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ABSTRACT
Microsatellites (MSTs) are short tandem repeated genetic motifs that comprise 

~3% of the genome. MST instability (MSI), defined as acquired/lost primary alleles 
at a small subset of microsatellite loci (e.g. Bethesda markers), is a clinically relevant 
marker for colorectal cancer. However, these markers are not applicable to other types 
of cancers, specifically, for liver cancer which has a high mortality rate. Here we show 
that somatic MST variability (SMV), defined as the presence of additional, non-primary 
(aka minor) alleles at MST loci, is a complementary measure of MSI, and a genetic 
marker for colorectal and liver cancer. Re-analysis of Illumina sequenced exomes 
from The Cancer Genome Atlas indicates that SMV may distinguish a subpopulation 
of African American patients with colorectal cancer, which represents ~33% of 
the population in this study. Further, for liver cancer, a higher rate of SMV may be 
indicative of an earlier age of onset. The work presented here suggests that classical 
MSI should be expanded to include SMV, going beyond alterations of the primary 
alleles at a small number of microsatellite loci. This measure of SMV may represent 
a potential new diagnostic for a variety of cancers and may provide new information 
for colorectal cancer patients. 

INTRODUCTION

Cancer is a complex disease, and the variety and 
specificity of treatment options reflect this, differing based 
on tumor organ origin, cancer stage, malignancy status, 
previous response to treatment, recurrence and many other 
factors. To add to this complexity, tumors that originate 
in the same organ or tissue can respond differently to the 
same treatment procedure. These challenges have led to 
a ‘personal’ approach to cancer treatment that relies on 
a combination of physiology and genomics to determine 
treatment options [1, 2]. To date the patient specific 
approach is still very limited because the majority of the 
known genomic markers are primarily useful for only 
predisposition screening. One of the few exceptions is a 
phenomenon called microsatellite instability (MSI). MSI 
is a pervasive erratic expansion of microsatellites (MSTs), 
tandem repeats of 1-6 nucleotide motifs, and is associated 
with approximately 15-20% of colorectal cancers (CRC). 
MSI is a clinically actionable marker in that treatment 
options vary in patients with tumors identified as MST 

unstable (MSI-low or MSI-high) compared to MST 
stable (MSS) tumors [3, 4]. The identification of MSI, 
and treatment options associated with its diagnosis, is 
in part responsible for the drastic improvement in CRC 
treatment success rate to >65%, as measured by 5-year 
survival according to the CDC and NCI (http://www.
cancer.org/acs/groups/content/@research/documents/
webcontent/acspc-042151.pdf). MSI has also been shown 
be predictive of treatment outcomes and tumor recurrence 
in other cancers including endometrial, ovarian and breast 
[3-5]. 

Unlike CRC, similar genomic markers for liver 
cancer have not been found. Hepatocellular cancer (HCC) 
is the 4th most common cancer with ~1 million new cases 
worldwide and has one of the highest mortality rates of 
any cancer type [6]. Current 1-year survival rates for liver 
cancers are <50% and the 5-year mortality rate is ~84% 
[7] (CDC and NCI website, see above). Several genomic 
studies have attempted to find a genetic risk factor for 
HCC, however to date none have been as successful [8, 
9].The known risk factors for liver cancer are exposure to 
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toxins, cirrhosis and uncontrolled diabetes. 
Somatic variations (SV), polymorphisms that arise 

in cell populations, often play a critical role in cellular 
reprogramming and cancer development [10]. SV 
resulting from DNA damage or inappropriate nucleotide 
insertion during DNA replication is often increased 
during stressed or rapidly dividing cell populations, 
such as tumors. MSTs are mutational “hot-spots”, 
meaning they experience a significantly greater rate 
of somatic variability and population polymorphism 
than adjacent non-repetitive DNA [11-14]. The unique 
repetitive genomic configuration of MSTs can lead to the 
development of complex DNA structures susceptible to 
polymerase slippage and DNA breaks [11, 15-17]. This 
results in a distinct mutational profile for MSTs with a bias 
for indels, as opposed to single nucleotide polymorphisms 
(SNPs) which are frequently observed in non-repetitive 
DNA [18]. Although MST expansion of tri-nucleotide 
(GCC and CAG) repeats have been regularly studied due 
to their connection to numerous neurological diseases, 
including Fragile X and Huntington’s coria, recent work 
suggests that MSTs may also exhibit a contraction bias 
to which mono-nucleotide motifs are most susceptible 
[14, 19-23]. Many MSTs, especially those in promoter 
and exonic regions, are under increased selective pressure 
and therefore MST genomic localization is also important 
[21, 24-26]. These MST variability trends or biases are 
significantly altered in cells with impaired mismatch repair 
(MMR). For example, cells with impaired MUTYH, MLH1 
or MSH2/6 complexes (associated with familial colorectal 
cancer, Lynch or Muir-Torre syndrome), two of the three 
essential complexes required for removal and replacement 
of incorrect nucleotides, show a significant increase in 
MSI regardless of genomic localization [19, 27]. For 
these disorders, although the predominant mutated motif 
is composed of mono-nucleotides, other motifs, including 
di- and tetra-nucleotide MSTs, also show an increase in 
somatic mutations [18, 19, 27]. 

