelated to the task that
change over time (Bennett and Miller, 2010).

Significantly reliable pain-related activation (as determined by clus-
ters with significant ICCs) associated with each stimulus type was ex-
amined in anatomically-defined regions of interest (ROI) known to be
involved in processing painful stimuli: the arm representation area of
S1, S2, pACC, aMCC (corresponding to the area referred to as the mid-
ACC in many previous pain studies), anterior INS (aINS), posterior INS
(pINS), SMA, inferior frontal gyrus (IFG), medial prefrontal cortex
(mPFC) and dorsolateral prefrontal cortex (dlPFC). The arm area of S1
was defined as the region of the postcentral gyrus starting from the
most medial portion of the hand representation (delineated by the
“knob” created by the postcentral gyrus) and extending approximately
2 cmmedially along the surface from that point, excluding digit represen-
tations (Servos et al., 1998; van Westen et al., 2004); these boundaries
should encompass the complete arm representation. The boundaries of
the pACC and aMCC were delineated based on Vogt (2005). The bound-
aries of the other ROIs were described previously (Moulton et al., 2005).
Significantly reliable motor-related activation (as determined by clusters
with significant ICCs) was examined in two anatomically-defined motor
ROIs: the hand representation area in the primary motor cortex (M1)
and SMA.

For the painful stimuli, separate evaluationswere conducted for por-
tions of each ROI contralateral (right hemisphere) and ipsilateral (left
hemisphere) to the stimuli. For each stimulus type, the largest cluster
of significantly reliable (as defined by significant ICC values) pain-
related activationwas identified in each ROI. The reliability of each clus-
ter was then classified using the peak ICC value based on the conserva-
tive criteria described by Shrout (1998): virtually no reliability (0–0.1),
slight reliability (0.11–0.4), fair reliability (0.41–0.6), moderate reliabil-
ity (0.61–0.8), and substantial reliability (0.81–1). Themotor data were
analyzed using the same approach, with the largest cluster of signifi-
cantly reliablemotor-related activation identified in each ROI contralat-
eral to the hand performing the task (left hemisphere) and ipsilateral
(right hemisphere).

To address the question of whether a painful stimulus of constant
temperature or of constant perceived intensity produced more reliable
BOLD fMRI responses, a group-level contrast between significantly reli-
able pain-related activation for the 2 stimulus types was conducted in
which the voxelwise ICC values for each stimulus type were contrasted
(Donner and Zou, 2002).

2.3.2.2.3. Additional statistical analyses
2.3.2.2.3.1. Perception-Dependent Responses. To address the question of
whether the perceived pain intensity-dependent response is consistent
across sessions, a voxelwise analysis was conducted in which individual
pain intensity ratings for each subject and each stimulus were used in
the GLM. The analysis was conducted on the 48 °C pain condition,
whichwas the protocol inwhich ratings varied themost across subjects.
For each individual subject and each session, pain intensity ratings of
each 48 °C stimulus were used in the regression model for each voxel,
resulting in parameter estimates for each subject at each voxel that rep-
resented the degree towhich perceived pain intensity covariedwith the
BOLD response. The parameter estimates were then used in a group
analysis to identify voxels where the pain intensity ratings significantly
predicted themagnitude of the BOLD response to the stimulus. Interses-
sion reliability in these voxels could then be evaluated by calculating
ICCs.
2.3.2.2.3.2. Intersession Reliability: The effect of duration between sessions.
To address the question of whether the duration between sessions had
an effect on intersession reliability, we reanalyzed our pain and motor
task data sets to calculate ICCs on task-related activation detected
when duration between session was used as a covariate in the analysis.
The analysis involved two stages.

The first analysis stage involved conducting a voxelwise GLM
repeated measures ANCOVA for each of our pain and motor tasks sepa-
rately, using each subject’s average days between sessions as a time-
invariant covariate using the methodology of Winer (1971). The analy-
sis excluded voxels that violated the assumption of homogeneity of
regression slopes because ANCOVA is not an appropriate statistical
test when this assumption is violated (Tabachnick and Fidell, 2007).
Our homogeneity test revealed that 98% of voxels across the brain did
NOT violate this assumption andwere therefore included in the ANCOVA.

In the second stage of the analysis, ICCswere calculated based on the
ANOVA framework described by McGraw andWong (1996), but with a
slight modification: A two-way mixed design of absolute agreement
was used to calculate ICCs on a voxelwise basis using adjusted variabil-
ity estimates and degrees of freedomderived from theANCOVA analysis
(AFNI routines 3dcalc and 3dMean). Subsequent analysis steps involved
the same thresholding, masking, and statistical steps as the original ICC
analysis.
2.3.3. Statistical Analysis: Psychophysical data
Pain intensity ratings obtained in the scanner were evaluated sepa-

rately for each stimulus type using the nonparametric Friedman test
for intersession effects. Mauchly’s test of sphericity was used to com-
pare the error variance associated with each stimulus type. The signifi-
cance level for all tests was set at 0.05.
3. Results

