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ABSTRACT
Dengue Hemorrhagic Fever (DHF), a more severe form of dengue, is one of the most 
rapidly spreading mosquito-borne diseases in the world. This study is motivated by the 
rising DHF incidence in Jakarta, the capital city of Indonesia. We mainly utilized hot spot 
analysis, which employs spatial statistics to find at-risk areas for DHF outbreaks in Jakarta’s 
five municipalities. However, producing informative results from hot spot analysis requires 
a complete set of data on each of Jakarta’s 42 districts, which is not available. We thus 
propose the idea of using small area estimation (SAE) and machine learning to make up 
for the lack of data. To evaluate whether this proposed method is effective, we compare 
the hot spot results from the estimation with the actual data of each district. The results 
show that the estimated hot spot map is similar to the hot spot map from the actual data. 
This implies that it is possible to find potential at-risk areas of dengue fever without 
a complete dataset in every small geographic area. We expect that this research can 
increase the performance of DHF control measures at the district level, even in the 
absence of small area data.
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Introduction

Dengue is a serious disease whose primary vector is 
the Aedes aegypti mosquito. Dengue Hemorrhagic 
Fever (DHF), a more severe form of dengue, is one 
of the most rapidly spreading mosquito-borne viral 
diseases worldwide [1]. According to the World 
Health Organization (WHO) [1,2], the incidence of 
dengue has increased over eightfold in the last two 
decades, from around 500 thousand cases in 2000 to 
over 4.2 million cases in 2019. The reported death toll 
has also increased significantly, from 960 in 2000 to 
4,032 in 2015. While the disease is endemic to more 
than 100 countries, Asia is still the most affected 
region, with around 70% of DHF incidents happen
ing in the globe.

A variety of recent research and case studies on 
dengue has been done in areas like China [3], 
Malaysia [4], Spain [5], and Africa [6]. In this 
paper, we focus on Jakarta, the capital city of 
Indonesia. Although some programs have been 
initiated and efforts to control DHF have been 
made in Indonesia, the DHF incidence and case fatal
ity rate are still high and not showing any significant 
changes. This is due to several challenges, such as the 
dense population in the city, lack of community 
awareness, and lack of access to health centers [7]. 

As one of the most populated cities in the country, 
Jakarta has a significant public health burden due to 
its DHF outbreaks. According to Indonesia’s Ministry 
of Health, there were 3,352 cases of DHF in Jakarta 
throughout 2017, with 32.41 citizens infected for 
every 100,000 citizens [8].

There are several factors as to why dengue fever is 
difficult to control. One such factor is difficulty in 
finding vector breeding sites. However, several tech
niques of spatial analysis have proven to be helpful 
for tackling this problem. Additionally, Guo et al. [3] 
employed machine learning techniques to develop 
prediction models for future incidence, including 
support vector regression (SVR), which we discuss 
in this paper. We followed this computational 
approach and applied various machine learning algo
rithms to our problem.

Hot spot analysis is a spatial statistical technique that 
is being employed more frequently as time goes on. It is 
a method for determining clusters of interest in the 
region of study. This technique has various applications 
in epidemiology, where it can be used to find at-risk 
areas for potential outbreaks [9,10]. It also has several 
applications in other fields of research [11,12].

Despite their utility, hot spot analysis requires 
a sufficient number of geographical areas to be able 
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to produce reliable and useful information. The inci
dence of DHF and meteorological datasets involving 
Jakarta, provided by Indonesia’s Meteorology, 
Climatology, and Geophysical Agency and the 
Jakarta Health Department, are mostly only available 
at a municipal level consisting of only five geographi
cal areas. As such, hot spot analysis will not produce 
a useful result if applied directly.

To solve this data-related limitation, we attempt to 
estimate the incidence at the district level (which 
consists of 42 geographical areas) using the data at 
the municipal level with the help of some demogra
phical information around the districts. This idea is 
inspired by the method of small area estimation 
(SAE), which has been known to solve similar pro
blems in different fields of research [13–15]. Machine 
learning methods, especially supervised learning, are 
then used to improve this idea and obtain a more 
accurate result in our estimation.

