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Summary  
Raf-1 is a 74-kD serine/threonine kinase located in the cell cytoplasm that is activated by phos- 
phorylation in cells stimulated with a variety of mitogens and growth factors, including hemato- 
poietic growth factors. Using c-rafantisense oligonucleotides to block Raf-1 expression, we have 
established that Raf-1 is required for hematopoietic growth factor-induced proliferation of mu- 
fine cell lines stimulated by growth factors whose receptors are members of several different structural 
classes: (a) the hematopoietin receptor family, including interleukin (IL)-2, IL-3, II.,4, granulo- 
cyte colony-stimulating factor, granulocyte/macrophage colony-stimulating factor (GM-CSF), 
and erythropoietin; (b) the tyrosine kinase receptor class, including Steel factor and CSF-1; and 
(c) IL-6, leukemia inhibitory factor, and oncostatin M, whose receptors include the gp130 receptor 
subunit. Although results of previous experiments had suggested that 1I.,4 does not phosphory- 
late or activate the Raf-1 kinase, c-rafantisense oligonudeotides inhibited IL-4-induced prolifera- 
tion of both myeloid and T cell lines, and Ib4 activated Raf-1 kinase activity in an Ib4-depen- 
dent myeloid cell line. In colony assays, c-rafantisense oligonucleotides completely inhibited colony 
formation of unseparated normal murine bone marrow cells stimulated with either II:3 or CSF-1 
and partially inhibited cells stimulated with GM-CSF. In addition, c-rafantisense oligonucleo- 
tides completely inhibited both II:3- and GM-CSF-induced colony formation of CD34 + 
purified human progenitors stimulated with these same growth factors. Thus, Raf-1 is required 
for growth factor-induced proliferation of leukemic murine progenitor cell lines and normal 
murine and human bone marrow-derived progenitor cells regardless of the growth factor used 
to stimulate cell growth. 

T he proliferation and differentiation of hematopoietic 
progenitor cells are dependent on the activation of cell 

surface receptors by a family of extracellular glycoproteins 
known as hematopoietic growth factors (1). Binding of he- 
matopoietic growth factors to their cell surface receptors in- 
duces oligo- or heterodimerization of receptor subunits and 
activation of a tyrosine phosphorylation-dependent cascade 
of events leading to the induction of DNA synthesis and im- 
mediate early gene expression in the nucleus (2-4). Hemato- 
poietic growth factors activate associated or intrinsic tyro- 
sine kinases depending on the structural characteristics of the 
receptor. Members of the hematopoietin receptor family do 
not contain intrinsic tyrosine kinase activity, but they acti- 
vate associated tyrosine kinases (3, 4), whereas members of 
the tyrosine kinase receptor class contain an intracellular tyro- 
sine kinase in the cytoplasmic domain of the receptor (2). 

Structural differences between the various classes of hemato- 
poietic growth factor receptors suggest that these receptors 
may activate different signal transduction pathways (2, 5-7). 
However, it has been demonstrated that ligand stimulation 
of different classes of growth factor receptors induces phos- 
phorylation of a similar although not identical set of intra- 
cellular proteins (3, 4). 

One of these proteins, Raf-1, a 74-kD serine/threonine ki- 
nase located in the cell cytoplasm, is activated by phosphory- 
lation after mitogen or growth factor stimulation in a va- 
riety of cell types, including hematopoietic cells (8-15). This 
property suggests that Raf-1 may play a role in hematopoi- 
etic cell growth. 

Biochemical studies demonstrated that the Raf-1 kinase 
is activated by phosphorylation in growth factor-dependent 
cell lines stimulated with IL-2, IL-3, GM-CSF, erythropoietin 
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(EPO) 1, G-CSF, CSF-1, and Steel factor (SLF) (16-20). 
However, only one of these studies investigated the biolog- 
ical effects of Raf-1 activation on cell growth (18). In addi- 
tion, the role of Raf-1 in normal hematopoiesis is unknown. 
Therefore, to determine the requirement for Raf-1 in growth 
factor-regulated proliferation and differentiation of hemato- 
poietic ceUs, we studied the effect of inhibiting Raf-1 expres- 
sion using c-tar antisense oligonucleotides on (a) growth 
factor-induced proliferation of myeloid progenitor call lines 
stimulated with cytokines that activate several different classes 
of hematopoietic growth factor receptors, and (b) CSF-induced 
colony formation of normal murine and human bone marrow 
cells. 

