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Background. We analyzed the n6-methyladenosine (m6A) modification patterns of immune cells infiltrating the tumor mi-
croenvironment of breast cancer (BC) to provide a new perspective for the early diagnosis and treatment of BC.Methods. Based on
23 m6A regulatory factors, we identified m6A-related gene characteristics and m6A modification patterns in BC through
unsupervised cluster analysis. To examine the differences in biological processes among various m6A modification modes, we
performed genomic variation analysis. We then quantified the relative infiltration levels of different immune cell subpopulations
in the tumor microenvironment of BC using the CIBERSORT algorithm and single-sample gene set enrichment analysis.
Univariate Cox analysis was used to screen for m6A characteristic genes related to prognosis. Finally, we evaluated the m6A
modification pattern of patients with a single BC by constructing the m6Ascore based on principal component analysis. Results.
We identified three differentm6Amodification patterns in 2128 BC samples. A higher abundance of the immune infiltration of the
m6Acluster C was indicated by the results of CIBERSORTand the single-sample gene set enrichment analysis. Based on the m6A
characteristic genes obtained through screening, the m6Ascore was determined. +e BC patients were segregated into m6Ascore
groups of low and high categories, which revealed significant survival benefits among patients with low m6Ascores. Additionally,
the high-m6Ascore group had a higher mutation frequency and was associated with low PD-L1 expression, and the m6Ascore and
tumor mutation burden showed a positive correlation. In addition, treatment effects were better in patients in the high-m6Ascore
group. Conclusions. In case of a single patient with BC, the immune cell infiltration characteristics of the tumor microenvironment
and the m6A methylation modification pattern could be evaluated using the m6Ascore. Our results provide a foundation for
improving personalized immunotherapy of BC.

1. Introduction

As a common malignant tumor amongst women, breast
cancer (BC) happens to be the fifth leading reason for
cancer-related mortalities across the world. Of all cancer
cases, 11.7% or approximately 2.3 million new cases of BC
were recorded in 2020, and the incidence of female BC is
increasing each year [1, 2]. Diagnostic and treatment ad-
vancements have recently led to substantial reductions in the
mortality rate of BC [3]. However, many patients with BC
have a poor prognosis. Studies of the tumor microenvi-
ronment (TME) have clarified the roles of key immune cell
subgroups in the occurrence and development of cancer
[4–6]. Harao et al. found a significant link between the
density of CD8+ Tcells and immune escape of BC, as well as

the infiltration of CD4+ T cells and CD8+ T cells with BC
prognosis [7]. In addition, specific immune checkpoint
inhibitors such as CTLA-4, PD-1, and PD-L1 have dra-
matically changed the current status of cancer treatment and
are beneficial for the overall survival (OS) of a variety of
patients with cancer [8, 9]. CTLA-4-, PD-1-, and PD-L1-
specific antagonists have also made progress in clinical trials
of BC [10, 11]. For developing new immunotherapeutic
strategies and predicting the response to the existing im-
mune checkpoint inhibitors, it is crucial to assess the im-
mune infiltration based on the characteristics of the TME
[12–14]. +erefore, by comprehensively analyzing the
complexity and heterogeneity of the TME, potential bio-
markers can be identified to help guide and predict the
response to immunotherapy [13, 15].
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Among more than 100 RNA modifications, the most
common is n6-methyladenosine (m6A) [16]. In global
cellular RNA, m6A occurs on 0.2–0.4% of all adenosine and
approximately 50% of all methylated ribonucleotides [17].
Modification of m6a regulates addition, removal, and
recognition through methyltransferase “writers,” de-
methylase “erasers,” and binding protein “readers,” re-
spectively [18–21]. Previous studies showed that m6
methylation can regulate mRNA splicing, expression,
nuclear export, and translation and has an important role
in the development of tumors [22–25]. Many previous
studies demonstrated that m6A methylation can regulate
mRNA splicing, expression, decay, and translation and
plays an important role in various cellular pathways and
biological processes [26, 27]. For early diagnosis and
treatment of cancer, the m6A methylation provides a new
perspective.

