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Abstract

No matching vaccine is immediately available when a novel influenza strain breaks out. Several nonvaccine-related
strategies must be employed to control an influenza epidemic, including antiviral treatment, patient isolation, and
immigration detection. This paper presents the development and application of two regional dynamic models of influenza
with Pontryagin’s Maximum Principle to determine the optimal control strategies for an epidemic and the corresponding
minimum antiviral stockpiles. Antiviral treatment was found to be the most effective measure to control new influenza
outbreaks. In the case of inadequate antiviral resources, the preferred approach was the centralized use of antiviral
resources in the early stage of the epidemic. Immigration detection was the least cost-effective; however, when used in
combination with the other measures, it may play a larger role. The reasonable mix of the three control measures could
reduce the number of clinical cases substantially, to achieve the optimal control of new influenza.
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Introduction

2In 2009, influenza A virus subtype H1N1 swept the globe [1].

The highly pathogenic avian influenza subtype H5N1 has

threatened humans for many years [2,3]. Currently, human

infection with the avain influenza subtype H7N9 is a serious

concern in China, and the risk of new influenza outbreaks is

increasing. As the most effective intervention to extinguish

influenza, vaccine distribution is among the main directions of

research into influenza prevention and control [4,5]. However, a

matching vaccine is not available in the short-term when a new

influenza strain breaks out. For example, H1N1 was detected in

April 2009 in China, but no matching vaccine was available until

September 2009. The epidemic trend of a new influenza strain

gradually spreads from one region to all over the world, and in most

regions, new influenza epidemics are caused by imported cases.

Given the long vaccine development cycle (up to several

months) and the huge gap between vaccine production and

demand [6], considerable time is needed for the proportion of

immune individuals to be sufficiently large to inhibit the spread of

an influenza epidemic. It has become increasingly important to

understand how to prevent and control influenza without vaccines

[7–9]. To this end, three main measures have been employed.

Antiviral treatment is an effective approach for treating patients in

the early stages of infection [10] and shortening the infectious

period. Isolation of infectious patients at specialized hospitals for

infectious diseases helps to prevent the spread of an epidemic

[11,12]. Immigration detection involves the detection of influenza

(e.g., by measuring body temperature) at ports of entry.

However, these control measures have limitations. For example,

poor countries do not sufficient capacity or financial support to

produce, stockpile, or update adequate antiviral resources [7]. To

be effective, the isolation of infected patients requires the

government to provide manpower, materials, and free medical

care [13]. Immigration detection can be an expensive endeavor

that may affect international trade. Policymakers and government

officials need to understand how to optimize control measures and

improve their cost-effectiveness for new influenza strains. An

inability to develop cost-effective control strategies will result in

wasted resources and poor control.

Optimal control theory, which involves determining the optimal

solution from among all possible control schemes, has been

successfully applied in many areas, such as mechanical control,

biology, economics, and so on. Recently, there have been many

applications of optimal control theory to the prevention and

control of infectious diseases [14–17]. Computer simulations based

on dynamic models of infectious diseases and optimal control

theory provide fast, inexpensive, and effective methods to explore

optimal control strategies.

Few studies have addressed how to use the three epidemic

control schemes of antiviral treatment, patient isolation, and

immigration detection to prevent and control new influenza

outbreaks. However, the identification of optimal control strategies

to minimize the impact of influenza pandemics and the cost of
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pandemic control is greatly needed. The aim of the study

described in this paper was to develop and apply two regional

dynamic models of influenza, to determine the optimal control

strategies with the three control measures.

Models and Methods

Mathematic Model of Influenza
We constructed a dynamic model of interregional influenza

transmission that contained the epidemic prevention and control

variables, combined with the characters of the classic compart-

ment model of infectious diseases and new influenza protection

[18,19]. To simplify the model, we assumed the existence of two

regions: epidemic region A and nonepidemic region B. In the case

of no immigrant detection, the proportion of flowing population to

the total population m between the two regions was assumed to be

constant and equal. We considered the application of the three

optimal dynamic control strategies to region B, for the case in

which region A does not take any control strategy (see Fig. 1).