This study demonstrates that Raf-1 is required to trans- 
duce the growth factor-induced proliferative signal in factor- 
dependent leukemic ceU lines for all known classes of hema- 
topoietic growth factor receptors and that it is required for 
CSF-induced colony formation of normal routine and human 
bone marrow-derived progenitors. 

Materials and Methods 

Cell Lines. FDCP-1 (21) and 32D-C13 (22) cells are Ib3- 
dependent murine myeloid progenitor cell lines derived from long- 
term in vitro mouse bone marrow cultures; 32D-c-fras cells are 
32D-C13 cells that express a translated human CSF-1 receptor (23). 
The NFS-60, DA-3, and DA-1A cell lines (24) are Ib3-dependent 
routine myeloid cell progenitor cell lines derived from the preleu- 
kemic spleens of mice infected with murine leukemia viruses. HCD- 
57 is an EPO-dependent erythroleukemia cell line derived from a 
newborn mouse infected with Friend murine leukemia virus (25). 
CTLL-2 is an Ib2-dependent T cell line derived from long-term 
cultures of PBLs stimulated with PHA (26). All cell lines were 
maintained in RPMI 1640 supplemented with 10% FCS, penicillin 
(100 U/ml), streptomycin (100/~g/ml), 3 rag/m1 L-glutamine (com- 
plete medium), and the appropriate growth factor. Media for main- 
taining HCD-57 cells included 5 x 10 -5 M B-mereaptoethanol. 

NormalBone Marrow Cells. Normal murine bone marrow cells 
were aspirated from BALB/c mouse femurs with IMDM and layered 
on lymphocyte separation medium (Organon Teknika Corp., 
Durham, NC) to obtain light density cells. Lin- cells were 
selected using previously published techniques (27). Briefly, un- 
separated bone marrow cells were incubated with tLA3-6B2 (B220 
antigen), RA3-8C5 (both are gifts from R. Coffman, DNAX 
Corp., Palo Alto, CA), Mac-1 (Boehringer Mannheim Biochem- 
icals, Indianapolis, IN), Lyt-2 (CD8), and L3T4 (CD4) (Becton 
Dickinson, Rochelle Park, NJ) antibodies, which recognize myeloid- 
and lymphoid-specific cell surface antigens, for 30 min at 4~ Cells 
were then washed twice and incubated with anti-rat IgG-coated 
magnetic beads (Dynal Corp., Oslo, Norway) at a bead/cell ratio 
of 40:1 for 30 min at 4~ Cells were then magneticaUy separated 
with a magnetic particle concentrator (Dynal Corp.), and the 
Lin- cells were recovered in the supernatant and resuspended in 
complete IMDM. Human bone marrow cells were obtained by 
aspiration from healthy donors after informed consent. The low 
density mononuclear cells were isolated from the interphase after 

1 Abbreviations used in this paper: EPO, erythropoietin; GST, glutathione- 
S-transferase; INT, nitrophenyl-s-phenyltetrazolium chloride; LIF, leukemia 
inhibitory factor; MBP, myelin basic protein; MEK, microtubule-associated 
protein kinase kinase; SLF, Steel factor. 

Ficoll-Hypaque (Pharmacia LKB Biotechnology Inc., Piscataway, 
NJ) gradient centrifugation, washed twice in IMDM, and suspended 
in IMDM supplemented with 25% FCS, 1% detoxified BSA, 100 
U/ml penicillin, 100 #g/ml streptomycin, and 3 mg/ml t-ghtamine. 
CD34 § cells were obtained by positive selection using previously 
published techniques (28). Briefly, magnetic beads (Dynabead M-450 
CD34; Dynal Corp.) with CD34-specific Bb3C5 mAbs attached 
to them were added to cells at a bead/cell ratio of 1:1 and an anti- 
Fab antiserum (10 #1/1 x 107). Detachabead (Dynal Corp.) was 
used for detachment of beads from positively selected cells. CD34 + 
cells were recovered by magnetically separating the beads using a 
magnetic particle concentrator (Dynal Corp.) and suspended in com- 
plete medium. 

Growth Factors. Purified recombinant murine Ib3 and murine 
GM-CSF were purchased from PeproTech (Rocky Hill, NJ). Purified 
recombinant murine G-CSF was supplied by L. Souza (Amgen 
Corp., Thousand Oaks, CA), and recombinant murine EPO was 
purchased from Amgen Corp. Purified recombinant murine CSF-1 
was a gift from M. Geier (Cetus Corp., now Chiton Corp., Moun- 
tain View, CA), and Ib2 was purchased from Cetus Corp. Murine 
rIL-4 was purchased from Genzyme Corp. (Boston, MA). Recom- 
binant murine II.-6, leukemia inhibitory factor (LIF), and oncostatin 
M (OSM) were purchased from PeproTech. Murine SLF and recom- 
binant human IL-3 were a gift from S. Gillis (Immunex Corp., 
Seattle, WA). Recombinant human GM-CSF was a gift from I. 
McNiece (Amgen Corp.). 