3.1. Psychophysics

Pain intensity ratings did not differ significantly across sessions for
either stimulus type (p N 0.05, Friedman test, Fig. 1), indicating that
within the parameters of this study, repeated testing did not change per-
ceived intensity of the painful heat stimuli. Variance of pain intensity rat-
ings was greater for the 48 °C stimulus than the perceptually-equalized
50VAS stimulus (p b 0.05).

image of Fig.�1
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Fig. 2. Groupmaps of brain regions significantly activated by painful heat stimuli: (A) 48 °C and (B) subject-specific temperatures that were rated as 50 on a 0–100 visual analog scale for
pain intensity (50VAS). Functional activation is overlaid on the T1-weighted group average of each subject’s brain normalized to Talairach space. Significant activation was defined as a
minimum cluster size of 9 contiguous voxels (190 mm3), each with a voxelwise p b 0.05, resulting in an overall corrected p b 0.05. Orange and yellow areas represent voxels with a sig-
nificantly positive pain-related BOLD response, while blue areas represent voxels with a significantly negative pain-related BOLD response.
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3.2. Pain-related Activation

Significant pain-related activation was found in expected brain re-
gions of interest (ROI) for both types of painful heat stimuli (Fig. 2).
Most prescribed ROIs showed significant increases in the BOLD signal
associated with painful heat, including pACC, aMCC, aINS, and S2. A
few ROIs, including the arm region of S1 and frontal lobe regions,
showed significant decreases in the BOLD signal in response to painful
A 48°C  Session Overlap B

              1+2   1+3   

Session # Co

Fig. 3.Groupmaps showing voxels significantly activated in 1, 2, or all 3 sessions in response to
on a 0–100 visual analog scale for pain intensity (50VAS).
stimuli (Fig. 2). The map of pain-related activation from this study
was compared with the reverse inference meta-analysis image from
the Neurosynth database (Yarkoni et al., 2011) and was found to have
notable overlap, particularly with respect to the insula, anterior cingu-
late cortex, and somedorsolateral frontal regions. As reported above, ro-
bust activation was found in several other brain regions that were not
identified in the image from the Neurosynth database, but have been
described in the literature (Duerden and Albanese, 2013).
50VAS Session Overlap

2+3    all
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painful heat stimuli: (A) 48 °C and (B) subject-specific temperatures that were rated as 50
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Table 1
Spatial reliability coefficients for pain-activated regions associated with 48 °C stimulus.

Region of interesta Number of significant voxels (each session) Across-session overlap
(# voxels)

Reliability coefficientb

1 2 3

Anterior midcingulate cortex (left) 1352 1592 1976 472 0.29
Anterior midcingulate cortex (right) 1888 1856 2768 496 0.23
Pregenual anterior cingulate cortex (left) 128 168 432 0 0.00
Pregenual anterior cingulate cortex (right) 120 264 128 0 0.00
Inferior frontal gyrus (left) 3504 2600 3672 496 0.15
Inferior frontal gyrus (right) 5472 8256 8848 3408 0.45
Primary somatosensory cortex (left) 592 104 624 8 0.02
Primary somatosensory cortex (right) 160 664 408 16 0.04
Supplementary motor area (left) 1360 1632 2264 160 0.09
Supplementary motor area (right) 2056 1936 2088 400 0.20
Anterior insular cortex (left) 1992 3648 2544 1112 0.41
Posterior insular cortex (left) 360 768 224 0 0.00
Anterior insular cortex (right) 3280 3736 2936 1744 0.53
Posterior insular cortex (right) 384 136 312 0 0.00
Medial prefrontal cortex (left) 3816 5320 5688 1904 0.39
Medial prefrontal cortex (right) 2640 2944 2400 624 0.23
Dorsolateral prefrontal cortex (left) 6928 8136 5496 976 0.14
Dorsolateral prefrontal cortex (right) 10,352 12,464 13,824 4672 0.38
Second somatosensory cortex (left) 1088 1264 1376 112 0.09
Second somatosensory cortex (right) 880 1872 1368 384 0.28
Thalamus (left) 560 360 576 24 0.05
Thalamus (right) 256 1656 392 72 0.09

a Left regions are ipsilateral to the stimulus
b Reliability coefficient = (3 × number of common voxels)/(sum of activated voxels in each session)
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3.2.1. Reliability of pain-related activation: Spatial reliability coefficients
Intersession reliability of the spatial extent of significant pain-

related activation is shown in Fig. 3. Spatial reliability coefficients
were low (b 0.2) in most pain-related ROIs, for both the 48 °C stimulus
(Table 1) and 50VAS stimulus (Table 2). Spatial reliability differed by
ROI, with the highest spatial overlap shown for both stimulus types in
the aINS and no voxels displaying complete overlap (e.g., significant ac-
tivation in all 3 sessions) for either stimulus type in the pACC.

Spatial overlap between the two stimulus types (48 °C and 50VAS)
is shown in Fig. 4. Spatial reliability coefficients were relatively high
(most N 0.5, Table 3), indicating moderately consistent spatial extent
of activation regardless of whether the stimulus was of constant
Table 2
Spatial reliability coefficients for pain-activated regions associated with 50VASastimulus.

