
Article
Total predicted MHC-I epi
tope load is inversely
associated with population mortality from SARS-
CoV-2
Highlights
d EnsembleMHC, a MHC-I presentation prediction algorithm,

can predict SARS-CoV-2 epitopes

d Countries show variation in the predicted MHC-I SARS-CoV-

2 binding capacity

d A population score combines the MHC-I binding capacity

with MHC-I allele frequencies

d The population score inversely correlates with observed

deaths from SARS-CoV-2
Wilson et al., 2021, Cell Reports Medicine 2, 100221
March 16, 2021 ª 2021 The Author(s).
https://doi.org/10.1016/j.xcrm.2021.100221
Authors

Eric A. Wilson, Gabrielle Hirneise,

Abhishek Singharoy, Karen S. Anderson

Correspondence
asinghar@asu.edu (A.S.),
karen.anderson.1@asu.edu (K.S.A.)

In brief

Wilson et al. define a predicted MHC

allele-specific hierarchy for the

presentation of peptides derived from

SARS-CoV-2 viral proteins. They find that

a composite population-level metric

combining predicted MHC allele SARS-

CoV-2 binding capacity and endemic

allele frequencies is inversely correlated

with deaths per million.
ll

mailto:asinghar@asu.edu
mailto:karen.anderson.1@asu.edu
https://doi.org/10.1016/j.xcrm.2021.100221
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2021.100221&domain=pdf


OPEN ACCESS

ll
Article

Total predicted MHC-I epitope load
is inversely associated with
population mortality from SARS-CoV-2
Eric A. Wilson,1,2 Gabrielle Hirneise,2,3 Abhishek Singharoy,1,2,* and Karen S. Anderson2,3,4,*
1School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
2Biodesign Institute, Tempe, AZ 85281, USA
3School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
4Lead contact
*Correspondence: asinghar@asu.edu (A.S.), karen.anderson.1@asu.edu (K.S.A.)

https://doi.org/10.1016/j.xcrm.2021.100221
SUMMARY
Polymorphisms inMHC-I protein sequences across human populations significantly affect viral peptide bind-
ing capacity, and thus alter T cell immunity to infection. In the present study, we assess the relationship be-
tween observed SARS-CoV-2 population mortality and the predicted viral binding capacities of 52 common
MHC-I alleles. Potential SARS-CoV-2 MHC-I peptides are identified using a consensus MHC-I binding and
presentation prediction algorithm called EnsembleMHC. Starting with nearly 3.5 million candidates, we
resolve a few hundred highly probable MHC-I peptides. By weighing individual MHC allele-specific SARS-
CoV-2 binding capacity with population frequency in 23 countries, we discover a strong inverse correlation
between predicted population SARS-CoV-2 peptide binding capacity and mortality rate. Our computations
reveal that peptides derived from the structural proteins of the virus produce a stronger association with
observed mortality rate, highlighting the importance of S, N, M, and E proteins in driving productive immune
responses.
INTRODUCTION

In December 2019, the novel coronavirus, severe acute respira-

tory syndrome-coronavirus-2 (SARS-CoV-2) was identified from

a cluster of cases of pneumonia in Wuhan, China.1,2 With >73.1

million cases and >1.6 million deaths, the viral spread was

declared a global pandemic by the World Health Organization.3

Due to its high rate of transmission and unpredictable severity,

there is an immediate need for information surrounding the

adaptive immune response toward SARS-CoV-2.

A robust T cell response is integral for the clearance of corona-

viruses and the generation of lasting immunity.4 The potential

role of T cells for coronavirus clearance has been supported by

the identification of immunogenic CD8+ T cell epitopes in the S

(Spike), N (Nucleocapsid), M (Membrane), and E (Envelope) pro-

teins.5 In addition, SARS-CoV-specific CD8+ T cells have been

shown to provide long-lasting immunity, with memory CD8+

T cells being detected up to 17 years post-infection.4,6,7 The spe-

cifics of the T cell response to SARS-CoV-2 is still evolving. How-

ever, a recent screening of SARS-CoV-2 peptides revealed that a

majority of the CD8+ T cell immune response is targeted toward

viral structural proteins (N, M, S).8

A successful CD8+ T cell response is contingent on the effi-

cient presentation of viral protein fragments by major histocom-

patibility complex I (MHC-I) proteins. MHC-I molecules bind and

present peptides derived from endogenous proteins on the cell
Cell Re
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surface for CD8+ T cell interrogation. The MHC-I protein is highly

polymorphic, with amino acid substitutions within the peptide

binding groove drastically altering the composition of presented

peptides. Consequently, the influence of MHC genotype to

shape patient outcome has been well studied in the context of

viral infections.9 For coronaviruses, there have been several

studies of the association of MHC with disease susceptibility.

A study of a Taiwanese and Hong Kong cohort of patients with

SARS-CoV found that the MHC-I alleles HLA (histocompatibility

leukocyte antigen)-B*07:03 and HLA-B*46:01 were linked to

increased susceptibility, while HLA-Cw*15:02 was linked to

increased resistance.10–12 However, some of the reported asso-

ciations did not remain after statistical correction, and it is still

unclear whether MHC-outcome associations reported for

SARS-CoV are applicable to SARS-CoV-2.13,14 Recently, a

comprehensive prediction of SARS-CoV-2 MHC-I peptides indi-

cated a relative depletion of high-affinity binding peptides for

HLA-B*46:01, hinting at a similar association profile in SARS-

CoV-2.15 More important, it remains elusive whether such a

depletion of putative high-affinity peptides will affect patient out-

comes to SARS-CoV-2 infections.

The lack of large-scale genomic data linking individual MHC

genotypes and outcomes from SARS-CoV-2 infections pre-

cludes a similar analysis as performed for SARS-CoV.10–12

Therefore, we endeavored to assess the relationship between

the predicted SARS-CoV-2 binding capacity of a population
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and the observed SARS-CoV-2mortality rate. Histroically, MHC-

I prediction algorithms have been characterized by a high false

positive rate, particularly when predicting peptides that are natu-

rally presented.16,17 To minimize false positives and identify the

highest-confidence SARS-CoV-2 MHC-I peptides, we devel-

oped a consensus algorithm, called EnsembleMHC, and pre-

dicted MHC-I peptides for a panel of 52 common MHC-I

alleles.18 This prediction workflow integrates seven different

algorithms that have been parameterized on high-quality mass

spectrometry data and provides a confidence level for each

identified peptide.17,19–24 The distribution of the number of

high-confidence peptides assigned to each allele was used to

assess a country-specific SARS-CoV-2 binding capacity, called

the EnsembleMHC population (EMP) score, for 23 countries

(for selection criteria, please refer to the STAR Methods).