In the dynamic model, individuals were classified as susceptible

(S), exposed (E), subclinical (A), clinical (I), recovered (R), or dead

(D). The dynamic model was given by the following system of

nonlinear differential equations:

_SS(t)~{bS(t)((1{e2u2(t))I(t)zqA(t))zm(N(t)PS(t){S(t))

_EE(t)~bS(t)((1{e2u2(t))I(t)zqA(t)){kE(t)zm(N(t)PE(t)

{E(t))

_AA(t)~k(1{r)E(t){c1A(t)zm(N(t)PA(t){A(t))

_II(t)~krE(t){c2I(t){e1u1(t)I(t)zm(N(t)PI (t)(1{e3u3(t))

{I(t))

_RR(t)~c1A(t)zc2(1{d)I(t)ze1u1(t)I(t)zm(N(t)PR(t){R(t))

_DD(t)~c2dI(t)

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð1Þ

Figure 1. Prevention and control model of new influenza between epidemic region A and nonepidemic region B.
doi:10.1371/journal.pone.0084694.g001

Table 1. Model parameter definitions and values in simulation model.

Parameter Description Value References

m Mobility of the population between regions A and B 0.003 Assumption

r Clinical infection rate 0.5 [24,25]

q Relative infectivity of the subclinical individual 0.003 [26]

1/k Mean incubation period (days) 2 [27]

1=c1 Mean infectious period of subclinical infection (d) 5 Assumption

1=c2 Mean infectious period of clinical infection (d) 6 [27,28]

d Mortality rate of clinical infection 0.004 [25]

tf Simulation duration (d) 200 Assumption

e1 Efficacy of antiviral treatment 1/6 [10]

e2 Efficacy of isolation 0.5 Assumption

e3 Efficacy of immigration detection 0.5 Assumption

doi:10.1371/journal.pone.0084694.t001
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with:

N(t)~S(t)zE(t)zA(t)zI(t)zR(t): total population size of

region B,

b: per-capita transmission rate,

q: infectivity ratio between subclinical and clinical patients,

m: daily flow of the proportion of the population,

r: clinical infection rate,

d : mortality rate of clinical patients (all subclinical patients were

assumed to recover),

Pi(i~S,E,A,:::): proportion of the various classes in region A.

k: rate of transfer of individuals in class E into infectious class A

or I, and

c1,c2: recovery or death rates of individuals in class A and I,

respectively.

Because influenza is typically a seasonal disease, and the

epidemic period is not very long, we did not consider the natural

birth and death rates in our transmission model. u1(t), u2(t), and

u3(t) were the intensities of antiviral treatment, patient isolation,

and immigration detection, respectively. Because it was difficult to

detect an individual in class E or A, we assumed that epidemic

intervention could only be used for clinical patients. u1(t)
represented the proportion of clinical patients who accepted

antiviral treatment (u1(t)[(0,1)), with e1 as the efficacy of this

treatment (e1[(0,1)). u2(t) represented the proportion of isolated

clinical patients, with e2 as the efficacy of this isolation (e2[(0,1)).
u3(t)represented the proportion of flowing clinical patients who

underwent immigration detection (u3(t)[(0,1)), with e3as the

efficacy of immigration detection (e3[(0,1)). The basic reproduc-

tion number R0 was used to describe the spreading capacity of

infectious disease in the disease transmission dynamic model [20].

With no control strategy, the R0 of model Eq. (1) was given by:

R0~bN(
(1{r)q

c1

z
r

c2

) ð2Þ

Optimal Control
It is difficult to identify and control individuals in classes E and

A during an influenza epidemic, and individuals in these classes

will not cause direct pressures on the healthcare resources and

economic activities. Given these assumptions, we defined the

objective function for the cost-effectiveness of the control strategies

as:

J(u1(t),u2(t),u3(t))~

ðtf

t0

½I(t)z
c1

2
u2

1(t)z
c2

2
u2

2(t)z
c3

2
u2

3(t)�dt ð3Þ

with:

t0, tf : start and end times, respectively, of epidemic prevention

and control, and

c1, c2, and c3: constants to balance the relative costs of

interventions and clinical patients.