Number of significant voxels (ea

Region of interestb 1 2

Anterior midcingulate cortex (left) 1504 1408
Anterior midcingulate cortex (right) 1392 2152
Pregenual anterior cingulate cortex (left) 344 392
Pregenual anterior cingulate cortex (right) 176 96
Inferior frontal gyrus (left) 3800 3928
Inferior frontal gyrus (right) 6760 7192
Primary somatosensory cortex (left) 248 240
Primary somatosensory cortex (right) 32 72
Supplementary motor area (left) 1688 1088
Supplementary motor area (right) 1744 1512
Anterior insular cortex (left) 2384 3032
Posterior insular cortex (left) 136 176
Anterior insular cortex (right) 4344 2784
Posterior insular cortex (right) 104 296
Medial prefrontal cortex (left) 4648 3888
Medial prefrontal cortex (right) 2416 1808
Dorsolateral prefrontal cortex (left) 5960 6544
Dorsolateral prefrontal cortex (right) 7144 4088
Second somatosensory cortex (left) 336 1160
Second somatosensory cortex (right) 728 1800
Thalamus (left) 168 904
Thalamus (right) 1664 1656

a 50VAS is the subject-specific temperature that produced a perceived intensity of 50 on a 0
b Left regions are ipsilateral to the stimulus
c Reliability coefficient = (3 × number of common voxels)/(sum of activated voxels in each
temperature or of constant perceived pain intensity. Spatial overlap be-
tween the stimulus types showed regional differences, with the highest
reliability coefficients in the aINS and low reliability coefficients in the
pACC.

3.2.2. Reliability of pain-related activation: Intraclass correlation coefficients
Reliability of pain-related activation amplitude was assessed in a

two-step process (see Methods), by calculating voxelwise ICCs and
then applying a statistical filter to eliminate voxels with artifactually
high ICC values due to a combination of high WMS and low EMS.
Fig. 5 shows an example of the importance of the statistical filtering
step. Fig. 5A shows the average BOLD response amplitude for each
ch session) Across-session overlap
(# voxels)

Reliability coefficientc

3

928 168 0.13
1904 424 0.23
0 0 0.00
64 0 0.00
3880 440 0.11
6512 3288 0.48
184 8 0.04
400 0 0.00
1528 168 0.12
1576 344 0.21
3592 984 0.33
888 8 0.02
4608 2200 0.56
224 0 0.00
2608 776 0.21
2104 480 0.23
3944 632 0.12
8800 1136 0.17
736 24 0.03
552 208 0.20
352 0 0.00
1368 200 0.13

–100 visual analog scale

session)



A BPositive response overlap Negative response overlap 

Fig. 4. Overlap of significant pain related activation (A) or deactivation (B) produced by 48 °C stimuli (green areas) and subject-specific temperatures that were rated as 50 on a 0–100
visual analog scale for pain intensity (50VAS, red areas). Yellow represents areas that showed significant response for both stimulus conditions.
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session in the voxel in the left IFG with the highest ICC prior to the sta-
tistical filtering step. The graph shows a highly variable pain-related
BOLD response in this voxel across sessions; however, the ICC value
(0.75) calculated for this voxelwas the highest in the ROI and statistical-
ly significant. The high ICC value obtained for this voxel is attributable to
a combination of high BMS, highWMS and low EMS. This example illus-
trates that it is possible to obtain a high ICC value for a voxel despite
high variability (low reliability) of the response from session to session.
Thus, relying entirely on ICC values without examining the variances
that contribute to the ICC can result in a voxel being identified as having
a reliable intersession responsewhen in fact it does not (in other words,
a false positive). The statistical filtering step employed here, which elim-
inates voxels with high WMS (such as the voxel shown in Fig. 5A), is a
Table 3
Spatial reliability coefficients for pain-activated regions across stimulus conditions.

Region of interesta 48 °C stimulus (# voxels)

Anterior midcingulate cortex (left) 3520
Anterior midcingulate cortex (right) 4016
Pregenual anterior cingulate cortex (left) 512
Pregenual anterior cingulate cortex (right) 600
Inferior frontal gyrus (left) 8400
Inferior frontal gyrus (right) 13,448
Primary somatosensory cortex (left) 920
Primary somatosensory cortex (right) 1144
Supplementary motor area (left) 3976
Supplementary motor area (right) 4264
Anterior insular cortex (left) 5104
Posterior insular cortex (left) 1224
Anterior insular cortex (right) 5600
Posterior insular cortex (right) 456
Medial prefrontal cortex (left) 9544
Medial prefrontal cortex (right) 5672
Dorsolateral prefrontal cortex (left) 15,560
Dorsolateral prefrontal cortex (right) 23,024
Second somatosensory cortex (left) 2936
Second somatosensory cortex (right) 3056
Thalamus (left) 1192
Thalamus (right) 2040

a Left regions are ipsilateral to the stimulus
b 50VAS is the subject-specific temperature that produced a perceived intensity of 50 on a 0
c Reliability coefficient = (3 × number of common voxels)/(sum of activated voxels in each
conservative approach to address this issue. Fig. 5B shows the average
BOLD response for each session in the voxel in the left IFG with the
highest ICC after the statistical filtering step. This voxel, which is anatom-
ically close to the peak voxel found prior to statistical filtering, shows
muchmore consistent and reliable pain-related responses across session,
and an ICC value (0.73) that more accurately reflects the low intersession
variance.