This scorewas derived byweighing the individual binding capac-

ities of the 52 MHC-I alleles by their endemic frequencies. We

note a strong inverse correlation between the EMP score and

observed population SARS-CoV-2 mortality. Furthermore, the

correlation is demonstrated to become stronger when consid-

ering EMP scores based solely on SARS-CoV-2 structural pro-

teins, underlining their potential importance in driving a robust

immune response. Based on their predicted binding affinity,

expression, and sequence conservation in viral isolates, we

identified 108 peptides derived from SARS-CoV-2 structural

proteins that are high-value targets for CD8+ T cell vaccine

development.

RESULTS

EnsembleMHC workflow offers more precise MHC-I
presentation predictions than individual algorithms
The accurate assessment of differences in SARS-CoV-2 binding

capacities across MHC-I allelic variants requires the isolation of

MHC-I peptides with a high probability of being presented. En-

sembleMHC provides the requisite precision through the use

of allele- and algorithm-specific score thresholds and peptide

confidence assignment.

MHC-I alleles substantially vary in both peptide binding reper-

toire size and median binding affinity.25 The EnsembleMHC

workflow addresses this inter-allele variation by identifying pep-

tides based on MHC allele- and algorithm-specific binding affin-

ity thresholds. These thresholds were set by benchmarking each

of the 7 component algorithms against 52 single MHC allele pep-

tide datasets.17 Each dataset consists of mass spectrometry-

confirmed MHC-I peptides that have been naturally presented

by a model cell line expressing 1 of the 52 select MHC-I alleles.

These experimentally validated peptides, denoted target pep-

tides, were supplemented with a 100-fold excess of decoy pep-

tides. Decoys were generated by randomly sampling peptides

that were not detected by mass spectrometry, but were derived

from the same protein sources as a detected target peptide.

Algorithm- and allele-specific binding affinity thresholds were

then identified through the independent application of each

component algorithm to all of the MHC allele datasets. For every

dataset and algorithm combination, the target and decoy pep-

tides were ranked by predicted binding affinity to the MHC allele

defined by that dataset. Then, an algorithm-specific binding af-
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finity threshold was set to the minimum score needed to isolate

the highest affinity peptides commensurate to 50% of the

observed allele repertoire size (STAR Methods; Figure S1A).

The observed allele repertoire size was defined as the total num-

ber of target peptides within a given single MHC allele dataset.

Therefore, if a dataset had 1,000 target peptides, the top 500

highest affinity peptides would be selected, and the algorithm-

specific threshold would be set to the predicted binding affinity

of the 500th peptide. This parameterization method resulted in

the generation of a customized set of allele- and algorithm-spe-

cific binding affinity thresholds in which an expected quantity of

peptides can be recovered.

Consensus MHC-I prediction typically require a method for

combining outputs from each individual component algorithm

into a composite score. This composite score is then used for

peptide selection. EnsembleMHC identifies high-confidence

peptides based on filtering by a quantity called peptideFDR

(STAR Methods, Equation 1). During the identification of allele-

and algorithm-specific binding affinity thresholds, the empirical

false detection rate (FDR) of each algorithm was calculated.

This calculation was based on the proportion of target to decoy

peptides isolated by the algorithm-specific binding affinity

threshold. A peptideFDR is then assigned to each individual

peptide by taking the product of the empirical FDRs of each al-

gorithm that identified that peptide for the same MHC-I allele.

Analysis of the parameterization process revealed that the over-

all performance of each included algorithm was comparable,

and there was diversity in individual peptide calls by each algo-

rithm, supporting an integrated approach to peptide confidence

assessment (Figures S1B–S1D). Peptide identification by En-

sembleMHC was performed by selecting all of the peptides

with a peptideFDR %5%.26

The efficacy of peptideFDR as a filteringmetric was determined

through the prediction of naturally presented MHC-I peptides

derived from 10 tumor samples (Figure 1).17 Similar to the single

MHC allele datasets, each tumor sample dataset consisted of

mass spectrometry-detected target peptides and a 100-fold

excess of decoy peptides. The performance of EnsembleMHC

was assessed via comparison with individual component algo-

rithms. Peptide identification by each algorithm was based on

a restrictive or permissive binding affinity threshold (Figure 1A,

table). For the component algorithms, the permissive and restric-

tive thresholds correspond to commonly used binding affinity

cutoffs for the identification of weak and strong binders, respec-

tively.27 The performance of each algorithm on the 10 datasets

was evaluated through the calculation of the empirical precision,

recall, and F1 score.

The average precision and recall of each algorithm across all

tumor samples demonstrated an inverse relationship (Figure 1A).

In general, restrictive binding affinity thresholds produced higher

precision at the cost of poorer recall. When comparing the pre-

cision of each algorithm at restrictive thresholds, EnsembleMHC

demonstrated a 3.4-fold improvement over themedian precision

of individual component algorithms. EnsembleMHC also pro-

duced the highest F1 score, with an average of 0.51, followed

by mhcflurry-presentation, with an F1 score of 0.45, both of

which are 1.5- to 2-fold higher than the rest of the algorithms

(Figure 1B). This result was shown to be robust across a range



Figure 1. Application of the EnsembleMHC prediction algorithm

The EnsembleMHC prediction algorithm was used to recover MHC-I peptides from 10 tumor sample datasets.

(A) The average precision and recall for EnsembleMHC and each component algorithm were calculated across all 10 tumor samples. Peptide identification by

each algorithm was based on commonly used restrictive (strong) or permissive (strong and weak) binding affinity thresholds (see table below).

(B) The F1 score of each algorithm was calculated for all tumor samples. Each algorithm is grouped into 1 of 4 categories: binding affinity represented by

percentile score (blue), binding affinity represented by predicted peptide half-maximal inhibitory concentration (IC50) value (green), MHC-I presentation prediction

(orange), and EnsembleMHC (brown). The heatmap colors indicate the value of the observed F1 score (color bar) for a given algorithm (y axis) on a particular

dataset (x axis). Warmer colors indicate higher F1 scores, and cooler colors indicate lower F1 scores. The average F1 score for each algorithm across all of the

samples is shown in the marginal bar plot.

(C) The schematic for the application of the EnsembleMHC predication algorithm to identify SARS-CoV-2 MHC-I peptides.
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of peptideFDR cutoff thresholds (Figure S1E), alternative perfor-

mance metrics (Figure S1F), and other consensus-based

prediction algorithms (Figures S1G and S1H). Furthermore, En-

sembleMHC demonstrated the ability to more efficiently priori-

tize peptides with experimentally established immunogenicity

from the Hepatitis-C genome polyprotein, the Dengue virus

genome polyprotein, and the HIV-1 POL-GAG protein (Fig-

ure S1I). These results demonstrate the enhanced precision of

EnsembleMHC over individual component algorithms when us-

ing common binding affinity thresholds.