The goal of the optimal control strategy calculation problem

was to find optimal functions u�1(t), u�2(t), and u�3(t), such that the

total cost of interventions and clinical patients was lowest, namely:

J(u�1(t),u�2(t),u�3(t))~ min
V

J(u1(t),u2(t),u3(t)) ð4Þ

V~f(u1(t),u2(t),u3(t))[L1(t0,tf )j0vui(t)v1,i~1,2,3,t[(t0,tf )g,
and ui(t) was assumed to be bounded by the Lebesgue integrable

function on [t0,tf ] [21]. The problem was translated to optimize

the control process of coupled nonlinear differential equations.

Pontryagin’s Maximum Principle can be used to solve this

problem [22]. The calculation method and process are shown in

supporting information: Text S1.

Results and Discussion

Scenario
Pandemic data from the 2009 H1N1 outbreak were used to

calibrate the parameters in our dynamic model of infectious

disease. We made the following assumptions:

1. The total population of region B was 100,000. All of them were

susceptible.

2. The influenza epidemic began in region A, and then spread to

region B.

3. The upper limits of the intensities of antiviral treatment,

immigration detection, and isolation were 0.9, 0.9, and 0.6,

respectively. The limit for isolation was lower than the other

limits because it was hard to execute effectively. Thus,

0vu1(t)v0:9,0vu2(t)v0:6,0vu3(t)v0:9:

4. According to medical research, both clinical and subclinical

infections are possible from the same influenza virus source

[23]. There is no research to indicate the specific proportion of

clinical infection of influenza A (H1N1). We speculate that the

number of clinical cases is approximately equal to the number

of subclinical cases from literature [24,25]. Therefore, we

assumed that r~0:5.

5. The infectivity and infectious period of subclinical individuals

have not been statistically validated with medical observations.

Because these patients lack coughing, sneezing, and other ob-

vious influenza symptoms, their infectivity will be much weaker

than that of clinical individuals. We assumed that the infectious

period for a subclinical individual was 5 days, and we used

infectious parameters from the 1918 influenza outbreak [26].

6. Three weight values were defined to balance the cost of control

measures and loss of influenza: c1~5,c2~20, and c3~20.

Figure 2. Epidemic trends without a control strategy in region
B. Simulation parameters are shown in Table 1. R0~3.
doi:10.1371/journal.pone.0084694.g002
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Table 1 displays the specific values, meanings, and sources of

the parameters used in the study. The population mobility and the

weights and effectiveness levels of the different control measures

were difficult to determine and were subjected to sensitivity

analyses. The simulation time was set to 200 days. The infectivity

levels of various new influenza strains may differ considerably. For

example, the basic reproduction number R0 was about 3.75 for the

Spanish flu in the autumn 1918 epidemic period, but R0 was 1.5

for the 2009 H1N1 epidemic [25,29]. We assumed an R0 for new

influenza of 3.0. The transmission rate b can be solved from Eq.

(2) (Other assumptions see supporting information: Text S3).

Numerical Results
Fig. 2 shows the epidemic trends analyzed without the use of a

control strategy in region B. Under this condition, the epidemic

trends and infection rates of regions B and A were similar, except

with a delay of 12 days. The proportion of all people who were

clinically infected over the total 200 days was 45.41%. The peak

proportion of clinically infected individuals was 11.09%.

Next, we explored the optimal control strategy functions of

region B using only one control measure: antiviral treatment,

patient isolation, or immigration detection (Fig. 3). Antiviral

treatment was the most effective measure to control clinical

infection. Its use reduced the total and peak proportions of

Figure 3. Optimal control and epidemic trend functions of region B, using antiviral treatment, patient isolation, or immigration
detection alone. A–C: Optimal control functions. D, E: Functions of the clinical and subclinical patients. Simulation parameters are shown in Table 1.
R0~3.
doi:10.1371/journal.pone.0084694.g003
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clinically infected individuals to 15.07% and 2.47%, respectively.