Intersession reliability of pain-related activation associated with the
48 °C stimulus is summarized in Table 4 and Fig. 6A. Table 4 identifies
the largest cluster of significantly reliable pain-related activation found
in each ROI and the ICC value associated with the peak voxel in the
cluster; additional clusters were also found in most ROIs. Fair-to-
moderate reliability (based on Shrout, 1998) was found in every
50 VASb stimulus (# voxels) Overlap
(# voxels)

Reliability coefficientc

3960 2512 0.672
4296 3080 0.741
560 192 0.358
392 192 0.387
9304 5800 0.655
11,120 10,240 0.834
592 448 0.593
400 312 0.404
3784 2632 0.678
3416 2680 0.698
5776 4856 0.893
848 360 0.347
6544 5336 0.879
408 72 0.167
7560 6968 0.815
5496 4000 0.716
13,552 9824 0.675
16,088 14,712 0.752
2576 2008 0.729
2584 2352 0.834
952 392 0.366
2776 1584 0.658

–100 visual analog scale
session)
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Fig. 5. BOLD fMRI response amplitude in the left inferior frontal gyrus to painful heat stimuli rated 50 on a 0–100 visual analog scale for pain intensity (50VAS). (A) Responses in the voxel
with the peak intraclass correlation coefficient (ICC) value before statistical filtering. (B) Responses in the voxel with the peak ICC after filtering. Values for ICC, between-subject variance
(BMS),within-subject variance (WMS), and residual error variance (EMS) are shown for each voxel. Statisticalfiltering consisted of removing voxelswhereWMS contributed tomore than
1%of the total variance. The value of statisticalfiltering is demonstrated in (A)where the voxelwith thepeak ICC value has highWMS, indicating low reliability, but an artifactually high ICC
due to high BMS and low EMS. Statistical filtering eliminated this voxel, instead identifying a nearby voxel (B) with a peak ICC value and low WMS in the same brain region of interest.
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ROI except (1) contralateral pACC, which showed slight reliability,
and (2) S1, pINS, and ipsilateral thalamus, which contained no clusters
that were significantly reliable across the three sessions. ROIs with the
highest ICCs (the upper portion of the moderate range) included aMCC,
aINS, and several frontal lobe areas. Clusters of significantly reliable
pain-related activation from selected ROIs are shown in Fig. 6A.

Intersession reliability of pain-related activation associated with the
50VAS stimulus is summarized in Table 5 and Fig. 6B. Table 5 identifies
the largest cluster of significantly reliable pain-related activation found
in each ROI and the ICC value associatedwith the peak voxel in the clus-
ter; additional clusters were also found in most ROIs. Fair-to-moderate
reliability (based on Shrout, 1998)was found in every ROI except (1) ip-
silateral pACC and ipsilateral thalamus, which showed slight reliability,
and (2) contralateral pACC, S1, and contralateral pINS, which contained
no clusters that were significantly reliable across the three sessions.
ROIs with the highest ICCs (the upper portion of the moderate range)
included aMCC and S2. Clusters of significantly reliable pain-related ac-
tivation from selected ROIs are shown in Fig. 6B.
Table 4
Brain regions with significantly reliable pain-related signal amplitude associated with 48 °C sti

Region of interesta Largest cluster (mm3) Pe

x

Anterior midcingulate cortex (left) 1144 –1
Anterior midcingulate cortex (right) 704 1
Pregenual anterior cingulate cortex (left) 56 –3
Pregenual anterior cingulate cortex (right) 80 1
Inferior frontal gyrus (left) 392 –4
Inferior frontal gyrus (right) 3096 57
Supplementary motor area (left) 288 –1
Supplementary motor area (right) 704 13
Anterior insular cortex (left) 528 –3
Anterior insular cortex (right) 2232 37
Medial prefrontal cortex (left) 1896 –5
Medial prefrontal cortex (right) 1376 9
Dorsolateral prefrontal cortex (left) 816 –3
Dorsolateral prefrontal cortex (right) 640 45
Second somatosensory cortex (left) 184 –5
Second somatosensory cortex (right) 1152 55
Thalamus (right) 32 7

a Left regions are ipsilateral to the stimulus
The results of the group-level contrast between significantly reliable
pain-related activation for the 2 stimulus types are summarized in
Table 6. Voxelwise ICC values for each stimulus type were contrasted
to obtain these results. The constant temperature stimulus (48 °C) pro-
ducedmore reliable activation than the constant perceived pain intensi-
ty stimuli in aINS (bilaterally), ipsilateral mPFC, and ipsilateral dlPFC;
the converse was found in contralateral IFG, contralateral dlPFC, and ip-
silateral S2. No significant differences in reliability were found for the
other ROIs examined in this study. Thus, though therewere some differ-
ences, no consistent pattern emerged in terms of whether a painful
stimulus of constant temperature or of constant perceived intensity
produced more reliable BOLD fMRI responses.
3.2.3. Perception-dependent responses
Clusters for which pain intensity ratings of the 48 °C stimulus signif-

icantly predicted the magnitude of the BOLD response to the stimulus
were found to be very limited, scattered, and with little overlap across
mulus.