In summary, the EnsembleMHC workflow offers two desirable

features. First, it determines allele-specific binding affinity

thresholds for each algorithm at which a known quantity of pep-
tides is expected to be successfully presented on the cell sur-

face. Second, it assigns a confidence level to each peptide call

made by each algorithm. These traits enhance the ability to iden-

tify MHC-I peptides with a high probability of successful cell sur-

face presentation.

EnsembleMHC was used to identify MHC-I peptides for the

SARS-CoV-2 virus (Figure 1C). The resulting identification of

high-confidence SARS-CoV-2 peptides allows for the character-

ization of alleles that are enriched or depleted for predicted

MHC-I peptides. The resulting distribution of allele-specific

SARS-CoV-2 binding capacities will then be weighed by the

normalized frequencies of the 52 alleles (Figure S2; STAR

Methods, Equations 5 and 6) in 23 countries to determine the
Cell Reports Medicine 2, 100221, March 16, 2021 3



Figure 2. Prediction of SARS-CoV-2 peptides across 52 common MHC-I alleles

(A and B) The EnsembleMHC workflow was used to predict MHC-I peptides for 52 alleles from the entire SARS-CoV-2 proteome or specifically SARS-CoV-2

structural proteins (E, S, N, and M).

(C) The peptide fractions for both protein sets were calculated by dividing the number of peptides assigned to a given allele by the total number of identified

peptides for that protein set. Each line indicates the change in peptide fraction observed by a given allele when comparing the viral peptide-MHC allele distribution

for the full SARS-CoV-2 proteome or structural proteins. Alleles showing a change of greater than the median peptide fraction, ~X = 0.015, are highlighted in color.
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population-specific SARS-CoV-2 binding capacity or EMP score

(STAR Methods, Equation 7). The potential impact of varying

population SARS-CoV-2 binding capacities on disease out-

comes can then be assessed by correlating population SARS-

CoV-2 mortality rates with EMP scores.

The MHC-I peptide-allele distribution for SARS-CoV-2
structural proteins is especially disproportionate
MHC-I peptides derived from the SARS-CoV-2 proteome were

predicted and prioritized using EnsembleMHC. A total of

67,207 potential 8- to 14-mer viral peptides were evaluated for

each of the considered MHC-I alleles. After filtering the pool of

candidate peptides at the 5% peptideFDR threshold, the number

of potential peptides was reduced from 3.49 million to 971 (658

unique peptides) (Figures S3A and S3B; Table S1). Illustrated
4 Cell Reports Medicine 2, 100221, March 16, 2021
in Figure 2A, the viral peptide-MHC allele (or peptide-allele) dis-

tribution for high-confidence SARS-CoV-2 peptides was deter-

mined by assigning the identified peptides to their predicted

MHC-I alleles. There was a median of 16 peptides per allele,

with a maximum of 47 peptides (HLA-A*24:02), a minimum of 3

peptides (HLA-A*02:05), and an interquartile range (IQR) of 16

peptides. Quality assurance of the predicted peptides was

performed by computing the peptide length frequencies and

binding motifs. The predicted peptides were found to adhere

to expected MHC-I peptide lengths,28 with 78% of the peptides

being 9 amino acids in length, 13% being 10 amino acids in

length, and 8% of peptides accounting for the remaining lengths

(Figures S3C and S3D). Similarly, logo plots generated from pre-

dicted peptides were found to closely reflect reference peptide

binding motifs for considered alleles (Figure S3E).29 Overall,
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the EnsembleMHC prediction platform demonstrated the ability

to isolate a short list of potential peptides that adhere to ex-

pected MHC-I peptide characteristics.

The high expression, relative conservation, and reduced

search space of SARS-CoV-2 structural proteins (S, E, M, and

N) make MHC-I binding peptides derived from these proteins

high-value targets for CD8+ T cell-based vaccine development.

Figure 2B describes the peptide-allele distribution for predicted

MHC-I peptides originating from the four structural proteins. This

analysis markedly reduces the number of considered peptides

from 658 to 108 (Table S1). The median number of predicted

SARS-CoV-2 structural peptides assigned to each MHC-I

allele was found to be 2, with a maximum of 12 peptides

(HLAB*53:01), a minimum of 0 peptides (HLA-B*15:02,

B*35:03,B*38:01,C*03:03,C*15:02), and an IQR of 3 peptides.

Analysis of the molecular source of the identified SARS-CoV-2

structural protein peptides revealed that they originate from en-

riched regions that are highly conserved (Figure S4). This indi-

cates that such peptides would be ideal candidates for targeted

therapies as they are unlikely to be disrupted by mutation, and

several peptides can be targeted using minimal stretches of

the source protein. Consideration of the MHC-I peptides derived

only from SARS-CoV-2 structural proteins reduces the number

of potential peptides to a condensed set of high-value targets

that is amenable to experimental validation.

Both the peptide-allele distributions, namely the ones derived

from the full SARS-CoV-2 proteome, and those from the struc-

tural proteins were found to significantly deviate from an even

distribution of predicted peptides as is apparent in Figures 2A

and 2B and reflected in the Kolmogorov-Smirnov test p values

(Figure S5; full proteome = 5.673e�7 and structural proteins =

1.45e�2). These results support a potential allele-specific hierar-

chy for SARS-CoV-2 peptide presentation.

To determine whether the MHC-I binding capacity hierarchy

was consistent between the full SARS-CoV-2 proteome and

SARS-CoV-2 structural proteins, the relative changes in the

observed peptide fraction (number of peptides assigned to an

allele/total number of peptides) between the two protein sets

was visualized (Figure 2C). A total of 6 alleles demonstrated

changes greater than the median peptide fraction ( ~X = 0.015)

when comparing the 2 protein sets. The greatest decrease in pep-

tide fraction was observed for A*25:01 (1.52 times the median

peptide fraction), and the greatest increase was seen with

B*53:01 (2.38 times the median peptide fraction). Furthermore,

the resulting SARS-CoV-2 structural protein peptide-allele distri-

bution was found to bemore variable than the distribution derived

from the full SARS-CoV-2 proteome, with a quartile coefficient of

dispersion of 0.6 compared to 0.44, respectively. This indicates

that peptides derived from SARS-CoV-2 structural proteins expe-

rience larger relative inter-allele binding capacity discrepancies

than peptides derived from the full SARS-CoV-2 proteome. These

results indicate a potential MHC-I binding capacity hierarchy that

is more pronounced for SARS-CoV-2 structural proteins.

Total population epitope load inversely correlates with
reported death rates from SARS-CoV-2
The documented importance of MHC-I peptides derived from

SARS-CoV-2 structural proteins,8 coupled with the observed
MHC allele binding capacity hierarchy and the high immunoge-

nicity rate of SARS-CoV-2 structural protein MHC-I peptides

identified by EnsembleMHC (Figure S5D), prompts a potential

relationship between MHC-I genotype and infection outcome.