+e action mechanism between m6A modification and
the TME-infiltrating immune cells could not be explained
as revealed also from the earlier studies on the mechanism
of the RNA degradation. YTHDF1 in dendritic cells can
recognize and bind m6A-modified mRNA encoding ly-
sosomal cathepsin, promote cathepsin translation, and
inhibit the cross-initiation of dendritic cells [28]. Li et al.
found that the absence of the m6A demethylase ALKBH5
enhanced the sensitivity of tumors to cancer immuno-
therapy and improved the efficacy of immunotherapy [29].
ALKBH5 can affect the lactic acid content of the tumor
microenvironment, tumor-infiltrating Tregs, and myeloid-
derived suppressor cells by regulating the expression and
splicing of target genes. Yang et al. suggested that increased
FTO expression can promote the growth of melanoma by
reducing m6A methylation in PD-1, CXCR4, and SOX10
and preventing their RNA from YTHDF2-mediated decay
[30]. Knockout of FTO in melanoma cells increased the
sensitivity of tumor cells to interferon gamma and en-
hanced the response of mice to anti-PD-1 antibodies.
However, previous studies focused on only a few m6A
regulatory factors and the antitumor effects of these reg-
ulatory factors are achieved in a highly coordinated
manner by many tumor suppressors. Additionally, m6A
regulatory factors can be comprehensively evaluated if
transcriptomic and genomic data are accumulated, such as
through high-throughput sequencing analysis. +erefore,
identifying and analyzing the characteristics of TME cell
infiltration mediated by multiple m6A regulatory factors
are beneficial for promoting immunotherapy development
[31, 32].

In this study, we used the Gene Expression Omnibus
(GEO) and +e Cancer Genome Atlas (TCGA) databases
to download the clinical information and transcriptome
data of 2128 BC samples. +e association between the
TME cell infiltration and the m6A modification patterns
was analyzed comprehensively. +ree distinct patterns of
m6A modification were detected, and hence, to measure
the patterns of the m6A modification of BC, a scoring
scheme was developed. Our results indicate that m6A
modification is important for improving current BC
treatments.

2. Materials and Methods

2.1. Collection of BCData. Using the GEO (http://www.ncbi.
nlm.nih.gov/geo/) and TCGA (https://tcga-data.nci.nih.gov/
tcga/) databases, we collected clinical information and
transcriptome data on BC samples. We included seven
datasets, specifically GSE48390.txt, GSE58812.txt,
GSE88770.txt, GSE131769, GSE42568, GSE20685, and
TCGA-BC. Downloading of the genomic mutation data of
the patients with BC was done from the database of the
TCGA. For the TCGA-BC dataset, we used the R package
TCGAbiolinks to convert the fragments per kilobase of
transcript per million mapped reads value into a transcript
with a million per thousand base value [33]. +e R package
“SVR” was employed to manage batch effects among various
datasets [34]. +e copy number variation (CNV) map of the
23 m6A regulators on the human chromosome was gen-
erated using the R package “RCircos.”

2.2. Cluster Analysis of 23 m6AModulators. We collected 23
m6A regulatory genes, including eight writers (METTL3,
METL14, METL16, WTAP, VIRMA, ZC3H13, RBM15, and
RBM15B), 13 readers (YTHDC1, YTHDC2, YTHDF1,
YTHDF2, YTHDF3, HNRNPC, FMR1, LRPPRC,
HNRNPA2B1, IGFBP1, IGFBP2, IGFBP3, and RBMX), and
two erasers (FTO and ALKBH5).

To determine the various patterns of the m6A modifi-
cation, an unsupervised cluster analysis was conducted,
based on the 23 m6A regulatory genes. +e optimal number
of clusters was selected according to the coefficients of
contour, dispersion, and symbiosis. +e R package Con-
sensusClusterPlus was utilized to perform the cluster
analysis.

2.3. Functional Annotation and Gene Set Variation Analysis.
Using the R package “GSVA,” gene set variation analysis
(GSVA) enrichment analysis was performed to examine the
differences in biological processes among the various m6A
modification modes. For GSVA, we downloaded the gene set
of “h.all.v7.4.symbols.gmt” from the MSigDB database [35].
Using the R package “clusterProfiler,” the functional an-
notation was conducted. A false discovery rate of <0.05 was
set as the cutoff value.