The primary aim of this study is to help 
Jakarta’s public officials predict areas at risk of 
an outbreak using the available data as an early 
warning mechanism. Our secondary aim is to 
evaluate whether our method of hot spot analysis, 
predictive modeling, and small area estimation can 
produce an accurate hot spot map when compared 
to the map produced with the actual data despite 
some data deficiency. We expect that this study 
can be applied to future DHF control efforts and 
preventive programs so that priority can be given 
to high-risk districts.

Materials and methods

Data collection and analysis

The datasets used for this study consisted of daily 
numerical data on DHF incidence and weather 
(including average temperature, rainfall, and average 
relative humidity) of five municipalities in Jakarta 
(consisting of West, East, North, South, and Central 
Jakarta). The datasets for incidence and weather 
were provided by the Jakarta Health Department 
and Indonesia’s Meteorology, Climatology, and 
Geophysical Agency, respectively, and were entered 
in Microsoft Excel. The daily data were converted 
into weekly data, comprising of 455 weeks from 
January 2009 to September 2017.

The dataset for the years 2009 to 2016 contained 
information on each of the municipalities taken as 
one whole. That is, the data did not provide details 
on each district of the municipalities before 2017. 
Hence, we would like to only use the data at the 
municipal level (before the data is elaborated at the 
district level) to predict the incidence of 2017. Using 
the programming language R, we used SVR to 
develop the required prediction model. Afterward, 

we employed some SAE techniques via Python to 
convert the predicted municipal level data so that 
they were at a district level. The resulting hot spot 
map from these data were then compared with the 
hot spot map obtained from the actual district-level 
data of 2017.

Predictive modeling

A predictive model is used to predict an outcome 
when information is incomplete and to extrapolate 
based on similar conditions [16]. In other words, it 
is a model that serves to give predictions of future 
events based on patterns observed in the past. In our 
case, we trained the model using the incidence and 
weather data obtained from 2009 to 2016 to predict 
the incidence in 2017 with sufficient accuracy. Of 
the multiple ways to construct a predictive model, 
we only considered a certain type of multivariate 
regression method. Specifically, we use SVR, as it is 
the most accurate method based on the case study 
done previously in [3]. SVR is classified as 
a supervised learning algorithm.

Supervised learning

Machine learning involves the study of computer 
algorithms that are trained through a learning pro
cess. These algorithms can be used to develop 
a mathematical model based on a sample of data 
called the training data. Supervised learning is 
a subset of machine learning where the training 
data is already labeled. For example, a regression 
model evaluates some labeled data to predict the 
labels of the other unlabeled data. Commonly used 
supervised learning algorithms include linear regres
sion, decision tree, K-nearest neighbors, random 
forest, and extra tree regressor [17,18]. An extensive 
discussion on machine learning, including both 
supervised and unsupervised approaches, can be 
found in [17].

SVR

The regression model for support vector regression 
(SVR) is in the form

where x is a vector consisting of the predictor vari
ables, xi is a data point from the training dataset in 
the form of a vector, wi and b are constants, and 
K xi; xð Þ is a type of function known as the kernel 
function. For more details, see Bishop [17].

In this study, we chose incidence, average tempera
ture, rainfall, and average relative humidity (all 
observed a few weeks previously) as our four predictor 
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variables. Hence, x and xi are four-dimensional vectors. 
We used the linear kernel K xi; xð Þ ¼ xi � x, which is 
found to produce a more accurate result for this type 
of problem in [19].

SAE

The term ‘small area’ is commonly used to indicate 
a small geographical area, such as a county or dis
trict. In general, small areas can denote any domain 
for which direct estimates of adequate precision 
cannot be produced [20]. A study involving the 
estimation of a small area parameter is called SAE. 
Specifically, SAE is a statistical technique of estimat
ing a parameter in a small sub-population when the 
data sampling for the parameter of interest is done 
in larger geographical areas. Statistical references for 
SAE can be found in [20,21].

An example of its application can be seen from the 
study by Stasny et al. [13]. They attempted to esti
mate wheat production at a county level from the 
indicator variables of the region where the country 
is located and other predictor variables such as acres 
planted, acres harvested, and previous wheat produc
tion in the county. In this study, we used the simplest 
SAE models, including a direct proportion model and 
a regression model.