MSI is a measure of the frequency of altered 
primary alleles relative to a patient’s germline within a 
select set of microsatellite loci. To date, the only clinically 
approved test for MSI (Promega, Fitchburg WI) is based 
on five loci, that is Bethesda markers (BAT-25, BAT-26, 
NR-21, NR-24 and MONO-27). These MSI markers 
have been tested for a wide variety of cancers other than 
CRC, gastric and endometrial tumors, but their global 
applicability appears to be limited [17, 18, 22]. Expansion 
of analysis of genomic instability and/or microsatellite 
instability beyond these 5 loci may yield new markers 
with more general applicability. The introduction of 
Next-Gen sequencing (NGS) enabled detailed genomic 
analysis on a global scale. Over the past two years several 
papers have compared MSI results obtained from the 
current clinical test with NGS [19, 27-30]. Results from 
these publications revealed deficiencies in the current 
clinical assay in identifying MSI in gastric, cervical and 

even some colorectal tumors. Our group has recently 
developed a novel tool that identifies all the sequenced 
alleles for a given MST locus in a Next-Gen sequenced 
sample, and was subsequently used to quantify somatic 
microsatellite variation (SMV) in cell lines with known 
repair deficiencies [18]. In that study we demonstrated 
that it was possible to establish a baseline SMV profile in 
DNA repair proficient cell lines for comparison, and that 
the SMV profile of cell lines with DNA repair impairment 
changes in a pathway dependent manner. A comparison 
of DNA repair proficient cell lines and DLD-1 cells, 
a CRC MSI cell line, demonstrated an ~70% increase 
in heterozygotic MSTs loci which was attributed to an 
increase in mutation rate. The gain in heterozygocity was 
also found in non-repetitive DNA [16]. 

Although MSI is presumably a genome-wide 
phenomenon, the classification of MSI is generally 
restricted to the small subset of loci that make up the 
Bethesda markers. Recent genomic studies have argued for 
an increased emphasis on global neoplastic MST changes 
to broaden of definition of MSI [18, 19, 27, 29, 30]. This 
work is the first to test somatic variability of MSTs and 
non-repetitive DNA sequences in colon and Hepatocellular 
carcinoma (LIHC) using Next-Gen sequencing. In this 
paper we show that SMV can be used as an additional 
measure, yielding information that is not obtained using 
the current Bethesda markers. The results described here 
imply a race dependent hypo-variability in CRC patients. 
Further, MST hyper-variability in LIHC patients may be 
associated with earlier onset. 

RESULTS

MSI instability is found in approximately 10-20% 
of CRC tumors and can arise either spontaneously or 
be associated with hereditary MMR dysfunction. This 
diagnosis is usually welcome since it provides vital 
information for treating the patient and is associated 
with a better patient prognosis. However, recent genome-
wide studies indicate that the Bethesda markers may 
have a higher propensity for false negatives [19, 31]. 
This underestimation may be due to how global MSI 
manifests itself. One major assumption is that MSI will 
be present as a genotypic change, however in a previous 
publication we reported that MSI can also accompany an 
increase in the number of non-genotypic alleles present 
within sequencing data from an individual, or somatic 
microsatellite variation (SMV) [18]. In this paper we 
utilize our previously published tool to evaluate SMV 
trends in CRC patient genomes obtained from The Cancer 
Genome Atlas, and compare to reported MSI results. 
Further, we also quantified SMV in patients with liver 
cancer (LIHC), a cancer not known to have classical MSI. 
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Genotype changes in CRC and LIHC patients

We obtained exome sequencing data from 182 
CRC patients available from The Cancer Genome Atlas 
that matched the quality control criteria described in the 
methods section. For the 182 genomes, all but 9 had a 
matched tumor and colon/GI control (non-cancer) tissue 
sequenced as well. For the tumor samples, on average we 
were able to call 128,589 MSTs per samples (SE ±1,332) 
with an average read depth of 32 (SE ±4.1) reads per locus 
called. For the control samples, the mean number of loci 
called was 126,238 (SE ±1,552) MSTs per sample with a 
read depth of 33 (SE ±3.3). The mean number of non-MST 
loci called for tumor samples was 129,101 (SE ±1,620) 
and 128,593 (SE ±1,613) for control tissue. The average 
coverage depth and the average number of reads that met 
our criteria was 36 and 29 (SE ±3.8 and 3.2), respectively. 
In addition, 82 subjects with liver cancer, LIHC, were 
available from The Cancer Genome Atlas, 76 of which 
had both tumor and tissue control samples sequenced. 
The average number of loci called for the LIHC samples 
was 123,485 and 126,946 (SE ±1,864 and 2,055) with a 
depth of 36 and 32 (SE ±4.2 and 4.4) for tumor and control 
samples, respectively. For non-MST loci, we were able to 
call 111,733 and 114,549 (SE ±1,295 and 1,465) with a 
depth of 32 and 33 (SE ±2.9 and 3.7) for tumor and control 
samples, respectively. 