However, due to the absence of MHC genotype data for

SARS-CoV-2 patients, we assessed this relationship at the

population level by correlating predicted country-specific

SARS-CoV-2 binding capacity (or EMP score) with observed

SARS-CoV-2 mortality.

EMP scores were determined for 23 countries (Table S2) by

weighing the individual binding capacities of 52 common

MHC-I alleles by their normalized endemic expression (STAR

Methods; Figure S2).18 Every country in the cohort is assigned

two separate EMP scores—one calculated with respect to the

108 unique SARS-CoV-2 structural protein peptides (structural

protein EMP) and the other with respect to the 658 unique pep-

tides derived from the full SARS-CoV-2 proteome (full proteome

EMP). The EMP score corresponds to the average predicted

SARS-CoV-2 binding capacity of a select population. Therefore,

individuals in a country with a high EMP score would be ex-

pected, on average, to present more SARS-CoV-2 peptides to

CD8+ T cells than would individuals from a country with a low

EMP score. The resulting EMP scores were then correlated

with observed SARS-CoV-2 mortality (deaths per million) as a

function of time (January–April 2020). Temporal variance in com-

munity spread within the cohort of countries was corrected by

truncating the SARS-CoV-2 mortality dataset for each country

to start after a certain minimum death threshold was met. For

example, if the minimum death threshold was 50, then day

0 would be when each country reported at least 50 deaths.

The number of countries included in each correlation decreases

as the number of days increases due to discrepancies in the

length of time that each country met a given minimum death

threshold (Table S3). Therefore, the correlation between EMP

score and SARS-CoV-2 mortality was only estimated at time

points at which there were at least 8 countries. The 8-country

threshold was chosen because it is the minimum sample size

needed to maintain sufficient power when detecting large effect

sizes (r > 0.85). The strength of the relationship between EMP

score and SARS-CoV-2 mortality was determined using Spear-

man’s rank-order correlation (for details concerning the choice

of statistical tests, please refer to STAR Methods). Accordingly,

both EMP scores and SARS-CoV-2 mortality data were con-

verted into ascending ranks, with the lowest rank indicating the

minimum value and the highest rank indicating the maximum

value. For instance, a country with an EMP score rank of 1 and

death per million rank of 23 would have the lowest predicted

SARS-CoV-2 binding capacity and the highest level of SARS-

CoV-2-related mortality. Using the described paradigm, the

structural protein EMP score and the full proteome EMP score

were correlated with SARS-CoV-2-related deaths per million

for 23 countries.

Total predicted population SARS-CoV-2 binding capacity ex-

hibited a strong inverse correlation with observed deaths per

million. This relationship was found to be true for correlations

based on the structural protein EMP (Figure 3A) and full prote-

ome EMP (Figure S5A) scores, with mean effect sizes of �0.66

and �0.60, respectively. Significance testing of the correlations
Cell Reports Medicine 2, 100221, March 16, 2021 5



Figure 3. Predicted total epitope load within a population inversely correlates with mortality

(A) SARS-CoV-2 structural protein-based EnsembleMHC population (EMP) scores were assigned to 23 countries (Table S2, A), and correlated with observed

mortality rate (deaths per million). The correlation coefficient is presented as a function of time. Individual country mortality rate data were aligned by truncating

each dataset to start after a minimum threshold of deaths was observed in a given country (line color). The Spearman’s rank correlation coefficient between

structural protein EMP score and SARS-CoV-2 mortality rate was calculated every day following day 0 for each of the minimum death thresholds. Due to the

differing lengths of time series analysis at each minimum death threshold, the number of days was normalized to improve visualization. Thus, normalized day

0 represents the daywhen qualifying countries recorded at least the number of deaths indicated by theminimumdeath threshold; normalized day 1 represents the

final time point at which a correlation was measured. Correlations that were shown to be statistically significant (p % 0.05) are indicated by a red point.

(B) The correlations between the structural protein EMP score (y axis) and deaths per million (x axis) were shown for countries meeting the 50 minimum deaths

threshold at days 1, 6, 12, 17, and 22. Correlation coefficients and p values were assigned using Spearman’s rank correlation and the shaded region signifies the

95% confidence interval. Due to Spearman’s rank correlation only considering data rank, deaths per million and EMP score were converted to ascending rank

values (low rank = low values, high rank = high values) to improve visualization of the measured relationship. Red points indicate a country that has an EMP rank

that is less than the median EMP rank of all countries at that day, and blue points indicate a country with an EMP rank that is greater than the median EMP rank.

(C) The countries at each day were partitioned into an upper or a lower half based on the median observed EMP rank. Therefore, countries with an EMP rank

greater than the median group EMP score were assigned to the upper half (red) and the remaining countries were assigned to the lower half (blue). p values were

determined by the Mann-Whitney U test. The presented boxplots are in the style of Tukey (box defined by 25%, 50%, and 75% quantiles, and whiskers ±1.5 3

IQR). The increasing gap between the red and the blue boxplots indicates a greater discrepancy in the number of deaths per million between the 2 groups.

The p values in (A)–(C) were corrected using the Benjamini-Hochberg procedure30 relative to the number of tests performed for each death threshold.
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produced by both EMP scores revealed that the majority of re-

ported correlations are statistically significant, with 63% attain-

ing a p % 0.05. Correlations based on the structural protein

EMP score demonstrated a 23%higher proportion of statistically

significant correlations compared to the full proteome EMP

score (74% versus 51%). Furthermore, correlations for EMP

scores based on structural proteins produced narrower 95%
6 Cell Reports Medicine 2, 100221, March 16, 2021
confidence intervals (Figure S5B; Table S3). Due to relatively

low statistical power of the obtained correlations (Figure S6),

the positive predictive value (PPV) for each correlation (STAR

Methods, Equation 8) was calculated. The resulting proportions

of correlations with a PPV ofR 95%were similar to the observed

significant p value proportions, with 62% of all measured corre-

lations, 72% of structural protein EMP score correlations, and
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52% of full proteome EMP score correlations (Figure S5B). The

similar proportions of significant p values and PPVs supports

that an overall true association is being captured. Furthermore,

analysis of similar-size peptide sets sampled from the full

SARS-CoV-2 proteome revealed that the observed distinction

between the correlations produced by the two protein groups

are unlikely to be due to differences in peptide set sizes (Figures

S7A and S7B).

Finally, the reported correlations did not remain after random-

izing the allele assignment of predicted peptides before pepti-

deFDR filtering (Figures S7C and S7D) through the use of any

individual algorithm (Figure S7E). This indicates that the observed

relationship is contingent on the high-confidence peptide-allele

distribution identified by EnsembleMHC. These data demonstrate

that theMHC-I allele hierarchy characterized by EnsembleMHC is

inversely associated with SARS-CoV-2 population mortality, and

that the relationship becomes stronger when considering only

the presentation of SARS-CoV-2 structural proteins.