Synthesis of Oligonucleotides. Phosphorothioate antisense (5'-TCC- 
CTGTATGTGCTCCAT-3'), sense (5'-ATGGAGCACATACAG- 
GGA-3'), and nonsense (5'-TTTTTGCACCAGCTTGCC-3') oli- 
godeoxyribonucleotides were synthesized by the phosphoramadite 
method using standard procedures on an automated synthesizer 
(model 380-B; Applied Biosystems, Inc., Foster City, CA) (18). 
Sulfurization was performed after synthesis of the oligonucleotides 
using the H-phosphonate method (29). Oligonucleotides were 
purified by polyacrylamide gel electrophoresis and TLC. Purified 
oligomers dissolved in ammoniated water were concentrated in a 
Speed Vac concentrator (Savant Inc., Farmingdale, NY) and were 
resuspended in sterile H20 at a 100 #M concentration. 

[3H]Thymidine Incorporation Assay. Growth factor-dependent 
cells (5 x 103) were washed free of growth factor and then seeded 
in 100/~1 of RPMI plus 10% FCS in 96-well plates and preincubated 
overnight (12-15 h) with one-half of the final concentration of oli- 
gonucleotides at 37~ 5% CO2. All cell lines were treated with 
a 7.5/~M concentration ofc-rafantisense, sense, or nonsense oligo- 
nucleotides with the exception of HCD-57 cells, which were treated 
with a 3.5 #M concentration of oligonucleotides. Ceils growing 
in media alone or in media plus growth factors were used as con- 
trols. The next day, the remaining aliquot of oligonucleotides was 
added, and calls were stimulated with the following growth factors: 
FDCP-1 cells were stimulated with Ib3 (30 ng/ml), Ib4 (40 ng/ml), 
or SLF (50 ng/ml); DA-3 cells were stimulated with GM-CSF (20 
ng/ml); 32D-C13 cells were stimulated with G-CSF (50 ng/ml); 
32D-CSF-1 cells were stimulated with CSF-1 (50 ng/ml); and DA- 
1A cells were stimulated with Ib6 (50 ng/ml), LIF (200 ng/ml), 
or OSM (200 ng/ml). CTLL-2 T cells were stimulated with IL-2 
(100 U/m1) or Ib4 (40 rig/m1). Cells were grown for 42 h at 37~ 
5% CO2 and pulsed with 1 #Ci of [3H]thymidine for 6-8 h. Cells 
were harvested onto glass filters, and [3H]thymidine incorporation 
was measured by scintillation counting. 

Soft Agar Colony Assay. A modification of the method of Stanley 
et al. (30) was used to measure colony formation of bone marrow 
cells. Briefly, 2 x 103 unseparated murine or human bone marrow 
cells or 2 x 104 purified progenitors (Lin- or CD34 +) were sus- 
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pended in 100 #1 of complete medium plus growth factors in 15- 
ml tubes. Murine bone marrow cells were stimulated with recom- 
binant routine I1.,3 (30 ng/ml), GM-CSF (50 ng/ml), or CSF-1 
(50 ng/ml), and human bone marrow cells were stimulated with 
recombinant human I1r (30 ng/ml) or GM-CCSF (50 ng/ml). 
One-half of the final concentration of oligonucleotides was added 
to each tube, and cells were incubated overnight for 12-15 h at 
37~ 5% CO2. The next day, the remaining oligonucleotides 
were added to each 15-ml tube, and cells were allowed to sit at 
room temperature for 30 rain. Complete medium supplemented 
with growth factors at previously indicated concentrations was added 
to each 15-ml tube to give a final volume of 1 ml per plate, and 
cells were plated in 0.3% Seaplaque agarose (FMC Bioproducts, 
Rockland, ME) in 35-mm Lux petri dishes (Miles Scientific, Naper- 
ville, IL). Cell viability was assessed by trypan blue exclusion 
counting before plating, and all samples contained >90% viable 
cells. Plates were incubated in a fully humidified incubator at 37~ 
5% CO2. Colonies containing >20 cells were scored on day 7 for 
unseparated and Lin- purified murine bone marrow cells and on 
day 14 for unseparated or CD34 § purified human bone marrow 
cells. For photography, colonies were stained with 0.1% 2-iodo- 
phenyl-3,4-nitrophenyl-s-phenyltetrazolium chloride (IN'12 Aldrich 
Chemical Co., Milwaukee, WI) for 3 d at 37~ 