Hot spot analysis

According to [22], a hot spot analysis can indicate 
where the clusters in our dataset are and how signifi
cant they are. The areas indicated by the significant 
clusters, called hot spots, are areas with a risk for 
dengue infections. There are a few statistics that are 
in common use for hot spot analysis, one of which is 
the Getis-Ord Gi* statistic (or simply the Gi* statistic) 
[23]. This statistic is defined by the following formula:

where i and j indicate two areas in the study region, 
G�i is the value of Gi* statistic in i, xj is the parameter 
of interest in j (the number of incidents in our case), 
and wij is the weight of the relationship between i and 
j. The Gi* statistic measures the degree of association 
between areas within the study region [23]. The 
greater the Gi* value, the higher is the significance 
of an area.

Figure 1 shows the flowchart for the implementation 
of our hot spot analysis. Firstly, the spatial data consist
ing of the incidence and geographical information of 
every area was entered. Secondly, a spatial weight 
matrix W ¼ wij

� �
needed to be chosen. The queen 

contiguity matrix is a very common spatial weight 

matrix in various applications [24,25]. In this type of 
matrix, the value of wij is 1 if areas i and j are adjacent 
and 0 otherwise. Thirdly, the hot spot confidence level 
for every area in the study region was obtained by first 
calculating the corresponding z-score. The calculation 
of zGi� makes use of the following formula:

where n is the number of areas in the study region,
�X ¼

P
j
xj

n , and S ¼
P

j
x2

j

n � �X2. Since there are 42 
districts to be analyzed in Jakarta, we have n ¼ 42.

Each area was put into a color-based category 
based on its hot spot confidence level. We use red 
to denote a hot spot with a 99% confidence level, 
orange to denote a hot spot with a 95% confidence 
level, and beige to denote a hot spot with a 90% 
confidence level. If the confidence level is below 
90%, then we color the area in white to show that it 
is not classified as a hot spot. The resulting hot spot 
map illustrates which cluster of areas requires the 
most urgent attention.

Results

Prediction of future DHF incidence by 
municipality

We used the available DHF incidence and weather 
data (which include data on temperature, rainfall, and 
humidity) from 2009 to 2016 to estimate municipal
ity-level incidence in 2017. Figure 2 provides predic
tions of DHF incidence in each municipality between 
May and September of 2017 (for a total of 20 weeks) 
that are obtained from the SVR model.

We can see that the SVR prediction fits the actual 
graphs quite closely. For a numerical illustration of 
the accuracy of the SVR model, Table 1 presents the 
predicted and actual incidence in the third week of 
September 2017. While the predicted values are 
mostly lower than the actual values, the overall results 
are, nevertheless, sufficiently accurate to predict the 
trend of future incidence.

Estimation of future DHF incidence by district

The prediction of DHF incidence by municipality was 
processed along with demographical data (area and 
population of districts) to estimate the DHF inci
dence of every district. Jakarta has five municipalities, 
which can be broken down to 42 districts. Estimating 
the incidence on a district-level basis allows us to 
conduct a proper hot spot analysis.
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Table 2 shows the performance of several SAE 
models in estimating district-level incidence from 
data consisting of municipal-level incidence. We 
applied two proportion-based approaches and five 
supervised learning techniques. The proportion of 
area method estimates a district’s incidence by 
multiplying its municipal’s incidence by the ratio 
between the district’s area and its municipal’s area. 
In contrast, proportion of population uses the 
ratio between the district’s population and its 
municipal’s population. From Table 2, we find 
that supervised learning methods (apart from 
K-nearest neighbors) perform better than propor
tion-based methods in terms of mean squared 
error (MSE) and mean absolute error (MAE).

Table 2 further shows that the random forest 
model has the least number of errors compared to 
other models that we used. The random forest 
algorithm produced an estimation with an MSE 
of 1.10 and an MAE of 0.71, indicating that the 
overall estimation deviated from the actual data by 
about one case. A comparison between the estima
tion results of the random forest model and the 
actual data is provided in Table 3.

Hot spot analysis

After the incidence estimates of each of Jakarta’s 42 
districts were compiled, the last step was to conduct 
a hot spot analysis. This analysis is done on both the 
estimation and actual data for evaluative purposes, 
and Figure 3 illustrates the hot spot map for both.