According the Eq. (10) (supporting information: Text S1), the

antiviral resource demand is one day of doses for 812 persons (812

DDs) per thousand people for 200 days. Patient isolation reduced

the total and peak proportions of clinically infected individuals to

37.13% and 5.97%, respectively. Isolation prolonged the duration

of an epidemic; therefore, although it was useful to control the

peak of an epidemic, it did not control the total number of clinical

patients. The total and peak proportions of clinically infected

patients were 44.68% and 10.87%, respectively, when immigra-

tion detection was used.

Finally, we explored the optimal control strategy functions of

region B using mixed control strategies with two or three control

measures (Fig. 4). A comparison of Fig. 3 and 4 clearly shows that

the use of a mixture of control strategies was more effective than

the use of a single strategy for controlling an epidemic. The use of

mixed control strategies reduced the total and peak proportions of

clinically infected individuals to 4.46% and 0.47%, respectively.

The antiviral drug demand was 241 DDs per thousand people.

The more effective the control strategy was, the longer it was used

at high intensity, to avoid a second outbreak of the epidemic.

Figure 4. Optimal control and epidemic trend functions of region B, using mixed epidemic control strategies. A–D: Optimal control
functions. E, F: Functions of the clinical and subclinical patients. Simulation parameters are shown in Table 1. R0~3.
doi:10.1371/journal.pone.0084694.g004

Optimal Control of Influenza
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Figure 5. Cumulative number of clinical cases (vertical axis) as a function of the efficacy of individual prevention measures
(horizontal axis) with different R0 values. Simulation parameters except ei are shown in Table 1.
doi:10.1371/journal.pone.0084694.g005

Figure 6. Effectiveness analysis of immigration detection. Top: Cumulative reduction in the number of clinical cases per thousand persons.
Bottom: Reduction in the proportion of clinical cases as a function of the efficacy of control measures under different R0 values.
doi:10.1371/journal.pone.0084694.g006
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Sensitivity Analysis
We investigated the role of the control measure parameters with

different R0 values via sensitivity analysis. Fig. 5 shows the

cumulative number of clinical cases as a function of the efficacy of

each control measure with different values of R0. The efficacy of

antiviral treatment was the most sensitive of the control measures

to the cumulative number of clinical cases. When the efficacy was

0.5 (i.e., antiviral treatment shortened the infectious period of

symptoms to 2 days), this control measure could effectively control

influenza, especially virus with low infectivity. The efficacy of

patient isolation was positively correlated with R0, such that

stricter control was needed as the infectivity of the influenza

increased.

Little research is available on the use of immigration detection

as a control measure for influenza epidemics. Because there were

many exposed and subclinical cases, this measure only reduced the

number of cumulative infected cases by a small amount. However,

immigration detection also depended on the mobility of the

Figure 7. Impact of population mobility on epidemic control. Cumulative number of clinical cases in region B is shown as a function of R0 for
strategies 1, 2, and 3 when the population mobility is m~0:001, m~0:005, and m~0:02, respectively.
doi:10.1371/journal.pone.0084694.g007

Figure 8. Epidemic trend effects, in terms of the infectious period of clinical cases, relative Infectivity, and proportion of clinical
infection. Cumulative number of clinical cases per thousand people as a function of q and r (top) or 1=c1 and q (bottom).
doi:10.1371/journal.pone.0084694.g008
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population between the two regions. To explore the effectiveness

of immigration detection further, we compared the cumulative

number of clinical cases when immigration detection was used

alone or with other control measures (Fig. 6). Immigration

detection was more effective when used in conjunction with other

control measures.