ak voxel in largest cluster

y z ICC F p-value

23 32 0.76 9.908 b 0.001
23 28 0.746 9.314 b 0.001
43 10 0.497 3.992 0.001
37 10 0.39 2.808 0.012

7 17 –4 0.634 6.081 b 0.001
9 22 0.757 10.359 b 0.001
–13 54 0.683 7.048 b 0.001
–11 62 0.593 5.372 b 0.001

3 15 6 0.668 6.95 b 0.001
5 –6 0.721 8.749 b 0.001
49 10 0.688 7.653 b 0.001
59 8 0.771 10.632 b 0.001

3 21 40 0.63 5.899 b 0.001
1 38 0.734 8.967 b 0.001

5 –25 16 0.451 3.506 0.003
–25 18 0.657 6.722 b 0.001
–11 14 0.436 3.169 0.006

image of Fig.�5
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Fig. 6. Representative brain regions with significantly reliable responses to (A) painful 48 °C heat stimuli and (B) painful heat stimuli rated 50 on a 0–100 visual analog scale for pain in-
tensity across 3 sessions conducted on separate days. Color-coded areas represent the largest clusters in a brain region of interest with statistically significant intraclass correlation coef-
ficients (threshold criterion of 6 contiguous voxels equivalent to 127 mm3, each with a voxelwise p b 0.05, resulting in overall corrected p b 0.05). Regions of interest with significantly
reliable pain-related activation included the medial prefrontal cortex (mPFC), anterior insular cortex (aINS), second somatosensory cortex (S2), anterior mid-cingulate cortex (aMCC),
and supplementary motor area (SMA).
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sessions (Supplemental Fig. 1). As a result, a quantitative analysis of ICCs
was deemed unnecessary.
3.2.4. Effect of duration between sessions on intersession reliability
As shown in Supplemental Tables 1, 2, and 3, the effect of duration

between sessions on the reliability of pain- and motor-related fMRI ac-
tivation was minor. The ICCs calculated in our original analysis and the
analysis that took between-session duration into account are compara-
ble and did not differ in a large or consistent way in any pain- or motor-
related region of interest. Thus, the results suggest that with this data
set, the duration between sessions did not contribute significantly to in-
tersession variability.
Table 5
Brain regions with significantly reliable pain-related signal amplitude associated with 50VASa

Region of interestb Largest cluster (mm3) Pea

x

Anterior midcingulate cortex (left) 1296 –3
Anterior midcingulate cortex (right) 888 3
Pregenual anterior cingulate cortex (left) 48 –11
Inferior frontal gyrus (left) 384 –49
Inferior frontal gyrus (right) 2816 45
Supplementary motor area (left) 280 –1
Supplementary motor area (right) 280 1
Anterior insular cortex (left) 336 –47
Posterior insular cortex (left) 40 –37
Anterior insular cortex (right) 832 39
Medial prefrontal cortex (left) 584 –3
Medial prefrontal cortex (right) 328 5
Dorsolateral prefrontal cortex (left) 304 –25
Dorsolateral prefrontal cortex (right) 2200 43
Second somatosensory cortex (left) 1688 –57
Second somatosensory cortex (right) 768 55
Thalamus (left) 16 –5
Thalamus (right) 216 7

a 50VAS is the subject-specific temperature that produced a perceived intensity of 50 on a 0
b Left regions are ipsilateral to the stimulus
3.3. Motor activation

Significant motor-related activation was found in expected brain
ROIs (M1 and SMA) bilaterally. Intersession reliability of the spatial ex-
tent of significantmotor-related activation is shown in Table 7. The spa-
tial reliability coefficient was high in M1 contralateral to the hand
performing the motor task (0.78) but was much lower in contralateral
SMA (0.2). The spatial reliability coefficients in M1 and SMA ipsilat-
eral to the hand performing the motor task were notably lower
than the contralateral regions. Intersession reliability of the ampli-
tude of motor-related activation is shown in Table 7, which identifies
the largest cluster of significantly reliable motor-related activation in
each ROI and the ICC value associatedwith the peak voxel in the cluster;
stimulus.

k voxel in largest cluster

y z ICC F p-value

21 32 0.694 7.823 b 0.001
–1 40 0.781 10.967 b 0.001
33 22 0.392 2.898 0.010
11 28 0.596 5.497 b 0.001
21 10 0.708 8.007 b 0.001
–11 58 0.675 6.874 b 0.001
–9 58 0.613 5.507 b 0.001
5 –2 0.531 4.271 b 0.001
–29 20 0.457 3.449 0.003
17 12 0.636 6.035 b 0.001
53 2 0.706 7.879 b 0.001
55 0 0.69 7.33 b 0.001
11 56 0.619 5.593 b 0.001
41 22 0.696 7.537 b 0.001
–31 20 0.774 10.818 b 0.001
–25 24 0.731 9.296 b 0.001
–3 8 0.289 2.187 0.043
–3 8 0.564 4.649 b 0.001

–100 visual analog scale
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Table 6
Brain regions with significant differences in reliabilitya of pain-related signal amplitude across stimulus conditions.