Western Blot Protein Analysis. Growth factor-starved 11.-3- 
dependent FDCP-1 cells were seeded at 5 x 105 cells in 1 ml in 
a 24-well plate and treated with either sense or antisense oligonu- 
cleotides (7.5/~M) as described for the [3H]thymidine assay. Un- 
treated FDCP-1 cells stimulated with IL-3 were used for the media 
control. Cells were harvested 36 h after the addition of IL-3 and 
lysed in 100/~1 of RIPA buffer (50 mM Tris-HC1, pH 7.3, 150 
mM NaC1, 1% Triton X-100, 0.5% desoxycholate, 0.1% SDS, 5 
mM EDTA, 1 mM sodium orthovanadate, 25 mM sodium fluo- 
ride, 10 mM sodium pyrophosphate, 25 mM glycerophosphate). 
Insoluble material was removed by centrifugation at 4~ for 30 
rain at 12,000g, and protein concentrations were determined (pro- 
tein assay; Bio Rad Laboratories, Hercules, CA). Whole protein 
lysates were resolved by SDS-PAGE and transferred electrophoreti- 
cally to nitrocellulose membranes. The blots were blocked with 
5% gelatin in TBST buffer (50 mM Tris-HC1, pH 7.3, 150 mM 
NaC1, 0.5% Triton X-100) containing 5% FCS for 10 min and 
then incubated for 1 h at 4~ with polyclonal antisera raised against 
synthetic peptides corresponding to COOH-terminal amino acid 
sequences of either Raf-1 (anti-SP63 antibody) (31) or A-Raf (32). 
100/~g of protein from untreated cells was analyzed in the absence 
and presence of the competing peptide (10/xg/ml) using anti-Raf 
(SP63) antisera, and 45/~g of protein from oligonucleotide-treated 
cells was analyzed for expression of Raf-1 using anti-Raf (SP63) 
antisera. A-Raf protein expression was detected by probing a par- 
allel blot with anti-A-Raf antisera. After incubation with the an- 
tisera, blots were washed three times for 5 min with TBST buffer 
containing 5% FCS and then incubated with a secondary antibody 
(goat anti-rabbit IgG) conjugated to alkaline phosphatase for 30 
rain at room temperature. Protein bands were detected using the 
ECL system (Amersham Corp., Arlington Heights, IL). 

Immunocornplex Kinase and Phosphorflation-induced Shift Assay. 
FDCP-1 cells (2 x 106) maintained in I1.,4 (40 ng/ml) were grown 
to confluency in a 75-cm 2 flask and then washed free of growth 
factor and starved overnight (12-15 h) in RPMI plus 10% FCS. 
Cells were stimulated with Ib4 for 5-30 min and then immedi- 
ately lysed in ILIPA buffer. Protein concentrations were determined 
using the Bin Pad protein assay. Raf-1 proteins were immunopre- 
cipitated from 1.5 mg of total protein by incubating lysates with 
anti-Raf (SP63) antisera and protein A agarose for 3 h at 4~ For 

the in vitro kinase reaction, immunoprecipitated Raf-1 protein was 
washed three times with TBST and two times with kinase buffer 
(25 mM Hepes, pH 7.4, 150 mM NaC1, 25 mM DTT, 5 mM 
MnC12, 5 mM MgCI2 ), and the pellets were resuspended in 30 
/~1 of kinase buffer containing 10 #M ATP and 20 #Ci of 3,-32ATP. 
As substrates, we added either myelin basic protein (MBP; Sigma 
Chemical Co., St. Louis, MO) or a fusion of glutathione-S- 
transferase and kinase-dead, microtubule-associated protein kinase 
kinase purified over glutathione agarose (GST-MEK-). Samples 
were incubated for 30 min at room temperature. The reaction was 
stopped with Laemmli buffer, and proteins were resolved on a 
4-20% SDS gel. MPB bands were visualized by autoradiography. 
To evaluate Raf-1 for a phosphorylation-induced shift in molecular 
weight, proteins were resolved on a 7.5% SDS-polyacrylamide gel 
and analyzed by Western blot analysis using anti-Raf (SP63) an- 
tisera as described above. 