The ability to use the structural protein EMP score to identify

high- and low-risk populations was assessed using the median

minimum death threshold (50 deaths) at evenly spaced time

points (Figure 3A, squares). All of the correlations, with the

exception of day 1, were found to be significant, with an average

effect size of �0.71 (Figure 3B). Next, the countries at each day

were partitioned into a high or low group based on whether their

assigned EMP score was higher or lower than the median

observed EMP score (Figure 3C). The resulting groups demon-

strated a statistically significant difference in the median deaths

per million between countries with low structural protein EMP

scores and countries with high structural protein EMP scores.

In addition, it was observed that deaths per million increased

much more rapidly in countries with low structural protein EMP

scores. These results indicate that the structural protein EMP

score may be useful for assessing population risk from SARS-

CoV-2 infections.

In summary, we make several important observations. First,

there is a strong inverse correlation between predicted popula-

tion SARS-CoV-2 binding capacity and observed deaths per

million. This finding suggests that outcome to SARS-CoV-2

may be tied to total epitope load. Second, the correlation be-

tween predicted epitope load and population mortality is stron-

ger for SARS-CoV-2 structural MHC-I peptides. This suggests

that CD8+ T cell-mediated immune response may be driven pri-

marily by the recognition of epitopes derived from these pro-

teins, a finding supported by recent T cell epitope mapping of

SARS-CoV-2.8 Finally, the EMP score can separate countries

within the considered cohort into high- or low-risk populations.

Structural protein EMP score correlates better with
population outcome than identified individual risk
factors
Recent large-scale patient studies have identified several socio-

economic and health-related factors associated with the

increased risk of death from SARS-CoV-2 infection.31,32 To

delineate the relative importance of the structural protein EMP

score as a SARS-CoV-2 severity descriptor, 12 additional risk

factors were assessed for their ability to model population-level

SARS-CoV-2 outcome in 21 countries (Table S2).
Overall, the structural protein EMP scores produced a signifi-

cantly stronger association with population SARS-CoV-2mortal-

ity compared to 12 other descriptors (Figure 4A). While various

effect size trends were observed, all of the additional covariates

failed to produce statistically significant correlations. To deter-

mine whether the modeling of the SARS-CoV-2 mortality rate

could be improved by the combination of single socioeconomic

or health-related risk factors with structural protein EMP scores,

a set of linear models consisting of either a single risk factor (sin-

gle-featuremodel) or that factor combinedwith structural protein

EMP scores (combination model) were generated for every time

point across each minimum death threshold (STAR Methods).

Following model generation, the adjusted coefficient of determi-

nation (R2) and significance level of each individual model was

extracted and aggregated by dependent variable (Figure S8).

Single-feature models were characterized by low R2 ( ~X =

0.0262), while combination models showed significant improve-

ment ( ~X = 0.496). Similarly, combination models demonstrated a

substantially higher proportion of statistical significance (Fig-

ure S8B). To determine the set of features that produce the

best-fitting model, all possible combinations of explanatory fac-

tors (risk factors and structural protein EMP score) were tested.

Subsequently, the top 10 performing models, ranked by

adjusted R2 value, were selected for analysis (Figure 4B). The

identified models were found to be largely significant (average

proportion of significant regressions = 72%) and produce strong

fits to the data (average R2 = 0.7).

Analysis of the dependent variables included in the top-per-

forming models revealed that all models used structural protein

EMP scores followed by deaths per million due to complications

from chronic obstructive pulmonary disease (COPD) (90% of

models). The median model size included 3 features, with a

maximum of 5 features and a minimum of 2 features. The model

producing the best fit (median R2 = 0.791) consisted of structural

protein EMP scores, gender demographics, number of deaths

due to COPD complications, the proportion of the population

older than age 65 years, and proportion of the population that

is overweight (Figure 4B). These results further indicate the

robustness of the structural protein EMP score as a popula-

tion-level risk descriptor.

DISCUSSION

In the present study, we uncover evidence supporting an associ-

ation between population SARS-CoV-2 infection outcome and

MHC-I genotype. In line with related work highlighting the rela-

tionship between total epitope load and HIV viral control,33 we

arrive at a working model that MHC-I alleles presenting more

unique SARS-CoV-2 epitopes will be associated with lower mor-

tality due to a higher number of potential T cell targets. The SARS-

CoV-2 binding capacities of 52 common MHC-I alleles were

assessed using the EnsembleMHC prediction platform. These

predictions identified 971 high-confidence MHC-I peptides out

of a candidate pool of nearly 3.5 million. In agreement with other

in silico studies,15,34 the assignment of the predicted peptides to

their respective MHC-I alleles revealed an uneven distribution in

the number of peptides attributed to each allele. We discovered

that the MHC-I peptide-allele distribution originating from the
Cell Reports Medicine 2, 100221, March 16, 2021 7



Figure 4. Analysis of other SARS-CoV-2 covariates with observed SARS-CoV-2 population mortality and development of an integrative

model

(A) A total of 12 covariates associated with SARS-CoV-2 mortality on the individual patient level were assessed for correlation with population-level mortality

(Table S2, B). The correlation of each country-level covariate was determined at each time point after a minimum death threshold was met (line color). The x axis

represents the number of days (normalized) following when a minimum death threshold was met, and the y axis indicates the observed effect size for that

covariate at a given time point. Correlations achieving statistical significance are colored with a red dot.

(B) All possible combinations of covariates were used to fit a linear model. The top 10 models, ranked by median adjusted R2 (red bars), were identified.

The proportion of regressions performed by that model that were found to be statistically significant (F-test p value % 0.05) are represented by the blue

bars.
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full SARS-CoV-2 proteome undergoes a notable rearrangement

when considering only peptides derived from viral structural pro-

teins. The structural protein-specific peptide-allele distribution

produced a distinct hierarchy of allele-binding capacities. This

finding has important clinical implications as a majority of

SARS-CoV-2 specific CD8+ T cell response is directed toward

SARS-CoV-2 structural proteins.8 Therefore, patients who ex-

press MHC-I alleles enriched with a large potential repertoire of

SARS-CoV-2 structural proteins peptides may benefit from a

broader CD8+ T cell immune response.

The variations in SARS-CoV-2 peptide-allele distributions were

analyzed at epidemiological scale to track its impact on country-

specific mortality. Each of the 23 countries were assigned a pop-

ulation SARS-CoV-2 binding capacity (or EMP score) based on

the individual binding capacities of the selected 52 MHC-I alleles
8 Cell Reports Medicine 2, 100221, March 16, 2021
weighted by their endemic population frequencies. This hierarchi-

zation revealed a strong inverse correlation between EMP score

and observed population mortality, indicating that populations

enriched with high SARS-CoV-2 binding capacity MHC-I alleles

may be better protected. The correlation was shown to be stron-

ger when calculating the EMP scores with respect to only struc-

tural proteins, reinforcing their relevance to viral immunity. Finally,

the molecular origin of the 108 predicted peptides specific to

SARS-CoV-2 structural proteins revealed that they are derived

from enriched regions with a minimal predicted impact from

amino acid sequence polymorphisms.