Based on the above findings, to simplify our calculations, we

focused on the following three control strategies: antiviral

treatment u1 alone (strategy 1), nonpharmacologic interventions

u2 and u3 (strategy 2), and pharmacologic and nonpharmacologic

interventions u1, u2, and u3 (strategy 3). The mobility of population

m directly resulted in the spread of disease from the epidemic to the

nonepidemic region. Therefore, we analyzed the impact of

population mobility on epidemic control. With the increased

population mobility, immigration detection increased in impor-

tance, and nonpharmacologic intervention was more effective than

antiviral treatment (Fig. 7).

Subclinical cases are difficult to track, and their role in the

transmission dynamics of infectious diseases is difficult to confirm.

Hsu et al. explored these issues by mathematical derivation [30].

We performed sensitivity analyses of three key parameters of the

subclinical cases: the infectious period 1=c2, relative infectivity q,

and proportion of clinical infectious individuals r (Fig. 8).

Compared to the other parameters, the effects of r on the

cumulative number of clinical cases was the most significant. We

observed a negative correlation between the effects of r and the

intensities of the control strategies. As q increased, the effects of

1=c2 on the cumulative number of clinical cases also increased.

Due to fear of infection, the migration rates may spontaneous

decrease during an epidemic period. To test whether this change

Figure 9. Comparison of cumulative clinical cases for optimal control strategies with different R0 and weight values ci .
doi:10.1371/journal.pone.0084694.g009

Figure 10. Relationship between the efficacy of antiviral treatment and the optimal antiviral stockpile (per thousand people), with
different R0 values. Colors represent the optimal antiviral stockpile (DDs per thousand people) under different efficacies of antiviral treatment.
doi:10.1371/journal.pone.0084694.g010
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influences the simulation results, we performed a sensitivity

analysis. We examined decreasing migration rates in the range

of 0 to 0.8 with different values of R0 (see supporting information:

Text S4, Fig. S1, Fig. S2, Fig. S3). The cumulative number of

clinical cases was not strongly affected by migration rates.

However, when the control strategies were relatively effective

(i.e., cumulative number of clinical cases per thousand people

,100), the proportional change in the number of clinical cases was

significant, and the number of clinical cases was positively

correlated with the migration rate. When the control strategies

were not effective (i.e., cumulative number of clinical cases per

thousand people .100), the result was the opposite.

The costs of clinical cases and control strategies are impacted by

the influenza epidemic level and regional economic conditions.

Fig. 9 shows the effects of parameters ci, which were used to

balance these costs. Epidemic control was not obviously affected

by ci when the cost-effectiveness of the control measures was good

(i.e., ci were not sufficiently large). However, once ci increased to a

certain value (cost of control strategies.loss of clinical cases), the

optimal strategies tended to reduce the intensities of control

measures, especially less cost-effective nonpharmacologic mea-

sures, and the cumulative number of clinical cases increased

substantially. Therefore, reducing the cost of control measures can

ensure a good control when the optimization goal is to maximize

the cost-effectiveness.

The emergency production capacity of antiviral resources is

inadequate in many countries and regions. Therefore, how many

antiviral resources are stockpiled for a new influenza outbreak is a

wide concern. We explored the role of antiviral resources in the

optimal control strategies (Fig. 10). The optimal antiviral stockpile

was very sensitive to the efficacy of the antiviral treatment. Thus,

the use of effective and generally applicable antiviral drugs was

important for controlling the extent and cost of new influenza

epidemics.

Optimal Control Strategies with Limited Antiviral
Resources

We modified the mathematical and optimal control models to

explore the optimal control strategies in the scenario of limited

antiviral resources (see supporting information: Text S2).Without

loss of generality, we restrict our discussion to the situation with

R0~2. Under conditions of adequate resources, antiviral stock-

piles to achieve optimal control strategies should satisfy 60 DDs

per thousand people. Fig. 11 shows the results for the optimal

control strategies under scenarios with insufficient antiviral

stockpiles: namely, for 50 and 30 DDs per thousand people.

Maximum-intensity implementation of antiviral treatment in the

early stage of the pandemic until the antiviral stockpiles are

exhausted was observed to be the optimal control strategy under

conditions of inadequate antiviral resources. Intense nonpharma-

cologic interventions should also be used. However, when antiviral

resources are exhausted, an epidemic is hard to control by

nonpharmacologic interventions, and a second outbreak will

occur.