Genomic instability is known to lead to somatically 
variant DNA sequences that can be detected as changes 
in genotype. A breakdown of haplotype distribution for 
CRC cancer and controls shows that 93.6% and 94.3% 
(SE ±0.13 and 0.09) of the MST loci were homozygotic 
while 6.4% and 5.7% (SE ±0.13 and 0.09) were found 
to be heterozygotic (Table 1). In LIHC patients, 95.1% 
and 94.9% (SE ±0.18 and 0.20 respectively) of the 
MST loci were homozygotic in tumor and control 
tissues respectively. As a comparison, the homozygosity 
rate for non-MST loci that were tested using the same 
method as that for MST loci (see methods) were found 
to be significantly lower. In non-MST loci, 98.6% were 
homozygotic in CRC tumors and controls, and 98.7% for 

both tissue types in LIHC tumors (Table 1). As anticipated, 
these results show that MSTs have a higher rate of 
polymorphism than non-repetitive DNA sequences. These 
data also suggest a greater discordance rate in MSTs than 
is found at non-MST loci. 

To test the if MSTs do indeed have a greater mutation 

Table 1: Mean (and SE) SMV and somatic variability (SV) in colorectal cancer tumor samples is significantly greater 
then in control tissue.  

Tumor MST Control MST Tumor Non-MST Control Non-MST
Mean SE Mean SE Mean SE Mean SE

CRC
patients

Homo-zyg 93.64 #,* 0.13 94.29 * 0.09 98.63 0.02 98.63 0.02
Hetero-zyg 6.36 #,* 0.13 5.71 * 0.09 1.36 0.02 1.37 0.02
Multi-alleles 14.30 #,* 0.38 12.79 * 0.36 7.49 # 0.37 6.16 0.34

LIHC 
patients

Homo-zyg 95.14* 0.18 94.95 * 0.20 98.74 0.03 98.68 0.03
Hetero-zyg 4.86 * 0.18 5.05 * 0.20 1.26 0.03 1.32 0.03
Multi-alleles 12.45 #,* 0.92 11.28 * 0.78 7.53 # 0.99 5.68 0.70

# p < 0.01 compared to control tissue for MST  or non-MST 
* p < 0.01 compared to equivalent tissue for non-MST 

Fig.1: Single nucleotide MSTs show the highest rate 
of somatic variability and make up over 55% of MST 
loci with minor alleles. The total number of loci with minor 
alleles in both tumor and control tissue types for each CRC and 
LIHC patient were calculated and the fractional contribution for 
each MST motif length was compared. Fig. A) shows that single 
nucleotide motifs make up on average over 55% of the total 
MST loci with minor alleles while tri-nucleotide MSTs, making 
up the second highest fraction only make up approximately 21% 
of the total. Fig. 1B) shows that the reason for this disparity is 
most likely due to the fact that single nucleotide motifs are 5 – 6 
times more likely to have minor alleles than other MST motif 
lengths. This figure does contain SE bars, however, they are too 
small to be seen as they are < 2% for 1A and 1% for 1B. 
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rate than non-repetitive DNA sequences we measured the 
discordance rates between somatic and control tissues. 
Discordance was measured by comparing genotypes 
for each locus in somatic and control tissues for every 
individual in our sample set (spreadsheet 1). For each 
locus that had a difference in genotype we determined if 
the difference was a loss of allele (shift from heterozygous 
to homozygous or loss of heterozygosity (LOH)), gain of 
allele (shift from homozygotic to heterozygotic, aka gain 
of heterozygosity (GOH)) or if the locus had the same 
haplotype but a difference in genotype (no allele was the 
same) [18]. As anticipated, on average, MSTs had a >10-
fold increase in genotype discordance rates over non-MST 
loci (Table 2). The average discordance rate for MST loci 
was 4.7% (0.15% SE) in CRC patients and 3.5% (0.12% 
SE) for LIHC patients, whereas non-MST loci showed 
only 0.39% (0.01% and 0.05% SE) discordance for both 
CRC and LIHC patients, respectively (Table 2). Both 
CRC and LIHC patients showed a similar distribution of 
potential discordance outcomes in MST loci (LOH, GOH 
or change in genotype but not haplotype). Genotype, but 
not haplotype, changes made up an average of 51.3% and 
54.7% (0.4% and 0.9% SE) for CRC and LIHC patients, 
respectively, while in non-MST loci this was only 15.45 
and 16.65 (0.32% and 0.64% SE) of total discordance 
loci. An actual change in haplotype, as indicated by 
LOH or GOH, accounted for only 48.7% and 45.3% of 