2.4. Analysis of Immune Cell Infiltration between Different
m6A Modification Modes. +e relative abundance of each
immune cell type infiltrating the TME of BC was determined
by conducting a single-sample gene set enrichment analysis.
We evaluated activated CD8 Tcells, activated dendritic cells,
macrophages, natural killer T cells, and regulatory T cells.
Using the enrichment score obtained from the single-sample
gene set enrichment analysis, the relative abundance of each
immune cell type was specified.

2.5. Analysis of Differentially Expressed Genes between Dif-
ferent Types of m6A. Patients with BC were clustered into
three groups based on different m6A modification patterns.
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To identify the differentially expressed genes (DEGs) be-
tween the modes of the three m6A modifications, the R
package “limma” was used [36]. A P< 0.001 was considered
to indicate a DEG.

2.6. Construction of m6A Gene Signature. First, we used
univariate Cox for gene prognosis analysis based on the
overlapping DEGs between different m6Aclusters and se-
lected genes, with significant effects on prognosis for sub-
sequent analysis, with P< 0.05 as the cutoff value.
Segregating the patients into three groups for subsequent
analysis, to analyze the prognostic-related genes, an unsu-
pervised clustering method was applied. Finally, the gene
expression profiles for principal component analysis were
consolidated, and principal components 1 and 2 were
extracted as feature scores. +is method primarily con-
centrates on the score of the set with the most significantly
correlated or inversely correlated gene block in the set.
Simultaneously, it weighs the contribution of untracked
genes to other set members. We constructed the m6A gene
signature using a previously described formula [37, 38],
m6Ascore� (PC1i + PC2i), where i is the expression of
genes related to the m6A phenotype.

2.7. Statistical Analysis. R-3.4.2 was used for statistical
analysis. To determine the differences between the multiple
groups, the one-way analysis of variance and the Krus-
kal–Wallis test were conducted [39]. For segregating the
samples into low- and high-m6Ascore groups, the “surv-
cutpoint” function was applied. +e Kaplan–Meier method
was used to draw the survival curve for prognostic analysis.
+e waterfall function in MAFtools package was used to
evaluate the mutation status of both groups of patients,
specifically those with low- and high-m6Ascore subtypes.
+e result with P value <0.05 was considered to be statis-
tically significant.

3. Results

3.1. m6A Regulators in BC and 5eir Genetic Variation
Landscape. We studied the role of 23 m6A regulatory genes
in BC, including eight writers (METTL3,METL14,METL16,
WTAP, VIRMA, ZC3H13, RBM15, and RBM15B), 13
readers (YTHDC1, YTHDC2, YTHDF1, YTHDF2,
YTHDF3, HNRNPC, FMR1, LRPPRC, HNRNPA2B1,
IGFBP1, IGFBP2, IGFBP3, and RBMX), and two erasers
(FTO and ALKBH5). First, we determined the incidence of
CNV and somatic mutations in 23 m6A regulatory factors in
BC. Figure 1(a) shows that 57 of 986 samples had mutations
in the m6A regulatory factor, with a frequency of 5.78%. A
mutation frequency of 1% was observed in YTHDF3,
WTAP, HNRNPA2B1, FMR1, YTHDF1, RBM15, LRPPRC,
and ZC3H13. Five writers (METTL3, METL14, METL16,
VIRMA, and RBM15B), eight readers (YTHDC1, YTHDC2,
YTHDF2, HNRNPC, IGFBP1, IGFBP2, IGFBP3, and
RBMX), and two erasers (FTO and ALKBH5) were not
mutated. Further analysis of the 23 m6A regulatory factors
in BC revealed that CNV mutations in 23 m6A regulatory