The utility of structural protein EMP scores was further sup-

ported by a multivariate analysis of additional SARS-CoV-2 risk

factors. These results emphasized the relative robustness of

structural protein EMP scores as a population risk assessment
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tool. Furthermore, a linear model based on the combination of

structural protein EMP scores and select population-level risk

factors was identified as a potential candidate for a predictive

model for pandemic population severity. As such, the incorpora-

tion of the structural protein EMP score in more sophisticated

models will likely improve epidemiological modeling.

To achieve the highest level of accuracy in MHC-I predictions,

themost up-to-date versions of each component algorithmwere

used. However, this meant that several of the algorithms

(MHCflurry, netMHCpan-EL-4.0, and MixMHCpred) were

benchmarked against subsets of mass spectrometry data that

were used in the original training of these MHC-I prediction

models. While this could result in an unfair weight applied to

these algorithms in peptideFDR calculation, the individual FDRs

of MHCflurry, netMHCpan-EL-4.0, and MixMHCpred were com-

parable to algorithms without this advantage (Figure S1C).

Furthermore, the peptide selection of SARS-CoV-2 peptides

was shown to be highly cooperative within EnsembleMHC (Fig-

ure S3A), and individual algorithms failed to replicate the strong

observed correlations between population-binding capacity and

observed SARS-CoV-2 mortality (Figure S7E).

In the future, the presented model could be applied to predict

individual T cell capacity to mount a robust SARS-CoV-2 im-

mune response. Evolutionary divergence of patient MHC-I

genotypes has been shown to be predictive of the response to

immune checkpoint therapy in cancer and HIV.35,36 However,

confirmation will require large datasets associating individual

patient MHC-I genotype and outcome. In addition, the future

use of EnsembleMHC to design personalized T cell vaccines

will require broad experimental validation of high-scoring pep-

tides, since EnsembleMHC predicts MHC-I peptides with a

high probability of antigen presentation as opposed to directly

predicting peptide immunogenicity. While previous work has

determined that a majority of successfully presented viral

MHC-I peptides are immunogenic,37 there is an expectation

that some presented SARS-CoV-2 MHC-I peptides will fail to

produce an immune response.

The versatility of the proposed model will be improved by the

consideration of additional MHC-I alleles. To reduce the pres-

ence of confounding factors, EnsembleMHCwas parameterized

on only a subset of common MHC-I alleles that had strong

existing experimental validation. While the selected MHC-I

alleles are among some of the most common, personalized

risk assessment will require consideration of the full patient

MHC-I genotype. The continued mass spectrometry-based

characterization of MHC-I peptide-binding motifs will help in

this regard. However, due to the large potential sequence space

of the MHC-I protein, extension of this model will likely require

the inference of binding motifs based on MHC variant clustering.

Limitations of study
This work demonstrated a strong association between a popula-

tion-level metric, SARS-CoV-2 MHC-I peptide-binding capacity,

and SARS-CoV-2 mortality rate by country. Other risk factors

for SARS-CoV-2-specific mortality have been reported, including

comorbidities, healthcare infrastructure, age, and gender. These

risk factors are predicted to have a significant impact on individ-

ual patient outcome, which is not evaluated in this study. Other
genetic determinants of severity, such as angiotensin-converting

enzyme 2 (ACE2) polymorphism, were not considered.38 The

impact of MHC-I genotype and SARS-CoV-2 antigen presenta-

tion capacity on outcomeswill require the integration of individual

patient genetic and clinical data. While this study evaluated

EnsembleMHC for population SARS-CoV-2 binding capacity,

its use has not yet been validated for other applications,

such as other infectious diseases or individual MHC-I binding

predictions.
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HLA frequency data González-Galarza et al.18 http://allelefrequencies.net/

JHU CSSE COVID-19 Data Dong et al.42 https://github.com/CSSEGISandData/COVID-19

population covariate data Global Health Observatory

data repository

https://apps.who.int/gho/data/node.main)

Viral peptides with known immunogenicity IEDB https://www.iedb.org/

Software and algorithms

R 4.0 R Core Team43 https://www.r-project.org

EnsembleMHC This paper https://github.com/eawilson-CompBio/EnsembleMHC-Covid

VMD Humphrey et al.44 https://www.ks.uiuc.edu/Research/vmd/
RESOURCE AVAILABILITY

Lead contact
Further information and requests should be directed to andwill be fulfilled by the Lead Contact, Karen Anderson (Karen.Anderson.1@

asu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data and code generated during this study are available at EnsembleMHC-Covid (https://github.com/eawilson-CompBio/

EnsembleMHC-Covid).

METHOD DETAILS

EnsembleMHC component binding and processing prediction algorithms
EnsembleMHC incorporates MHC-I binding and processing predictions from 7 publicly available algorithms: MHCflurry-affinity-

1.6.0,19 MHCflurry-presentation-1.6.0,19 netMHC-4.0,21 netMHCpan-4.0-EL,20netMHCstabpan-1.0,24 PickPocket-1.1,23 and,

MixMHCpred-2.0.2.22 These algorithms were chosen based on the criteria of providing a free academic license, bash command

line integration, and demonstrated accuracy for predicting SARS-CoV-2 MHC-I peptides with experimentally validated binding

stability.45

Each of the selected algorithms cover components of MHC-I binding and antigen processing that roughly fall into two categories:

ones based primarily on MHC-I binding affinity predictions and others that incorporate antigen presentation. To this end,

MHCflurry-affinity, netMHC, PickPocket, and netMHCstabpan predict binding affinity based on quantitative peptide binding affinity

measurements. netMHCstabpan also incorporates peptide-MHC stability measurements and PickPocket performs prediction based

on binding pocket structural extrapolation. To model the effects of antigen presentation, MixMHCpred, netMHCpan-EL, and

MHCflurry - presentation are trained on naturally elutedMHC-I ligands. Additionally, MHCflurry-presentation incorporates an antigen

processing term.
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Parameterization of EnsembleMHC using mass spectrometry data
EnsembleMHC is able to achieve high levels of precision in peptide selection through the use of allele and algorithm-specific binding

affinity thresholds. These binding affinity thresholds were identified through the parameterization of each algorithm on high-quality

mass spectrometry datasets.17 The mass spectrometry datasets used for algorithm parameterization were collected in the largest

single laboratory MS-based characterization of MHC-I peptides presented by single MHC allele cell lines. These characteristics

significantly reduces the number of artifacts introduced by differences in peptide isolation methods, mass spectrometry acquisition,

and convolution of peptides in multiallelic cell lines. An overview of the EnsembleMHC parameterization is provided in supplemental

figures (Figure S1A).