discordant MST loci, while accounting for over 83% for 
non-repetitive DNA sequences. These results confirm 
that MST loci have a significantly greater mutation rate 
than non-MST loci, and that MST associated mutations 
are maintained in cancer subpopulations. Further, these 
results show that in these two cancer types, the majority 
of loci will maintain their haplotype alleles and that of 
those that do have an altered haplotype, they show an 
equal likelihood for the gain or loss of a haplotype allele. 
However, this common method of measuring genomic 
instability lacks the ability to determine if ‘lost’ alleles (for 
LOH or loci with genotype but not haplotype differences) 
disappear completely or are present below the threshold 
number of supportive reads that would normally be 
expected of a haplotype allele, suggesting that they are 
present in a subpopulation of the cells whose genomic 
content was sequenced.

SMV in CRC and LIHC cancer patients

The term SMV here is used to describe the 
prevalence of minor alleles in MST loci for a given 
patient. To quantify SMV we analyzed the fraction of 
MST loci with minor alleles, those alleles that do not 
contribute to haplotype. The mean rate of minor alleles for 
CRC tumor MST loci is significantly greater than control 

Table 2: Concordance and types of genotypic changes between tumor and control tissue for 
CRC and LIHC.

Total loci 
observed

Percent 
discordance % genotype % LOH % GOH

Mean SE Mean SE Mean SE Mean SE Mean SE

CRC MST loci 113174 1511 4.69 * 0.15 51.25 * 0.47 22.43 * 0.71 26.32 * 0.83
non-MST loci 129102 1621 0.39 0.01 15.38 0.32 47.86 1.01 36.76 0.89

LIHC MST loci 113401 1745 3.51 * 0.12 54.57 * 0.90 23.12 * 0.52 22.31 * 0.63
non-MST loci 130542 1853 0.39 0.05 16.58 0.64 47.73 1.13 35.69 0.99

* p < 0.05 compared to non-MST loci

Fig.2: No difference is seen when comparing the fraction of SMV between the two single nucleotide motifs, A/T and 
C/G runs. 
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tissues (14.3% and 12.8%, SE ±0.4 and 0.4 respectively, 
p< 0.01) (Table 1). Similarly, for LIHC, tumor samples 
displayed a greater, but not statistically significant, SMV 
rate compared to non-tumor control tissue with 12.5% and 
11.3% (SE ± 0.9% and 0.8%, respectively) of loci having 
minor alleles. For both cancers and tissue types, the rate of 
somatic variability in MST loci was significantly greater 
(p< 0.01) than in non-MST loci. As shown in Table 1, the 
fraction of non-MST loci with minor alleles is 7.5% and 
6.2% for CRC, and 7.5% and 5.7% for LIHC tumor and 
control tissues, respectively. 

Motif length and nucleotide makeup have both 
previously been shown to play a key role in the stability 
of MSTs [13, 14, 19]. To evaluate the contribution that 
the various motifs carry, we determined the MST motif 
makeup of the loci that have one or more minor alleles. 
Results depicted in Fig. 1A show that over 55% of MST 
loci that have at least one minor allele are single nucleotide 
runs for both CRC and LIHC tumor and control tissues. 
The next most common MST motif lengths displaying 
SMV were tri-nucleotide and di-nucleotide motifs, making 
up ~20% and 12% of the total loci, respectively, (Fig. 
1A) for all the cancers and tissue types. These results are 
significant since single nucleotide repeats make up only 
21% of the total MSTs we analyzed while tri-nucleotide 
repeats make up 36% of the total. Interestingly, using a 
t-test comparison no significant differences were present 
for any of the individual motif lengths when comparing 
the two tissue types within each cancer. To explore the 
reason for the overabundance of single nucleotide repeats, 
we calculated the fraction of loci displaying SMV for 
each MST motif length. The results definitively show that 
single-nucleotide repeats display a significantly greater 
rate of SMV (35.8% and 34.8% for CRC and 30.1% and 
29.7% for LIHC tumor and control tissue, respectively) 
than the rates for other MST motif lengths (Fig. 1B). An 
ANOVA comparison shows no significant difference of 
the two single nucleotide motifs, A/T and C/G runs, with 
MST size. (Fig. 2) Taken together these results suggest 
that single-nucleotide repeats play a disproportionate role 
in SMV in the two cancer types, and are consistent with 
previous MST work on major alleles with various cancers, 
including CRC, by our group and others [19, 23, 32]. 