factors were common. VIRMA, YTHDF1, YTHDF3,
HNRNPC, METL3, YTHDC1, FTO, FMR1, and RBMX
showed extensive CNV amplification. In contrast, WTAP,
RBM15, ZC3H13, YTHDF2, and RBM15B contained
common CNV deletions (Figure 1(b)). Figure 1(c) shows the
changes in the positions of the CNVs of the 23 m6A reg-
ulatory factors in human chromosomes. Around 23 m6A
regulators completely distinguished the BC tumor samples
from the normal samples by performing the principal
component analysis of the BC samples (Figure 1(d)). Ad-
ditionally, in patients with BC, by exploring the mRNA
expression levels of these factors between the tumor and the
normal samples, we could determine if the expression of the
m6A regulatory factors was impacted by the genetic vari-
ations above. +e results indicate that changes in CNV lead
to changes in m6A regulatory factors. +e expression of
METTL14,METTL16,WTAP, ZC3H13, YTHDC1, IGFBP1,
IGFBP3, and FTO in normal tissues was higher than that in
tumor tissues. In contrast, the expression of VIRMA,
RBM15, YTHDF1, YTHDF2, HNRNPC, FMR1, LRPPRC,
HNRNPA2B1, and IGFBP2 in tumor tissues was higher than
that in normal tissues (Figure 1(e)). +ese results show that
the genetic variation and expression of m6A regulatory
factors significantly differed between tumor and normal
samples and may be vital for BC development and
occurrence.

3.2. Pattern of m6A Modification in BC Was Mediated by 23
Regulatory Factors. We included seven datasets with clinical
information (TCGA-BC, GSE48390.txt, GSE58812.txt,
GSE88770.txt, GSE20685, GSE42568, and GSE131769) for
subsequent analysis. Figure 2(a) shows the m6A regulatory
factor network, which revealed interactions between 20m6A
regulatory factors and the prognostic significance of the
regulatory factors in patients with BC. A significant corre-
lation was found among the m6A regulators in the same
category, as well as in erasers, readers, and writers. In the
formation of distinct m6A modification patterns, the link
between erasers, readers, and writers may be vital and impact
the development and occurrence of BC. We next performed
unsupervised cluster analysis based on the expression of
m6A regulatory factors to classify samples with different
m6A modification patterns and finally determined three
different modification patterns: m6Acluster A (494 cases),
m6Acluster B (940 cases), and m6Acluster C (694 cases)
(Figures 2(b)–2(d)).

3.3. Immune Landscape Features in Different m6A Modifi-
cation Modes. +e GSVA for enrichment was performed to
investigate the biological behaviors of the three different
m6A modification modes (Figures 3(a)–3(c)). +e results of
GSVA showed that m6Acluster A showed a higher associ-
ation with protein secretion, mitotic spindle, and G2M
checkpoint. m6Acluster B showed a higher association with
myogenesis, KRAS signaling, and estrogen response late.
m6Acluster C showed a higher association with allograft
rejection, complement, IL-6 JAK STAT3 signaling, in-
flammatory reaction, and interferon-c reaction. In addition,
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we used the deconvolution algorithm CIBERSORT to fur-
ther evaluate the immune infiltration characteristics of the
three m6A modification patterns. +e results showed that
m6Acluster C had better stromal scores, immune scores, and
ESTIMATE scores (Figure 3(d)). We also performed single-
sample gene set enrichment analysis to determine the TME
immune cell infiltration of BC, with the results showing that
immune cell infiltration in m6Acluster C was more abun-
dant, including natural killer cells, macrophages, mast cells,
and plasmacytoid dendritic cells (Figure 3(e)).

3.4. m6A Phenotype-Related DEGs in BC. +ree different
m6A modification patterns showed distinct differences in
the m6A transcription profile (Figure 4(a)). Although un-
supervised cluster analysis based on the expression of m6A
regulatory factors divided patients with BC into three dif-
ferent m6A modification patterns, the underlying genetic
changes and mechanism of action were unclear. +erefore,
we applied the empirical Bayes method to screen DEGs that
overlapped between the three m6A modification patterns,
revealing 2124 DEGs (Figure 4(b)). We also performed gene
function enrichment analysis of these DEGs. Gene ontology
enrichment analysis showed that biological processes such as
cilium organization, transcription corepressor activity, and
ubiquitin protein ligase activity were significantly upregu-
lated (Figure 4(c)). Kyoto Encyclopedia of Genes and Ge-
nomes enrichment analysis showed that biological processes
such as ubiquitin-mediated proteolysis, Salmonella infec-
tion, endocytosis, and AMPK signaling pathway were sig-
nificantly upregulated (Figure 4(d)). Furthermore, we