Region of interestb Stimulus typec Largest cluster (mm3) Z stat x Y z ICC F p-value Reliability result

Inferior frontal gyrus (right) 48 °C 128 –3.87 43 19 –8 –0.308 0.327 0.98065 50VAS N 48 °C
50VAS 128 –3.87 43 19 –8 0.312 2.313 0.03334

Anterior insular cortex (left) 48 °C 296 3.31 –37 15 10 0.61 5.414 0.00013 48 °C N 50VAS
50VAS 296 3.31 –37 15 10 –0.112 0.681 0.76309

Anterior insular cortex (right) 48 °C 208 4.21 35 9 –4 0.451 3.782 0.00189 48 °C N 50VAS
50VAS 208 4.21 35 9 –4 –0.346 0.283 0.98975

Medial prefrontal cortex (left) 48 °C 1000 5.00 –13 57 8 0.689 7.653 0.00001 48 °C N 50VAS
50VAS 1000 5.00 –13 57 8 –0.259 0.406 0.95425

Dorsolateral prefrontal cortex (left) 48 °C 288 3.64 –29 23 44 0.306 2.295 0.03459 48 °C N 50VAS
50VAS 288 3.64 –29 23 44 –0.315 0.313 0.98401

Dorsolateral prefrontal cortex (right) 48 °C 152 –2.83 27 23 46 0.044 1.13 0.37983 50VAS N 48 °C
50VAS 152 –2.83 27 23 46 0.637 6.462 0.00003

Second somatosensory cortex (left) 48 °C 528 –4.03 –49 –25 22 –0.146 0.622 0.81371 50VAS N 48 °C
50VAS 528 –4.03 –49 –25 22 0.684 7.065 0.00001

a Based on voxelwise contrast of significant intraclass correlation coefficients (48 °C stimulus versus 50VAS stimulus)
b Left regions are ipsilateral to the stimulus
c 50VAS is the subject-specific temperature that produced a perceived intensity of 50 on a 0–100 visual analog scale
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additional clusters were also found in these ROIs. Substantial reliability
(based on Shrout, 1998) was found in contralateral M1 (ICC = 0.815)
and moderate reliability in contralateral SMA (ICC = 0.657). Fair reli-
ability was found in M1 and SMA ipsilateral to the hand performing
the motor task. Overall, motor-related activation showed greater reli-
ability than pain-related activation for both the spatial extent and ICC
measures.

4. Discussion

This study quantitatively evaluated across-session reliability of pain-
related BOLD fMRI responses in brain areas that are typically regarded
as part of the cortical pain network. While these brain areas show con-
sistent and often robust activation in fMRI studies across diverse pain
modalities (as reviewed in Duerden and Albanese, 2013), the question
of how reliable this activation is from session to session has not been
comprehensively addressed in the literature. We used two reliability
measures (voxelwise spatial overlap and ICCs based on BOLD response
amplitude) that are commonly used in the literature (Bennett and
Miller, 2010) to assess test–retest reliability of fMRI responses to a
wide variety of conditions (e.g., motor tasks, visual stimulation, memo-
ry) but have not been previously applied to pain. The results revealed
that the two measures of intersession pain-related fMRI activation reli-
ability used in this study produced disparate results, with (1) reliability
based on spatial measures generally low and highly variable across
Table 7
Reliability measures for motor task activation.

Spatial reliability coefficients for motor task-activated regions

Number of significant voxels (each sess

Region of interestb 1 2

Primary motor cortex (left) 2656 3608
Primary motor cortex (right) 80 256
Supplementary motor area (left) 1840 1160
Supplementary motor area (right) 1368 1816

Brain regions with significantly reliable motor task-related signal amplitude

Region of interestb Largest cluster (mm3) Peak vox

x

Primary motor cortex (left) 1984 –33
Primary motor cortex (right) 152 29
Supplementary motor area (left) 760 –1
Supplementary motor area (right) 104 17

Brain regions with significantly reliable motor task-related signal amplitude
a Reliability coefficient = (3 × number of common voxels)/(sum of activated voxels in each
b Left regions are contralateral to the hand performing the task
brain regions and (2) reliability based on signal amplitude (ICCs) in
the fair-to-moderate range for most brain regions.