SMV in CRC

MSI is most commonly associated with hereditary 
CRC, therefore MSI testing is commonly conducted on 
these patients. Within the CRC dataset we analyzed, MSI 
metadata testing results are given for 155 patients. Of the 
patients for which the data is supplied, 102 are considered 
MS-S (MST stable), 24 are MSI-L (with 1 – 3 of the 5 loci 
showing different primary alleles, and 29 were found to 
be MSI-H (with 4 or more of the loci showing different 
primary alleles). Since MSI is considered a genome wide 
phenomenon, we hypothesized that patients testing MSI-H 

may also show an increase in SMV, that is in addition to 
acquiring/loosing primary alleles, they would show an 
increase in the number of loci that have robust minor 
alleles. We compared MSI status with haplotype and found 
that heterozygosity was significantly increased in MSI-H 
tumors (9.0%) as compared to CRC tumors testing MSI-L 
and MS-S (6.1% and 6.2% MS-S and MSI-L respectively, 
Fig. 3A). This was not the case for control tissue, where 
no significant difference emerged between the three MSI 

Fig.3: Microsatellite instability is not correlated to 
SMV in colorectal cancer. CRC patients were grouped by 
MSI status (classified as MSI-stable (MSS), MSI-L or MSI-H) 
and analyzed for differences in genomic stability by comparing 
A) fraction of heterozygotic loci in tumor tissue, B) fraction 
of heterozygotic loci in control tissue and C) SMV in tumor 
tissue. The MSI-H group displayed a significant increase in 
heterozygosity as compared to MS-S and MSI-L group (* - p 
< 0.01, ANOVA followed by a Fishers PLSD test) while no 
statistical difference was found when observing SMV in tumor 
tissues (ANOVA p > 0.24). 
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groups (Fig. 3B), confirming that heterozygosity changes 
were predominantly introduced in MSI-H tumors. We next 
compared the fraction of loci with minor alleles with MSI 
status in tumor samples and found no significant difference 
between the MS-S, MSI-L and MSI-H subgroups (14.6%, 
14.7% and 15.1% respectively, Fig. 3C). These results 
suggest that haplotype, but not SMV measures, can be 
used to predict tumor MSI status in CRC patients. 

In the previous section we demonstrated that 
single-nucleotide repeats contributed disproportionally to 
overall SMV in both CRC and LIHC patients. Further, a 
comparison of the fraction of single-nucleotide loci with 
minor alleles and overall SMV revealed a significant 
positive correlation (Fig. 4A). To confirm that this 
disproportionate contribution does not bias overall SMV, 
we evaluated the relationship between the fraction of 
single-nucleotide motif loci contribution to the overall 
SMV rate. Surprisingly, the results yielded a negative 
correlation of the two factors (Fig. 4B); meaning that as 
the overall SMV rate increases the influence of single-
nucleotide loci on the total SMV is reduced. Two aspects 
should be noted in both of the described correlations: 
first is that a binomial is a much better fit than a linear 
regression, with a biphasic inflection point at 16% SMV 
rate (Fig. 4C and D, after removal of outliers); second is 
that the small group of 11 outliers, the subset that were 
encircled in Fig. 3A and B, consisted solely of African 
American/Black CRC patients and represents 38% (11 

of 38) of African American/Black subjects analyzed 
in this study. The 11 patient specimens consisted of 5 
males and 7 females, and although they were acquired 
in 5 different centers (Christiana Healthcare, Candler, 
International Tissue Consortium, University of Pittsburgh 
and Fondazione-Besta), all were sequenced at Baylor 
College of Medicine, thus minimizing technical sequence 
acquisition bias. To eliminate differences in coverage, 
as the reason for the outliers, we compared the total 
number of loci called for each sample to the fraction that 
single-nucleotide motifs contributed to the total SMV 
and found no significant correlation (Fig. 5). Further, no 
difference was observed when comparing mean coverage 
per called MST locus for the 11 patients (23.3 (2.2 SE) 
for the 11 patients and 24.8 (1.3 SE) for the remaining 
CRC population tested. These results suggest a potential 
predisposition for CRC in African American patients that 
is not currently known or tested in this patient population. 
Interestingly, MMR may be associated with CRC in this 
population, however, none of these 11 patients have been 
tested for known MMR deficiencies (80% of the untested 
CRC subjects were African Americans). 