performed unsupervised cluster analysis based on the DEGs
to verify this adjustment mechanism. To screen the DEGs
related to prognosis, the univariate Cox analysis was con-
ducted which revealed 668 DEGs with P< 0.05. Next, we
performed unsupervised cluster analysis based on the 668
genes and divided the patients into three different genomic
subtypes (gene clusters I–III) (Figures 5(a)–5(c)). +e
clustering results supported that there were three different
m6A methylation modification patterns in BC. Figure 5(d)
shows evident cluster separation between the three gene
clusters. Figure 5(e) shows the different clinicopathological
characteristics of these subgroups. Subsequent survival
analysis revealed significant prognostic differences between
the three different clusters and that gene cluster II was
associated with better survival results (Figure 5(f )). In ad-
dition, between the three different gene clusters, the esti-
mated results of the m6A methylation modification pattern
were found to be consistent with the significant differences
in the expression of them6A regulatory factors (Figure 5(g)).
We also conducted single-sample gene set enrichment
analysis, which showed that immune cells in gene cluster III
were more permeable, including B cells, CD4 T cells, CD8
T cells, dendritic cells, natural killer cells, and MDSCna
(Figure 5(h)).

3.5. m6A Gene Signature, Function Annotation, and Clinical
Significance. +e findings described above were based on
patient populations and thus could not accurately predict the
m6A modification pattern in a specific patient sample.
+erefore, to quantify the m6A pattern of a single patient
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Figure 1: Genetic mutation landscape of m6A regulatory factors in breast cancer. (a) +e mutation frequency of 23 m6A regulatory factors
in 986 patients with breast cancer in the TCGA-BC cohort was 5.78%. Each column represents a single patient. +e bar graph above shows
the tumor mutation burden, and the numbers on the right indicate the mutation frequency of each regulator. (b) Copy number variation
mutation frequency of m6A regulator (blue dot, delete frequency; red dot, amplify frequency). (c) Position of copy number variation change
of m6A regulatory factor on human chromosome. (d) Principal component analysis was performed on m6A regulators in the TCGA-BC
cohort to distinguish tumors from normal samples. Tumor and normal samples are marked in blue and red, respectively. (e) Difference in
the expression level of m6A regulatory factors between normal and tumor samples. Blue and red represent normal and tumor samples,
respectively (∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001).
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with BC, a scoring system (m6Ascore) was developed. Al-
luvial plots were used to show the changes in the charac-
teristics of patients with BC (Figure 6(a)). Figure 6(b) shows
the correlation between the m6Ascore and immune cells.

+e results showed that m6Ascore was positively correlated
with natural killer cells, MDSCna, macrophagena, and
monocytena. +e Kruskal–Wallis test showed that the
m6Ascore and m6Acluster significantly differed. +e
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Figure 2: Pattern of m6Amethylationmodification in breast cancer (BC). (a) Interaction betweenm6A regulators in BC. Red dots represent
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interaction between them. Pink represents a positive correlation, and blue represents a negative correlation.+e size of each circle represents
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Using the ConsensusClusterPlus algorithm, BC samples were divided into three m6A modified subclasses, m6Aclusters A, B, and C. (b)
Consensus matrix, (c) CDF graph, and (d) relative change of the area under the CDF curve when k� 2–9.
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m6Ascore of m6Acluster B was significantly higher than that
of m6Acluster A (Figure 6(c)). In addition, compared with
other m6A gene clusters, gene cluster III showed the highest
m6Ascore, whereas gene cluster II had the lowest m6Ascore