4.1. Spatial measures of intersession reliability

Spatial reliability coefficients were low for most regions examined,
indicating a low probability that the same voxels are activated across
three separate sessions. The highest spatial reliability coefficients were
found in the aINS for both stimulus types but no spatial overlap across
the three sessions was found for pINS. For both stimulus types, spatial
reliability coefficients were higher in S2 than in S1 or thalamus, which
is consistent with the findings of Taylor and Davis (2009), who used a
different measure of spatial reliability in a study involving mechanical
pain applied across 4 sessions in 6 subjects; their analysis was limited
to S1, S2, and thalamus. While low S1 spatial reliability is in agreement
with the inconsistency of S1 activation across fMRI studies of pain
(Bushnell et al., 1999), the reasons for a total lack of spatial overlap in
pACC are unclear. These results suggest that the precise location of
pain-related activation is not highly reproducible across multiple
sessions, perhaps due in part to variability introduced bymotion correc-
tion, spatial normalization, and spatial smoothing procedures. As noted
by Taylor and Davis (2009), conservative thresholding procedures such
as those used in this study to avoid false positives may add to spatial
variability across sessions by increasing false negatives; for example, a
voxel may be activated by pain in all sessions but be eliminated from
ion) Across-session overlap
(# voxels)

Reliability coefficienta

3

3640 2576 0.78
792 16 0.04
2160 352 0.20
1784 16 0.01

el in largest cluster

y z ICC F p-value

–21 48 0.815 15.58 b 0.001
–25 50 0.443 3.366 .004
–9 54 0.657 7.116 b 0.001
–3 62 0.559 5.794 b 0.001

session)
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one or more sessions if the activation falls slightly below threshold. As a
result, spatial measures do not appear to be ideal for assessing interses-
sion reliability because the threshold criterion has a major influence
upon cluster sizes. However, suprathreshold clusters of voxels in a
brain region may show reliable pain-related BOLD signal amplitude
changes across sessions. To test this possibility, ICCs were calculated
based on pain-related BOLD signal amplitude changes.
4.2. BOLD signal amplitude measures of intersession reliability

ICC calculation is a widely-accepted and commonly used method to
evaluate test–retest reliability (Cacares et al., 2009; McGraw andWong,
1996; Shrout and Fleiss, 1979). This study used a conservative two-step
approach that involved calculating ICCs based on BOLD signal amplitude
changes in suprathreshold voxels and then applying a filtering step to
eliminate voxels with artifactually high ICCs based on the variance
structure of the data. This approach revealed fair-to-moderate interses-
sion reliability of pain-related activation in most regions of the cortical
pain network, based on the conservative classification criteria described
by Shrout (1998). Regional differences in intersession reliability were
found, with the aMCC (bilaterally) containing clusters with the highest
ICCs (≥ 0.7,withmoderate reliability defined as 0.61–0.8) for both stim-
ulus types. Other areas with ICCs in the moderate range included the
aINS and most frontal lobe areas for both stimulus types, as well as S2
for the 50VAS stimulus. Areas with the lowest intersession reliability
based on the ICC analysis also showed no to very low spatial reliability;
these regions included pACC, S1, and pINS for both stimulus types. The
finding of higher ICCs in S2 than S1 is consistent with Taylor and Davis
(2009), though their calculated ICCs were higher than those in this
study, likely because they included responses from subthreshold voxels
in their analysis.
4.3. Regional differences in pain-related intersession reliability

The brain regions that displayed the highest intersession reliability
in this studywere aINS (based on both spatial extent and ICCmeasures)
and aMCC (based on ICCs). Both of these areas have been implicated in
processing affective aspects of pain, and are anatomically and function-
ally connected (Berthier et al., 1988; Friedman et al., 1986; Heimer and
VanHoesen, 2006; Vogt, 2005). Craig (2002, 2003, 2009, 2011) has pos-
tulated that the aINS has a role in generating subjective emotional feel-
ings about the internal state of the body and interacts with the ACC,
which initiates adaptive behavioral responses. Evidence for the involve-
ment of aMCC in emotion-based response selection, including fear
avoidance behavior (Vogt, 2005), provides support for Craig’s model.
Thus, the consistently reliable activation of aINS and aMCC in this
study may highlight the importance of and priority given to processing
emotional-motivational aspects of pain. However, Craig’s model iden-
tifies pINS as the region that generates the initial cortical representation
of the body’s homeostatic condition, providing aINS with information
upon which to generate emotions associated with that representation.
The fact that the pINS had very low intersession reliability in this
study does not fit well with a model of a serial-processing insular sys-
tem in which the anterior region response is highly dependent upon
the posterior region response.

The relatively high ICCs and spatial overlap for contralateral S2 con-
trasts sharply with that of the pINS. Both regions have historically been
considered important in nociceptive processing, and most functional
neuroimaging studies do not describe differences in their nociceptive
processing capacities. The current study reveals the muchmore reliable
responsiveness of the S2 cortex to acute heat stimuli, compared to the
pINS. This difference suggests that S2 has a more essential role in noci-
ceptive processing, at least within the context of responding to repeti-
tively administered acute noxious heat stimuli.
4.4. Comparison of intersession reliability between stimulus types