Discussion

Overall, the SVR predictive model gave reasonably 
accurate municipality-level incidence estimates, 
which is in accordance with the findings of [3,19]. 
As observed in Figure 2, while the model tends to 
underestimate the number of cases, the overall trends 
and patterns of future incidence are reliably captured. 
This is a crucial first step to ensure that the estima
tion performed at the district level and the resulting 
hot spot map produce sufficiently accurate results.

The performance results of Table 2 show that 
simply dividing the incidence of each municipality 
to its districts in terms of area resulted in a poor 
estimation at the district level. The MSE and MAE 
of the estimates are 3.55 and 1.38, respectively, which 
are higher than most other models. Dividing in terms 
of population resulted in a markedly better estima
tion, but it still paled in comparison to machine 
learning algorithms, such as the decision tree and 
the extra tree regressor. The K-nearest neighbors 
algorithm gave the worst MSE out of all the models, 
which is in line with its poor accuracy in some past 
studies [26–28]. In general, however, the advanced 
machine learning methods produced a better estima
tion than merely calculating the proportions of the 
area and population of each district.

The notable accuracy of the random forest model 
compared to other models in Table 2 is due to its 
high performance as a machine learning algorithm in 
general [29–32]. We note, however, that the DHF 
incidence of each district ranges between 0 to 6; 
thus, the district-level incidence estimation error is 
still somewhat significant. However, considering that 
we applied the SVR and the random forest models in 
succession, each of which decreased the accuracy of 
the estimation, we feel that the results are satisfactory.

As observed in Table 3, there are slight errors in the 
incidence estimation. However, we were still able to 
capture the high and low patterns of the data. This is 
important so that hot spot areas are not designated as 
non-hot-spot areas by mistake or vice versa. To further 
check the quality of the model, we can calculate the 
coefficient of determination R2 of the estimation 
results [33]. The coefficient of determination measures 
the correlation between the estimated values and the 
actual values. An R2 value greater than 0.50 means that 

Figure 1. The hot spot analysis algorithm by the Getis-Ord 
Gi* statistic.
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the correlation level is strong [34]. A score of R2 ¼ 1 
leads to an estimated hot spot map that is identical to 
the actual hot spot map. We calculated that the results 
of the random forest algorithm produced a score of 
R2 ¼ 0:8018. Therefore, we expect that the hot spot 
maps generated by the estimation and actual data have 
some degree of similarity.

As expected, we can see from Figure 3 that the 
hot spot map constructed from the estimated values 

was quite similar to the one constructed using actual 
data. For example, the districts of Koja, Kelapa 
Gading, Tanjung Priok, Cilincing, and Cakung 
were all hot spots in the two maps, with Koja and 
Kelapa Gading having the same confidence level in 
both maps. We note that four of these five districts 
are located in North Jakarta, a municipality that has 
become a central interest for a study on DHF in the 
past [35]. On the other hand, the estimated map 
contained slight deviations from the actual map. 
For example, the district of Duren Sawit was desig
nated as a hot spot in the actual hot spot map, while 
it was not so according to the estimated hot spot 
map. Moreover, the confidence levels of some hot 
spots were different compared to the actual hot spot 
map, namely Tanjung Priok, Cilincing, and Cakung. 
Despite this, the overall estimation was still able to 
denote the cluster of areas with a high risk of dengue 
outbreak.

We note that from Table 3, there are 24 out of 42 
districts whose DHF estimates do not match with the 
actual data. This contrasts with the accuracy of the hot 
spot map which correctly classifies the hot spot category 
of all but only four districts. Notable examples include 
the districts of Kalideres and Penjaringan (top left part 
of the map). Although the estimates for these districts 
are both equal to 2 instead of the actual 0, neither the 
districts nor their adjacent districts are mistakenly 

Figure 2. A week-incidence graph illustrating the performance of the SVR model over 20 weeks in 2017. The blue graph 
represents the number of incidents obtained by SVR, while the orange graph denotes the actual number of incidents.

Table 1. Results of the SVR model versus the actual data in 
the third week of September 2017.

Municipality Prediction Actual Data

West Jakarta 9.816595 9
East Jakarta 20.930816 26
North Jakarta 8.253456 11
South Jakarta 14.664965 15
Central Jakarta 8.600496 10

Table 2. Performance of SAE models for estimating DHF 
incidence measured by mean squared error (MSE) and 
mean absolute error (MAE).