(Figure 6(d)).+ese results showed that them6Ascore can be
used to evaluate the m6Amodification pattern of a single BC
and TME immune cell infiltration characteristics of the
tumor. We also analyzed the value of m6Ascore for
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Figure 3: Related biological pathways and immune landscape characteristics of different m6A modification modes in breast cancer. GSVA
enrichment analysis showed the biological pathways in three different m6A modification modes. Heat maps were used to visualize these
biological processes. Red represents activated pathways, and blue represents inhibited pathways. (a) m6Acluster A vs. m6Acluster B; (b)
m6Acluster A vs. m6Acluster C; (c) m6Acluster B vs. m6Acluster C; (d) CIBERSORTalgorithm was used to evaluate the characteristics of
immune infiltration between three m6A modification patterns. m6Acluster C showed a better interstitial score, immune score, and
ESTIMATE score. (e) Abundance of immune-infiltrating cells in each tumor microenvironment in three different m6A modification
patterns in breast cancer (∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001).
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Figure 4: Transcriptome characteristics between different m6A modification patterns in breast cancer. (a) Principal component analysis
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Figure 5: Unsupervised cluster analysis of differentially expressed genes related to prognosis, and patients were divided into three different
genomic subtypes (gene clusters A–C): (a) consensus matrix, (b) CDF graph, and (c) relative change in the area under the CDF curve when
k� 2–9. (d) Principal component analysis showing evident clustering among the three gene clusters. (e) Heat maps showing that these
subgroups have different clinicopathological characteristics. (f ) Kaplan–Meier was used to analyze the survival curve between different m6A
gene clusters. Gene cluster II was associated with better survival outcomes. (g) Expression of m6A regulatory factors in breast cancer in three
gene clusters. (h) Abundance of immune-infiltrating cells in three different m6A gene clusters in breast cancer (∗P< 0.05, ∗∗P< 0.01, and
∗∗∗P< 0.001).
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Figure 6: Construction of m6A gene signature and exploration of its clinical significance. (a) Alluvial diagram showing the changes in
m6Aclusters, gene clusters, m6Ascore, and survival status. (b) Correlation between m6Ascore and immune cells based on Spearman
analysis. Blue and red indicate negative and positive correlations, respectively. (c) Kruskal–Wallis test was used to compare the difference in
the m6Ascore between three different m6A modification patterns. (d) Kruskal–Wallis test was used to compare m6Ascore differences
between three different m6A gene clusters. (e) Kaplan–Meier curve was used to analyze the survival of patients in the high- and low-
m6Ascore groups. Patients in the low-m6Ascore group showed better survival outcomes. (f ) Tumor mutation burden between different
m6Ascore groups. (g) m6Ascore and tumor mutation burden (TMB) were negatively correlated (R� 0.26, P � 8e−16). (h) Kaplan–Meier
curve was used to analyze patient survival results between high- and low-TMB groups. (i) Kaplan–Meier curve was used to analyze the
survival of patients in the subgroup of m6Ascore and TMB. In both the high- and low-m6Ascore groups, patients in the low-TMB group
showed a significant survival advantage. Tumor somatic mutation waterfall chart established from patients with high and lowm6Ascores: (j)
high-m6Ascore group and (k) low-m6Ascore group. Each upper bar graph shows the TMB, and the number on the right represents the
mutation frequency of each gene. +e columns represent individual patients.
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predicting patient survival outcomes. +e survival results
showed that patients with low m6Ascore showed significant
survival benefits (Figure 6(e)).

+ere is increasing evidence of a correlation between
somatic mutations in tumor genomes and the immuno-
therapy response. Analysis of the distribution pattern of
tumor mutation burden (TMB) in different m6Ascore
groups showed that the mutation frequency of the high-
m6Ascore group was higher than that of the low-m6Ascore
group (Figure 6(f)). Figure 6(g) shows that the m6Ascore
and TMB were positively correlated (R� 0.26, P � 8e − 16).
Compared to the patients of the high-TMB group, the low-
TMB group patients indicated better survival results
(Figure 6(h)). In addition, regardless of whether the
m6Ascore was high or low, patients in the low-TMB group
consistently showed a significant survival advantage
(Figure 6(i)). Variations in the distribution of somatic
mutations between the high- and low-m6Ascore groups
were evaluated using the MAFtools package. +e former
group illustrated a broader TMB compared to the latter
group in the results (Figures 6(j) and 6(k)). +ese results
improve the understanding of the impact of m6Ascore
classification on genomic variation and reveal a potential
interaction of individual somatic mutations and m6A
modifications.

3.6. Predictive Value of m6Ascore on the Effect of
Immunotherapy. Immunosuppressive agents can improve
cancer treatment. Both the Tumor Immune Dysfunction and
Exclusion (TIDE) and immunophenoscore, which are re-
cently discovered predictors, have been broadly applied to
assess immune responses. We analyzed the expression of
TIDE in the low- and high-m6Ascore groups. Compared to
the high-m6Ascore group, the TIDE of the low-m6Ascore
group was found to be lower, as per the results (P � 0.042)
(Figure 7(a)). In the CTLA-4 and PD-1 groups, patients in
the high-m6Ascore group showed better treatment effects
(CTLA-4: P �1.2e−12; PD-1: P � 5.4e−08) (Figures 7(b) and
7(c)). In the CTLA-4 and PD-1 combined treatment group,
patients in the high-m6Ascore group still exhibited better
treatment effects (P �1.5e−09) (Figure 7(d)). Additionally,
low PD-L1 expression was observed among patients with
high m6Ascores, indicating that these patients will respond
to anti-PD-1/L1 immunotherapy (Figure 7(e)). In the me-
diating immune responses, the significant role played by the
m6A modification modes of BC was supported by these
results.