The second objective of this study was to evaluate whether BOLD
fMRI activation produced by painful heat stimuli of constant tempera-
ture or of constant perceived pain intensity was more reliable. As ex-
pected, spatial overlap of significant pain-related activation between
these two conditions was relatively high, indicating that the experience
of heat pain, regardless of these differences in intensities, activates com-
mon brain areas. This is consistentwith a recent report that pain-related
fMRI activation did not differ for fixed temperature stimuli and percep-
tually equalized stimuli in any brain region, including the pACC, aMCC,
and INS (van den Bosch et al., 2013). The ICC contrast between the
two stimulus conditions showed only a few brain regions where reli-
ability differed (aINS, S2, and some frontal lobe regions). Among these
brain regions, no clear pattern emerged: in some areas the constant
temperature stimuluswasmore reliable across sessionswhile the oppo-
site was found for other areas. Thus, in this paradigm, no definitive con-
clusion can be made regarding intersession reliability differences in
fMRI activation resulting from stimuli of constant temperature versus
stimuli that produce a constant perception. One possible explanation
is that variation in perceived pain intensity is not an important contrib-
utor to the variability of the BOLD response, a notion that is supported
by our finding of only scattered clusters for which pain intensity ratings
significantly covaried with the BOLD signal amplitude response to pain-
ful stimuli. Another possible explanation for failing to find a consistent
difference is that the methodology of the current study (such as vari-
ability in the subject pool or choice of stimuli) did not provide the
range of data adequate to draw out differences. Thus, the possibility re-
mains that in some populations or contexts, pain-related fMRI activa-
tion may be more reliable for stimuli of fixed temperature or fixed
perception; studies that further explore this issue may provide valuable
information to aid in the design of pain imaging experiments.

4.5. Strengths and limitations

Amajor strength of this study is that the analytical approach used to
assess reliability of pain-related activationwas also applied to fMRI data
collected from the same subjects during the same sessions as they
performed a simple motor task (finger-thumb opposition). Using this
approach, intersession reliability of motor-related activation in this
study was found to be comparable to previously published results for
both spatial overlap and ICC measures (Bennett and Miller, 2010;
Gountouna et al., 2010; Havel et al., 2006; Kong et al., 2007; McGregor
et al., 2012; Yoo et al., 2005). This supports the validity and appropriate-
ness of the analytical approach used in this study to assess intersession
reliability of pain-related fMRI activation.

This study is the first to quantitatively examine intersession reliabil-
ity of pain-related fMRI activation in the entire cortical pain network,
expanding upon the work of Taylor and Davis (2009), who limited
their analysis to somatosensory processing regions. Furthermore, this
study is the first to examine reliability of activation evoked by a ramp-
and-hold contact heat stimulus paradigm, which is used in many pain
imaging paradigms, including those assessing changes associated with
pain-reducing manipulations. While the sample size of 14 subjects in
this study is modest, it is the largest used to evaluate intersession reli-
ability of pain-related fMRI activation and is greater than the average
number of 11 subjects across all test–retest fMRI activation studies
(Bennett and Miller, 2010). Furthermore, the diversity of our subjects
in terms of age and gender, which likely added to inter-individual vari-
ability of brain responses, can be viewed as a strength, as the results
should be more generalizable than those obtained from a more homo-
geneous subject population such as undergraduate students, as utilized
in many test–retest fMRI studies (Bennett and Miller, 2010).

Habituation is a possible explanation for finding poor intersession
pain-related fMRI reliability in some brain areas. However, consistent
with published literature for the type of ramp-and-hold contact heat
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stimulus paradigm used in this study (Quiton and Greenspan, 2008),
pain intensity ratings did not change across the three sessions and the
temperatures required to produce subject-specific ratings of 50 on a
0–100 scale did not change over the course of the experiments. Further-
more, the data show no systematic decreases in either number of signif-
icant voxels or signal amplitude changes across the three sessions.
Bingel et al. (2008) required daily application of 60 painful heat stimuli
to the forearm for 8 days before observing perceptual habituation and
decreases in pain-related fMRI responses in the brain. Thus, it is unlikely
that habituation is a major contributor to the poor intersession reliabil-
ity observed for some brain areas in this study.

Intersession reliability may vary based on the number of trials of
painful stimuli. Conclusions from this study, in which 12 trials of each
temperature were applied in each session, may not be generalizable to
studies where the number of trials is significantly different. Increasing
the number of stimuli has the potential to increase statistical power
and intersession reliability; however, it also might introduce dynamic
changes in the BOLD response that would add variability and thereby
decrease intersession reliability. A separate study is needed to deter-
mine how reliability varies as a function of stimulus number.

4.6. Conclusions

Overall, in this paradigm, pain-related BOLD fMRI responses showed
fair to moderate test–retest reliability in brain regions that are part of
the classical pain network. A review of over 63 studies of fMRI test–retest
reliability for various tasks, designs, and test–retest intervals reported the
average ICC value was 0.5 (Bennett andMiller, 2010). The ICCs calculated
in this study formost brain regions were greater than 0.5, suggesting that
pain-related fMRI activation has better than average intersession reliabil-
ity. The finding that some brain regions showed stronger test–retest reli-
ability than others may provide useful information to guide longitudinal
pain studies. In addition, the study findings led to the following recom-
mendations for test–retest reliability analyses: (1) Spatial extent and lo-
calization of activation do not appear to be useful measures of fMRI
response reliability at the group level. (2) The use of ICC values alone as
a measure of reliability may not be sufficient, as the underlying variance
structure of a dataset may result in erroneously high ICC values. Methods
to eliminate erroneously high ICC values (such as the filtering step used in
this study) should be incorporated into any analysis of this type.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2014.07.005.
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