SMV and cancer onset – CRC and LIHC

As with CRC patient data, when we analyzed the 
LIHC samples, single-nucleotide loci made up over 55% 
of the total loci with minor alleles (while they make up 

Fig.4: The distribution of the contribution of single nucleotide SMV to overall SMV in CRC patients. A) A linear fit of 
the total SMV as a function of single nucleotide SMV distribution and B) total SMV as a function of single nucleotide as a fraction of 
total SMV. In both figures a clear set of outliers entirely consisting of 32% of the total African American (orange squares) CRC patient 
population is encircled. C) and D) show the same distributions with the binomial fit inflection point used as a cutoff between SMV-high 
(blue diamonds) and SMV-stable (orange square) patient groups. 
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only 21% of the total MSTs called) in both tumor and 
tissue control samples (Fig. 4A and B). Also, as with 
CRC patients, we used this data to determine a cutoff 
for SMV-high and SMV-stable groups. A regression 
analysis, results of which were plotted in Fig. 6A, shows 
a reduction in the fraction of single-nucleotide loci that 
make up the overall number of loci with minor alleles. 
These results are consistent with CRC patients. As seen in 
Fig. 6A and also 4B, there are 5 patients that are clearly 
outliers, however, unlike with the CRC data, the make-up 
of this group includes 4 Caucasians and one individual 
of African descent; 3 males, 2 females; and 4 of the 5 
had a predisposition (either alcohol abuse or infection). 
Further, all the samples were sequenced in the same 
center. Therefore, unlike the CRC individuals, there is 
no indication of why these samples might be outliers; 
however, they were removed from the following analysis.

A comparison of the fraction of single-nucleotide 
loci with minor alleles to the overall SMV rate, as depicted 
in Fig. 6B, shows a concurrent increase in the rates of both; 
a positive correlation, in a biphasic manner, similar to 
CRC data. When we overlayed and statistically compared 
the patient data from both cancer types, CRC and LIHC, 
we found no difference in the distribution (Fig. 7). We 
found the point of inflection to be at 14%, which we used 
as the cutoff for classifying an individual as SMV-stable 
or SMV-high. Using the inflection points for both CRC 
and LIHC tumors, we compared age of onset for SMV-
high and SMV-stable patients. For CRC tumor samples, 

no significant difference was found in the age of initial 
diagnosis between SMV-stable and SMV-high (66 and 65 
years of age, respectively). Similarly, age of diagnosis was 
not significantly affected by MSI status (data not shown) 
in this dataset. However, for LIHC a significant difference 
did emerge between the two subgroups with the mean 

Table 3: SMV-H in both tumor and controls tissue is correlated to lower age of onset 
for liver cancer, but not for colorectal cancer.  

Cancer SMV-S 
Mean (SE)

SMV-H Mean 
(SE)

T-test
(p < )

CRC Tumor tissue 66.0 (1.1) 65.0 (1.7) 0.28
Control tissue 63.1 (1.9) 65.8 (1.1) 0.14

LIHC Tumor tissue 66.0 (1.5) 59.1 (2.9) 0.04
Control tissue 66.7 (1.4) 58.4 (3.0) 0.02

Fig.5: The total number of loci called for the 11 outlier 
African American CRC patients does not explain their 
low SMV. Although the mean for the 11 patients was lower, the 
total number of loci called was within the distribution for all the 
CRC patients. 

Fig.6: A binomial distribution is the best fit model for 
the comparison of single nucleotide SMV and total 
SMV for LIHC patients, with the inflection point 
serving as a break point between SMV-high and SMV-
stable. A) A binomial fit for the fractional contribution of 
single nucleotide motifs to total SMV. B) The fraction of single 
nucleotide SMV as compared to total SMV. C) When the 5 
statistical outliers (z transformation and Grubbs test) are omitted 
from the distribution, the inflection point at 14% SMV, presented 
by the break in the line, serves as the break for distinguishing 
between SMV-high and SMV-stable. 
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age of diagnosis for SMV-stable as 66.0 (±1.5) and 59.1 
(±2.9) for SMV-high (Table 3). Similar results were found 
when the cut-offs were used with non-tumor control tissue 
sequencing data for both LIHC and CRC patients (Table 
3). Again, only SMV-high LIHC patients were found to 
have a significantly lower age of onset as compared to 
LIHC SMV-stable. These results indicate that SMV may 
be a valuable measure of MST instability and may serve 
to expand the role of MSI to other cancers, in addition to 
CRC and endometrial cancers. 

DISCUSSION 

The importance of MST instability in cancer cannot 
be overstated. Identification of individuals with impaired 
MMR, or Lynch-syndrome, leading to early onset MST-
unstable CRC or endometrial cancer has lead to earlier 
detection and a significant decrease in mortality in this 
subset of CRC patients [3, 4]. Although several genomic 
studies have found gene markers associated with liver 
cancer tumors, none of these are informative for age of 
onset or treatment [33-36]. The importance of finding 
a marker for predisposition or treatment is underscored 
by the fact that liver cancer has the second highest 
mortality rate of all cancers; and according to the National 
Cancer Institute, approximately 30% of patients have no 
predisposition markers (www.cancer.gov/cancertopics/
pdq/treatment/adult-primary-liver). In this paper we 
examined somatic variation at microsatellites, to assess its 
utility in predicting early onset of LIHC or CRC. 