4. Discussion

Previous studies showed that the interaction between m6A
modification and m6A regulatory factors is important in
various cancer functions, including cancer stem cell for-
mation, epithelial-mesenchymal transition, cancer meta-
bolism, and signal transduction [40–43]. As most previous
studies focused on a single m6A regulatory factor, the
characteristics of TME immune infiltration mediated by
multiple m6A regulatory factors are unclear. +us,

identifying the function of m6A modification patterns in
TME immune cell infiltration is fundamental for improving
the understanding of the interaction between m6A RNA and
antitumor immune responses and facilitating the advance-
ment of personalized treatments for patients with BC.

+e genetic variation in the m6A regulatory factor in BC
shows that eight regulatory factors (YTHDF3, WTAP,
HNRNPA2B1, FMR1, YTHDF1, RBM15, LRPPRC, and
ZC3H13) have mutations. In RNA stability, editing, trans-
lating, splicing, processing, and regulation, the Pentagram
Peptide Repeat (PPR) family was found to play a significant
role. LRPPRC is a multifunctional protein in the PPR family
[44]. +e increases in the various cell lines and the cancer
tissues of the LRPPRC expression were illustrated by the
earlier studies too [45–49]. MAP1S of the microtubule-as-
sociated protein family can link mitochondria and micro-
tubules for transport and affect the biogenesis and
degradation of autophagosomes, thereby increasing auto-
phagy and inhibiting tumorigenesis. +e combination of
high expression of LRPPRC and low expression of MAP1S
can inhibit autophagy and promote tumor development
[50]. ZC3H13 is a classic CCCH zinc finger protein. Previous
studies have demonstrated that ZC3H13 may be a tumor
suppressor protein and has somatic mutations in colon
cancer [51]. YTHDF1 is an important regulator of m6A
methylation and can promote the translation of the key Wnt
receptor frizzled7 in an m6A-dependent manner. In addi-
tion, mutations in YTHDF1 can enhance the expression of
frizzled7, leading to excessive activation of the Wnt/β-cat-
enin pathway and promoting gastric cancer [52]. However,
our understanding of the role of these m6A regulatory factor
mutations in BC is limited, and more experiments are
needed.

Based on 23 m6A regulatory factors, three distinct m6A
modification patterns were identified.+eHallmark gene set
in the Molecular Characteristics Database (MSigDB) sum-
marizes and represents a specific well-defined biological
state or process. We performed GSVA analysis based on
h.all.v7.4.symbols.gmt, and the results showed that
m6Acluster A was more related to cell pathway and pro-
liferation. m6Acluster B was more related to cell develop-
ment and signaling. In m6Acluster C, immune-related
pathways were more active. +e IL-6 JAK STAT3 pathway
has been shown to have an important effect on the devel-
opment of various human tumors [53]. IL-6, as the main
medium of inflammation, is highly expressed in tumor
microenvironment. STAT3 is a member of the STATprotein
family and is significantly associated with promoting tumor
development and immunosuppression [54, 55]. JAK/STAT3
signaling pathways play an important role in mediated IL-6
inhibition of tumor cell proliferation, invasion, and me-
tastasis and antitumor immunity. Previous cumulative
studies have found that increased expression of IL-6 stim-
ulates overactivation of JAK/STAT3 signals and leads to
poor prognosis in cancer patients [56–58]. Previous studies
showed that the expression levels of tumor-infiltrating
CD4+ T cells, CD8+ T cells, macrophages M1, and natural
killer cells may be related to the immune response
[12, 59, 60]. Our results confirmed that the m6Acluster C
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pattern is associated with increased levels of tumor-infil-
trating immune cells. A highly significant correlation in-
dicated the potential value for supporting immunotherapy.
Previous studies showed that STAT inhibitors can inhibit
STAT3 protein expression in lymphoma and have early
clinical activity. In addition, patients with lymphoma show
decreased tumor cells and myeloid-derived suppressor cells
and increased CD8+ Tcells [61]. +erefore, patients with BC
in m6Acluster C mode may benefit from treatment with
STAT blockers.