Fifty-two commonMHC-I alleles were selected for parameterization based on the criteria that they were characterized in Sarkizova

et al. datasets and that all 7 component algorithms could perform peptide binding affinity predictions for that allele. Each target pep-

tide (observed in the MS dataset) was paired with 100 length-matched randomly sampled decoy peptides (not observed in the MS

dataset) derived from the same source proteins. If a protein was less than 100 amino acids in length, then every potential peptide from

that protein was extracted.

Each of the seven algorithms were independently applied to each of the 52 allele datasets. For each allele dataset, the minimum

score threshold was determined for each algorithm that recovered 50% of the allele repertoire size (the total number of target pep-

tides observed in the MS dataset for that allele). Additionally, the expected accuracy of each algorithm was assessed by calculating

the observed false detection rate (the fraction of identified peptides that were decoy peptides) using the identified algorithm- and

allele-specific scoring threshold. The parameterization process was repeated 1000 times for each allele through bootstrap sampling

of half of the peptides in each single MHC allele dataset. The final FDR and score threshold for each algorithm at each allele was

determined by taking the median value of both quantities reported during bootstrap sampling.

PeptideFDR calculation
Peptide confidence is assigned by calculating the peptideFDR. This quantity is defined as the product of the empirical FDRs of each

individual algorithm that detected a given peptide. The peptideFDR is calculated using Equation 1,

peptideFDR =
YN

i = 1;isND

algorithmFDR
i (1)

, whereN is the number of MHC-I binding and processing algorithms,ND represents an algorithm that did not detect a given peptide,

and algorithmFDR represents the allele specific FDRof theNth algorithm. The peptideFDR represents the joint probability that all MHC-I

binding and processing algorithms that detected a particular peptide did so in error, and therefore returns a probability of false detec-

tion. Unless otherwise stated, EnsembleMHC selected peptides based on the criterion of a peptideFDR % 5%.

Application of EnsembleMHC to tumor cell line data
Ten tumor samples were obtained from the Sarkizova et al. datasets. Tumor samples were selected for analysis if at least 50%

of the expressed MHC-I alleles for that sample were included in the 52 MHC-I alleles supported by EnsembleMHC. For each

dataset, decoy peptides were generated in a manner identical to the method used for algorithm parameterization on single MHC

allele data.

Peptide identification by each algorithm was based on restrictive or permissive binding affinities thresholds. These thresholds

correspond to commonly used score cutoffs for the identification of strong binders (restrictive) or all binders (permissive) (0.5%

(percentile rank) or 50nM (IC50 value) for strong binders, and 2% (percentile rank) or 500nM (IC50 value) for all binders). Due to the

lack of recommend score thresholds for MHCflurry-presentation-1.6.0, the raw presentation score was converted to a percentile

score using presentation scores produced by 100,000 randomly generated peptides.

SARS-CoV-2 reference sequence
MHC-I peptide predictions for the SARS-CoV-2 proteome were performed using the Wuhan-Hu-1 (GenBank: MN908947.3) refer-

ence sequence.39 All potential 8-14-mer peptides (n = 67,207) were derived from the open reading frames in the reported proteome,

and each peptide was evaluated by the EnsembleMHC workflow.

SARS-CoV-2 polymorphism analysis and protein structure visualizations
Polymorphism analysis of SARS-CoV-2 structural proteins were performed using 102,148 full length protein sequences obtained

from the COVIDep database.40 Solved structures for the E (PDB: 5X29) and S (PDB: 6VXX) proteins (https://www.rcsb.org/)46 and

predicted structures for the M and N proteins41 were visualized using VMD.44

Application of EnsembleMHC to determine population SARS-CoV-2 binding capacity
The peptides identified by the EnsembleMHCworkflowwere used to assess the SARS-CoV-2 population binding capacity by weigh-

ing individual MHC allele SARS-CoV-2 binding capacities by regional expression (for a schematic representation see Figure S2).
Cell Reports Medicine 2, 100221, March 16, 2021 e2
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The selection of countries included in the EnsembleMHC population binding capacity assessment was based on several criteria

regarding the underlying MHC-I allele data for that country (Figure S2). The MHC-I allele frequency data used in our model was

obtained from the Allele Frequency Net Database (AFND),18 and frequencies were aggregated by country. However, the currently

available population-based MHC-I frequency data has specific limitations and variances, which we have addressed as follows:

MHC allele data coverage within countries
We define MHC-typing breadth as the diversity of identified MHC-I alleles within a given country, and its depth as the ability to accu-

rately achieve 4-digit MHC-I genotype resolution. High variability was observed in both the MHC-I genotyping breadth and depth

(Figure S2 inset). Consequently, additional filter-measures were introduced to capture potential sources of variance within the

analyzed cohort of countries. The thresholds for filtering the country-wideMHC-I allele data were set based onmeeting two inclusion

criteria: 1) MHC genotyping of at least 1000 individuals have been performed in that population, avoiding skewing of allele

frequencies due to small sample size. 2) MHC-I allele frequency data for at least 51 of the 52 (95%) MHC-I alleles for which the En-

sembleMHC was parameterized to predict, ensuring full power of the EnsembleMHC workflow.

Ethnic communities within countries
In instances where the MHC-I allele frequencies would pertain to more than one community, the reported frequencies were counted

toward both contributing groups. For example, the MHC-I frequency data pertaining to the Chinese minority in Germany would be

factored into the population MHC-I frequencies for both China and Germany. In doing so, this treatment resolves both ancestral and

demographic MHC-I allele frequencies.

Normalization of MHC allele frequency data
The focus of this work was to uncover potential differences in SARS-CoV-2 MHC-I peptide presentation dynamics induced by the 52

selected alleles within a population. Accordingly, theMHC-I allele frequency data was carefully processed in order tomaintain impor-

tant differences in the expression of selected alleles, while minimizing the effect of confounding factors.

The MHC-I allele frequency data for a given population was first filtered to the 52 selected alleles. These allele frequencies were

then converted to the theoretical total number of copies of that allele within the population (allele count) following

allele count = allelefreq 3 23 n (2)

, where allelefreq is the observed allele frequency in a population and n is the population sample size for which that allele frequency

was measured. The allele count is then normalized with respect to the total allele count of selected 52 alleles within that population

using the following relationship

norm allele counti =
allele countiP52
i = 1allele counti

(3)

, where i is one of the 52 selected alleles. This normalization is required to overcome the potential bias toward hidden alleles (alleles

that are either not well characterized or not supported by EnsembleMHC) as would be seen using alternative allele frequency ac-

counting techniques (e.g., sample-weighted mean of selected allele frequencies or normalization with respect to all observed alleles

within a population; Figure S6C). The SARS-CoV-2 binding capacity of these hidden alleles cannot be accurately determined using

the EnsembleMHC workflow, and therefore important potential relationships would be obscured.