Conclusion

In this paper, we explored the optimal control strategies for

nonepidemic regions to prevent and control the spread of new

influenza strains in the absence of matching vaccines. We found

that the prompt use of adequate antiviral stockpiles can effectively

reduce the peak and cumulative numbers of clinical cases by

Figure 11. Optimal control strategies and epidemic trends in the case of limited antiviral resources. A, B: Curves of control strategies
and epidemic trends, respectively, in the case of adequate antiviral resources. C–F: Curves of control strategies (C, E) and epidemic trends (D, F) when
antiviral resources are 50 DDs (C, D) and 30 DDs (E, F) per thousand people. R0~2.
doi:10.1371/journal.pone.0084694.g011
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shortening the infectious period of influenza. Antiviral treatment

was generally a more cost-effective control measure than

nonpharmacologic measures, making it one of the most cost-

effective measures to prevent influenza except vaccines. Improving

the efficacy of antiviral drugs was a key method to reducing the

size of antiviral stockpiles and the cost of antiviral treatment.

The isolation of clinical cases was useful for controlling the peak

of the epidemic. Use of this measure combined with antiviral

treatment could be suitable, especially when antiviral stockpiles are

inadequate. Immigration detection cannot detect all clinical cases

[31], and is particularly poor at detecting exposed and subclinical

cases. Immigration detection could not prevent the spread of an

epidemic. It could only reduce the number of imported cases to a

limited extent, and it was the least cost-effective measure. It was

more effective when used in conjunction with other control

measures, compared to when used alone. The use of a mixed

strategy with all three control measures was the most effective

approach, reducing the cumulative and peak proportions of

clinical cases by more than 90% and 95%, respectively, when

R0~3. A spontaneous decrease in migration rates can reduce the

proportion of clinical cases, when strict and effective control

strategies are in place.

In many regions, inadequate antiviral resources are available to

meet the demands of an influenza epidemic. In this case, we found

that the optimal strategy was to concentrate the use of antiviral

resources during the early stage of the epidemic, and to improve

the intensity of the nonpharmacologic controls. For example,

antiviral resources should be reasonably distributed to hospitals as

soon as possible after a new influenza outbreak, to maximize the

intensity of antiviral treatment in the early stage of the pandemic

until the antiviral stockpiles run out.

We used a mathematic model to explore the optimal control

strategies of new influenza in a nonepidemic region, but the

situation is more complicated in the actual decision-making

process. For example, not all individuals were equally susceptible

to the 2009 influenza A subtype H1N1. Studies have shown that

about 10% of the population has a natural immunity to H1N1,

and the proportion of immunity in older people is as high as 33%

[24,32]. High proportions of infected children, young people, and

pregnant women were observed in the 2009 outbreak, and 60% of

patients were 18 years of age or younger [33]. Moreover, antiviral

drugs can only be effectively used during a limited window in the

disease course. For the 2009 H1N1 strain, to be effective, an

antiviral drug had to be used within the first 48 hours after

infection [34].

Although we were unable to build a precise model of epidemic

control to describe all of these details, these limitations do not

preclude us from using optimal control theory to study the basic

control of new influenza outbreaks by building a rational model

and adjusting the parameters. Based on the results from these

models, we can, to some extent, predict the epidemic trends and

make optimal plans for the control of new influenza strains. We

believe that these simulation results may have important

significance for departments of epidemic control: for example, in

guiding the determination of antiviral stockpiles and optimal

control strategies.
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proportion of clinical cases in region B as a function of
migration rates between regions A and B, when R0 = 1.5.
Simulation parameters except m are shown in Table 1.

(TIF)

Figure S2 Cumulative number of and change in the
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proportion of clinical cases in region B as a function of
migration rates between regions A and B, when R0 = 3.5.
Simulation parameters except m are shown in Table 1.

(TIF)

Text S1 The calculation method of Pontryagin’s Maxi-
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