Gene function enrichment analysis showed that the
potential biological pathways of DEGs between the three
different m6A clusters were significantly related. +is in-
dicates that these DEGs are characteristic genes related to the
m6A phenotype. Prognostic-related m6A signature genes
were screened and used to identify three genomic subtypes,
which are also related to different TME immune landscapes
in BC. In addition, for quantifying the m6A modification

pattern of a single BC intended to improve the personalized
treatment, a scoring system (m6Ascore) was developed.
Patients with a low m6Ascore exhibit obvious survival ad-
vantages. In addition, our results also showed that the
m6Ascore was significantly correlated with predictors of the
immune response such as PD-L1, immunophenoscore, and
TIDE, indicating that modification of m6A impacts the
therapeutic effect of immunotherapy and is conducive for
improving personalized treatment of BC. CTLA-4-, PD-1-,
and PD-L1-specific immune checkpoint antagonists have
completely improved the current status of cancer treatment.
+e FDA has approved several drugs for the treatment of a
variety of cancers, but no immune checkpoint antagonist
drug has been approved for the treatment of breast cancer.
Even so, there are some CTLA-4 antagonists and PD-1/PD-
L1 antagonist drugs, such as ipilimumab, avelumab, and
pembrolizumab, which are currently entering BC clinical
trials. In certain patients with metastatic BC, the PD-1/PD-
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Figure 7: m6Ascore prediction of immunotherapy effects. (a) Relative distribution of TIDE was compared between the high- and low-
m6Ascore groups. Treatment effects of CTLA-4 or PD-1 and combined CTLA-4 and PD-1 were evaluated in patients with high and low
m6Ascores: (b) CTLA-4 treatment group, (c) PD-1 treatment group, and (d) CTLA-4 and PD-1 combined treatment group. (e) Difference in
PD-L1 expression between the high- and low-m6Ascore groups (P � 0.00018).
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L1 antagonist drugs were found to induce a durable clinical
response, as research has revealed [10].+erefore, our results
need to be verified in more immunotherapy treatment co-
horts in the future.

Exploring mutation driver genes in tumors will enable
the development of cancer diagnosis and treatment ap-
proaches. We also analyzed the correlation between the
m6Ascore and tumor mutation burden. In the high-
m6Ascore group, the mutation frequencies of TP53,
PIK3CA, and TTN were highest. In the low-m6Ascore
group, the mutation frequencies of PIK3CA, TP53, and TTN
were highest. Previous studies showed that PIK3CA is
commonly mutated in BC [62] and that this mutation is
highly heterogeneous in BC. In addition, in BC, the pro-
portion of HR+/HER2-subtypes was highest, followed by the
HER2+ and triple-negative BC subtypes [63]. Mosele et al.
showed that patients with the PIK3CA mutant HR+/HER2-
subtype have a poor prognosis and are resistant to che-
motherapy. In contrast, patients with the PIK3CA mutant
triple-negative BC subtype have a clear survival advantage
[64]. TP53 (P53) is a tumor suppressor gene that is fre-
quently mutated in various cancers [65]. Mutations in P53 in
cancer can affect the activity and recruitment of bone
marrow and T cells, leading to immune evasion, thereby
promoting the occurrence and development of tumors. P53
can also affect tumor occurrence and development by acting
on immune cells [66]. +e mechanism of action underlying
m6A modification and these tumor mutant genes requires
further analysis.

Our study had some limitations. First, we did not
evaluate a large number of clinicopathological features.
Second, larger cohorts of patients with BC being treated with
immunotherapy should be examined to verify our results.

5. Conclusion

In summary, the m6Ascore can be used to evaluate the m6A
modification pattern and TME immune cell infiltration
characteristics of a single patient with BC and is useful for
predicting the survival outcome of patients with BC.
Moreover, the clinical response to immunotherapy can be
predicted using the m6Ascore. Our results provide insight
for improving personalized cancer immunotherapy.
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