MSI is currently defined based on markers found 
that are specific to CRC and using molecular identification 
methods. With the reduction in cost in genomics and its 
increased use in clinical settings, an expansion of how 
MSI is defined may allow it to be used as a predictive 
tool for more cancers. To use our measure of SMV as a 
diagnostic tool, a threshold for instability was identified, 
by which we were able to differentiate SMV-stable and 
SMV-unstable populations, similar to the utility of the 
Bethesda markers for distinguishing between MSI-stable 

and MSI-high CRC. We defined SMV status based on 
overall SMV rate as a product of single-nucleotide SMV. 
This method was partially based on previous work by 
Yoon et al [19] in which they used single nucleotide repeat 
genotype changes as a cut-off measure to determine MSI 
status based on Next-Gen sequencing. For our study, the 
cutoff for determining SMV-high or SMV-stable patient 
populations was selected at the point of inflection in the 
binomial distribution (Figure 4C and D, and 6C) for each 
type of cancer. This cutoff was selected because it was 
associated with a stabilization of single-nucleotide runs 
while overall SMV, as well as the SMV for other motifs, 
was still increasing. Mutation rates for single-nucleotide 
MSTs are known to be significantly higher than other 
motifs, but here the rates plateaued at only 40-50%, 
lower than anticipated. We speculate that this point may 

Fig.7: No difference in the distributions of total SMV 
as a function of single nucleotide SMV between CRC 
and LIHC patients. An overlay of CRC and LIHC patient 
data is presented. 

Fig.8: The 11 CRC outliers based on the previously 
described distribution are not outliers as identified 
using any other MST motifs. A) A distribution of the 
fraction of heterozygotic loci as a function of total SMV rate. 
Encircled are the 11 outliers who, as in Fig. 4A, remain outliers 
as a function of both parameters, not just SMV. B) The 11 outliers 
(orange triangles) are not outside of the distribution for any 
other motif length, other than single nucleotide repeats. C) The 
distribution of single nucleotide repeats as a function of SMV at 
di- and tri-nucleotide repeats. The slope of the regression line is 
below one, meaning that SMV at di and tri nucleotide repeats 
increases at a higher rate than at single nucleotide repeats. 
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represent a change either in mechanism associated with 
mutation accumulation or the maximum SMV rate for 
single nucleotide repeats. 

Using the cutoffs to distinguish SMV-high and 
SMV-stable patients, we assessed age of first diagnosis 
for each cancer type. Counter to several previous studies 
on MSI [29, 37] in this population of CRC patients, MSI 
status was not associated with early initial diagnosis. 
Using the SMV measure we found the same result; SMV-
high was not associated with an earlier age of diagnosis. 
However, LIHC SMV-high patients in this study were, on 
average, diagnosed 6 – 7 years earlier than SMV-stable 
patients. Although onset and diagnosis can be separated 
by years in LIHC, the fact that cancer stage at diagnosis 
did not differ significantly between the two SMV groups 
suggests that the onset data would parallel detection. It 
would have also been beneficial to compare SMV rates 
with the outcomes of various treatments, especially for 
LIHC patients, however the variability in the treatments 
used and inconsistent outcome reports prevented that 
comparison. 

MSI is defined as an increase in MST primary 
allele variation, however our use of SMV as a measure of 
MST stability indicates that both increases and decreases 
in MST variation rates can be informative. In this study 
hypo-variability was found to be associated with race, as 
a specific marker for African American CRC patients. A 
subset of ~30% of African American patients in this study, 
show a distinct pattern of MST stability with low SMV 
and lower heterozygosity rate. These 11 are in contrast 
to MSI-high patients which have a significantly higher 
heterozygosity rate compared to the rest of the CRC 
population (Fig. 8A and 3A). Rather, the hypo-variability 
found in these 11 CRC patients is mainly due to the low 
single nucleotide SMV rate, as these patients would not be 
identified as outliers if we used SMV rates for other motif 
lengths (Fig. 8B) even though they show a very low SMV 
rate at all other MST motif lengths. 