EnsembleMHC population score
The predicted ability of a given population to present SARS-CoV-2 derived peptides was assessed by calculating the EnsembleMHC

Population (EMP) score. After the MHC-I allele frequency data filtering steps, 23 countries were included in the analysis. The calcu-

lation of the EnsembleMHC population score is as follows

EMP score=

P52
i = 1peptidefrac 3 norm allele counti

Nnorm allele counts0

(4)

, where norm allele count is the observed normalized allele count for a given allele in a population,Nnorm allele counts 0 is the number of

the 52 select alleles detected in a given population (range 51-52 alleles), and peptidefrac is the peptide fraction or the fraction of total

predicted peptides expected to be presented by that allele within the total set of predicted peptides with a peptideFDR % 5%.

Death rate-presentation correlation
The correlation between the EMP score and the observed deaths permillion within the cohort of selected countries was calculated as

a function of time. SARS-Cov-2 data covering the time dependent global evolution of the SARS-CoV-2 pandemic was obtained from

Johns Hopkins University Center for Systems Science and Engineering42 covering the time frame of January 22nd to April 9th 2020.

The temporal variations in occurrence of community spread observed in different countries were accounted for by rescaling the time

series data relative to when a certain minimumdeath threshold wasmet in a country. This analysis was performed for minimum death
e3 Cell Reports Medicine 2, 100221, March 16, 2021
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thresholds of 1-100 total deaths by day 0, and correlations were calculated at each day sequentially following day 0 until there were

fewer than 8 countries remaining at that time point. The upper-limit of 100-deaths was chosen due to a steep decline in average sta-

tistical power observed with day 1 death thresholds greater than 100 deaths (Figure S6E).

The time death correlation was computed using Spearman’s rank correlation coefficient (two-sided). This method was chosen due

to the small sample size and non-normality of the underlying data (Figure S6D). The reported correlations of EMP score and deaths

per million using other correlation methods can be seen in supplemental Figure S6A.

The low statistical power for some of the obtained correlations were addressed by calculating the Positive Predictive Value (PPV) of

all correlations using the following equation47

PPV =
1� b3R

1� b3R+a
(5)

,where 1 is the statistical power of a given correlation,R is the pre-study odds, and a is the significance level. A PPV value ofR 95% is

analogous to a p value of% 0.05. Due to an unknown pre-study odd (probability that probed effect is truly non null), R was set to 1 in

the reported correlations. The significance of partitioning high risk and low risk countries based on median EMP score was deter-

mined usingMann-Whitney U-test. Significance values were corrected for multiple tests using the Benjamini-Hochberg procedure.30

Sub-sampling of peptides from the Full SARS-CoV-2 proteome
108 unique peptides, derived from the Full SARS-CoV-2 proteome and passing the 5% peptideFDR filter, were randomly sampled.

Then, the time series EMP score - death per million correlation analysis used to generate Figure 3 was applied to each sampled pep-

tide set. The sub-sampling procedure was repeated for 1,000 iterations (Figure S7A). To quantitatively describe the similarity of the

distributions, the Kullback-Leibler divergence (KLD), a measure of divergence between two probability distributions, was calculated

for the correlation distribution of each sub-sample iteration relative to either the correlation distribution of the Full SARS-CoV-2 pro-

teome or SARS-CoV-2 structural proteins (Figure S7B).

Additional SARS-CoV-2 risk factors
Twelve potential SARS-CoV-2 risk factors (Table S2) were selected for analysis. Country-specific data for each risk factor was ob-

tained from the Global Health Observatory data repository provided by the World Health Organization (https://apps.who.int/gho/

data/node.main). Countries were selected for analysis based on the criteria of having reported data in the WHO datasets and inclu-

sion in the set of 23 countries for which EnsembleMHCpopulation scoreswere assigned (Table S2A). Data regarding the total number

of noncommunicable disease-related deaths (Cardiovascular disease, Chronic obstructive pulmonary disease, and Diabetes

mellitus) were converted to deaths per million.

Correlation of additional risk factors with observed deaths per million
Correlation analysis of each additional factor was carried out in a similar manner to that of the EnsembleMHC population score. In

short, Spearman’s correlation coefficient between each individual factor and observed deaths permillion was estimated as a function

of time fromwhen a specified minimum death threshold wasmet (Figure 4). The significance level was set to p% 0.05 and significant

PPV was set to PPV R 0.95 (Equation 8).

Linear models of SARS-CoV-2 mortality
For the single and combination models, individual linear models were constructed for each considered death threshold as a function

of time (similar to the univariate correlation analysis). Each model consisted of 1 (a single socioeconomic or health-related risk factor)

or 2 (a combination of 1 risk factor and structural protein EMP score) dependent variables and deaths per million as the independent

variable. The adjusted R2 value and statistical significance of the model (F-test) were then extracted from each individual model and

aggregated by dependent variable (Figure S8A).

The best performing models were determined by assessing all possible combinations of factors including structural protein EMP

score. This resulted in the consideration of 4,083 different linear models. The top performing models were then selected by ranking

each model by median adjusted R2.

Immunogenic viral peptide analysis
Individual algorithms were assessed for ability to prioritize viral peptides with known immunogenicity by calculating the precision

(experimentally validated peptides / putative non-immunogenic peptides) when selecting n number of top scoring peptides as deter-

mined by a given algorithm. For example, if n = 25, then the precision of each algorithm would be calculated based on the top 25

highest scoring peptides according that algorithm. A Viral peptide dataset was generated by extracting all potential 8 – 14-mer pep-

tides from the Hepatitis-C genome polyprotein (P26664), the Dengue virus genome polyprotein (P14340), and the HIV-1 POL-GAG

protein (P03369). The resulting peptideswere then checked against the Immune Epitope database48 (IEDB, https://www.iedb.org/) to

identify peptides with experimentally validated immunogenicity. This resulted in the generation of a dataset comprised of 616

experimentally validated immunogenic peptides and 54,663 putative non-immunogenic peptides (this includes peptides

experimentally determined to non-immunogenic or peptides with unknown immunogenicity). To benchmark EnsembleMHC
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against other Ensemble-based MHC-I peptide prediction algorithms, netCTLpan49 and MHCcons50 were included for comparison

purposes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests were performed using R 4.0.343. All effect size estimations were performed using Spearman’s rank correlation.

Mann-Whitney U test was used to test for significant testing of death rate stratification between countries with high and low

EnsembleMHC score. The threshold for statistical significance was set to p values of % 0.05 or positive predictive value of

PPV R 0.95. Where indicated, p value correction for multiple testing was accomplished using the Benjamini-Hochberg procedure.
e5 Cell Reports Medicine 2, 100221, March 16, 2021
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