Model MSE MAE

Proportion of area 3.55 1.38
Proportion of population 2.14 1.06
Linear regression 2.07 1.05
Decision tree 1.59 0.95
K-nearest neighbors 3.90 1.31
Random forest 1.10 0.71
Extra tree regressor 1.56 0.94
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assigned as a hot spot. This suggests that hot spot 
analysis is also quite robust to these estimation errors.

The main limitation of this study lies in the accuracy 
of its predictive model. Although it is able to forecast 
future outbreaks, SVR has a tendency to underpredict 
incidence, especially during spikes of cases [19]. This 
prediction error carries over to the SAE and hot spot 
analysis performed afterward, which causes some dis
cordance between estimated and actual data, as 
observed in Table 3 and Figure 3. Therefore, it is 
necessary to consider how to improve the performance 
of the predictive model. One option is to consider 
models other than regression in future studies, such 
as ensemble and deep learning models [36,37]. 
Furthermore, the addition of predictor variables 
besides the weather and previous incidence could be 
beneficial for the performance of the model.

Another limitation of this study is the lack of 
mosquito time series data in Jakarta. It is well 
known that dengue is a vector-borne disease, and 
the dynamics of mosquitoes determines the rapid 
spread of dengue in the community. In some refer
ences, the authors try to accommodate the dynamics 
of mosquitoes into their prediction method [38,39] 
using systems of ordinary differential equations. 
Further improvements of our method can be done 
in the direction of using vector dynamics to obtain 
better results.

We believe that determining hot spots at the district 
level is important, as it then becomes possible to mini
mize the burden of the disease by focusing on the areas 
at risk. From this research, we urge local public officials 
to focus on areas surrounding North Jakarta to prevent 
future DHF outbreaks. We hope that the SAE methods 

Table 3. Actual and estimated DHF incidence 
by the random forest model compared side by 
side. The estimated values are rounded to the 
nearest integer.

District
Actual DHF 
incidence

Estimated DHF 
incidence

Cakung 3 3
Cempaka Putih 1 1
Cengkareng 1 2
Cilandak 0 1
Cilincing 4 6
Cipayung 2 2
Ciracas 2 3
Duren Sawit 3 3
Gambir 0 0
Grogol 

Petamburan
1 1

Jagakarsa 4 3
Jatinegara 2 2
Johar Baru 0 1
Kalideres 0 2
Kebayoran 

Baru
1 2

Kebayoran 
Lama

4 3

Kebon Jeruk 2 1
Kelapa Gading 2 3
Kemayoran 4 2
Kembangan 1 1
Koja 6 4
Kramat Jati 1 2
Makasar 2 2
Mampang 

Prapatan
2 2

Matraman 2 2
Menteng 0 1
Pademangan 3 1
Palmerah 1 1
Pancoran 1 2
Pasar Minggu 4 3
Pasar Rebo 2 2
Penjaringan 0 2
Pesanggrahan 1 1
Pulo Gadung 5 4
Sawah Besar 0 1
Senen 0 1
Setiabudi 1 1
Taman Sari 0 0
Tambora 6 5
Tanah Abang 5 2
Tanjong Priok 5 5
Tebet 2 2
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performed in this study can be adopted in other regions 
where local data is a limited resource [40,41] as an early 
warning mechanism for future dengue outbreaks.

Conclusion

The aim of this research is to develop a spatial method 
for finding at-risk areas for DHF outbreaks using 
Jakarta as a case study. At the time of this research, 

Jakarta’s meteorological data collection are available 
only up to the municipal level. Thus, we incorporate 
SAE and machine learning to estimate incidence at the 
district level. The results of the estimation by the SVR 
and random forest algorithms in succession produce 
relatively accurate estimates, even though we only have 
the area and population of each district as supporting 
datasets. As we compare the hot spot map generated by 
the estimation results, we conclude that the map has 

Figure 3. Hot spot map constructed from the DHF incidence estimation (top) and from the actual data (bottom).
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a high degree of similarity compared to the actual hot 
spot map. Hence, it is possible to conduct a hot spot 
analysis in Jakarta without the district data with some 
degree of accuracy. We expect that this result will be 
helpful in countries lacking in small area data. Finally, 
we hope that this research can be an inspiration for 
better spatial models in the future.
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