One of the most unexpected observations is the 
inverse relationship between the contributions of single 
nucleotide SMV to the total SMV when regressed against 
total SMV (Fig. 4B and 6A). This means that as the overall 
SMV increases the fraction of single nucleotide loci that 
contribute to the total SMV is reduced. This is surprising 
because the rate of single nucleotide SMV is continues 
to increase up to the inflection point shown in Fig. 4C 
and 6C. Although surprising, this may be the result of 
the overall mutability of single nucleotide repeats. Due 
to their high polymorphism rate in non-stress conditions, 
which can be greater than 103 per nucleotide as compared 
to 104 or greater di and tri – nucleotide MSTs [13, 38-40], 
any systemic increase in overall MST mutability, such as 
impaired MMR, will have a greater effect on more stable 
motifs [38, 39], while having a more blunted effect on 
single nucleotide MSTs. This was shown, in part, by the 
Eckert group when they found that impaired MMR causes 

a similar mutation rate in single, di and for some tetra- 
nucleotide motifs between 103 and 102 per nucleotide [13, 
38-42]. This is underscored by the data when correlating 
SMV in single nucleotide runs and other MST motifs. Fig. 
8C shows a positive slope when plotting single nucleotide 
run SMV with di and tri-nucleotide SMV. However, the 
rate increase in single nucleotide repeats is less than for 
other motifs, based on the slope, which is less than 1 for 
both motif lengths. 

In conclusion, here we found that an expanded 
definition of MSI, one that includes SMV, may have 
relevance that can extend beyond CRC, as illustrated here 
for liver cancer, a cancer type with no known genetic 
treatment markers. The various implications of SMV on 
these and other cancers that have not been explored in this 
paper require further studies. 

METHODS

TCGA samples

Tumor and extemporaneous tissue control 
sequences for CRC and LIHC patients were obtained 
from The Cancer Genome Atlas (http://cancergenome.
nih.gov). Patients sequencing data were limited to exomic 
sequences, which was optimized for exome capture 
and paired-end 2 x 70+ Illumina sequencing. Further, 
due to the susceptibility of MST mutation, samples that 
have undergone genome amplification were not used. 
A complete list of samples analyzed can be found in 
supplementary materials (Suppl. Spreadsheet 1). 

Sequencing analysis pipeline

The pipeline was described in more detail in 
Vaksman et al [18]. However, briefly, TCGA downloaded 
bam files were reverted to original fastq files using Picard, 
which were then aligned to HG19/GRCh37 (http://www.
genome.ucsc.edu) using BWA-mem [43]. Output sam files 
were sorted, indexed and filtered for PCR duplicates using 
samtools, then locally realigned GATK. 

Microsatellite multi-allele software

The MST multi-allele caller is described in greater 
detail in Vaksman et al [18] however a brief description 
follows. 

A list of MST loci was generated by Tandem Repeat 
Finder (TRF) [44] using the human reference genome 
HG19 available on the UCSC genome browser website 
(http://genome.ucsc.edu). MST genotype and somatic 
variability for each colorectal and liver cancer patient 
sequencing data set were evaluated using our multi-
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allele caller using this MST loci list. Bam files for each 
patient were used to obtain reads with MSTs through an 
intermediate step using the Samtools- view command. 
Reads that did not meet various quality control criteria, 
such as mapping score below 10% or average phred 
score below 28 per base, were eliminated by program 
filters. Determination of MST sequences and sequence 
lengths was done by alignment of the read to the locus 
by a user defined minimal length flanking sequence; for 
this study the defined flanker length was 7 nucleotides on 
either side of the MST. A MST locus was called based 
on a user-defined parameter of minimal coverage and an 
allele is called based on a minimal number of confirming 
reads. For this study minimal coverage was 15 reads 
per locus called and a minimum of 3 confirming reads 
per allele called. Also, the upper limit for coverage was 
set at 300 reads to remove loci in duplicated regions. 
Genotype and haplotype for each locus were called based 
on the following criteria; 1) Loci with a single allele 
with a minimum coverage of 15 reads were considered 
homozygotic with no minor alleles. 2) For loci with the 
appropriate coverage and a second allele, if the allele is 
25% of the total depth for the locus or greater than 50% 
of the depth for the most common allele, this locus would 
be considered heterozygotic. 3) If an allele does not meet 
the criteria described in rule 2 or is not the first or second 
most common allele, yet has at least 3 reads to substantiate 
this additional allele, it is considered a minor allele or a 
somatic variation allele. In this paper, SMV rate is defined 
as the fraction of MST loci with minor alleles [18]. 

In this project we also analyzed somatic variation 
in over 3 million non-MST loci and compared the results 
to SMV. Due to MSTs multi-nucleotide configuration 
we did not use a nucleotide by nucleotide approach as 
is commonly used for genotyping, instead we generated 
over 3 million randomly selected loci consisting of 
15-nucleotide long sequences (the approximate mean 
length of MSTs identified in exome sequencing in our 
analysis). All the loci used were at least 50 nucleotides 
away from MST loci. The non-MST loci were analyzed for 
somatic variability using the multi-allele caller described 
above with the same user-defined parameters as was done 
with MST loci [18]. 

Statistical analysis

All correlations and regression analyses were done 
using R and Excel. Plotting presented here was done using 
Excel table functions for ease of use. 
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