Results 

c-raf Antisense Oligonucleotides Inhibit Growth Factor-induced 
Proliferation of Factor-dependent Cell Lines. To determine the 
role of Kaf-1 in hematopoietic cell growth, we first evaluated 
the effect of c-rafantisense oligonudeotides on growth factor- 
induced proliferation of factor-dependent cell lines. Phos- 
phorothioate deoxyoligonudeotides containing 18-bp se- 
quences either complementary (antisense) or identical (sense) 
to the region surrounding translation start site of the c-raf 
gene and 17-bp oligomers containing randomly generated se- 
quences (nonsense) with the same overall base composition 
as the antisense oligomer were synthesized using standard 
phosphoramadite chemistry (29). To determine the dose re- 
sponse of the oligonucleotides, we first evaluated the effect 
of the oligonucleotides on proliferation of FDCP-1 cells stimu- 
lated with IL-3 using the [3H]thymidine incorporation assay. 
c-rafantisense oligonudeotides inhibited IL-3-induced prolifer- 
ation of FDCP-1 cells in a dose-dependent manner (data not 
shown), with maximum inhibition (>98%) achieved at a 7.5 
#M concentration of antisense oligonucleotides; a 7.5 #M 
concentration of sense and nonsense oligonucleotides had no 
significant effect on IL-3-induced proliferation (Fig. 1 A). 
In both sense and antisense oligonucleotide--treated cultures, 
cell viability assessed by trypan blue exclusion counting was 
>85% for up to 5 d, indicating that at this concentration 
the oligonucleotides were not toxic to the cells (data not 
shown). 

In addition to IL-3, we examined the effect of the oligonu- 
cleotides on other CSFs that use hematopoietin receptors in- 
cluding GM-CSF, G-CSF, and EPO (6). Similar to their effect 
on II_,3-induced proliferation in FDCP-1 cells (>98% inhi- 
bition), c-rafantisense oligonucleotides inhibited GM-CSF- 
induced proliferation of DA-3 cells, G-CSF-induced prolifer- 
ation of 32D-C13 cells, and EPO-induced proliferation of 
HCD-57 ceils by 95-100%, whereas sense oligonucleotide- 
treated cells were not affected (Fig. 1 A). 

A subclass of the hematopoietin receptor family that in- 
dudes the receptors for IL-6, LIE and OSM transduces prolifer- 
ative signals through dimerization of a ligand-binding subunit 
with the gpl30 subunit, which is the signal-transducing com- 
ponent of these receptors (7, 33, 34). To determine the re- 
quirement for Raf-1 in gpl30-mediated signal transduction, 
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Figure 1. c-raf antisense oligonucleotides inhibit growth factor-induced proliferation of factor-dependent myeloid cell lines. Cell lines responsive 
to specific growth factors were treated with c-rafsense, antisense, or nonsense oligonucleotides and were assayed for [3H]thymidine incorporation as 
described in Materials and Methods. Cells growing in media alone or in media plus growth factors were used as controls. (A) FDCP-1 cells stimulated 
with I1.-3 (30 ng/ml), DA-3 cells stimulated with GM-CSF (30 ng/ml), 32D-CD cells stimulated with G-CSF (50 ng/ml), and HCD-57 cells stimulated 
with EPO (5 U/ml); (B) 32D-CSF cells stimulated with CSF-1 (50 ng/ml) and FDCP-1 cells stimulated with SI~F (50 ng/ml); (C) DA-1A cells stimu- 
lated with 1I-,6 (50 ng/ml), LIF (200 ng/ml), or OSM (200 ng/ml). Results are reported as the mean _+ SD of t~plicate wells from a single experiment. 
Experiments were repeated at least three to four times with similar results. [~, media; [~, growth factor; m, sense; [[]]. nonsense; [-], antisense. 

we next evaluated the effect of c-raf oligonucleotides on 
proliferation of DA-1A cells stimulated with IL-6, LIF, or 
OSM. c-rafantisense oligonucleotides inhibited IL-6-, LIF-, 
and OSM-induced proliferation of DA-1A cells by >95% in 
contrast to sense-treated control oligonucleotides, which had 
little or no effect on proliferation (Fig. 1 C). c-rafantisense 
oligonucleotides also specifically inhibited Ib6-induced pro- 
liferation of B9 pro-B lymphoid cells by >95% (data not 
shown). Thus, Raf-1 is required to transduce the prolifera- 
tive signal through different structural classes of hematopoietin 
receptors that are known to activate intracellular tyrosine ki- 
nases but that do not themselves contain intrinsic tyrosine 
kinase activity (4). 

We next examined whether Raf-1 was required for prolifer- 
ation of cells stimulated with CSF-1 or SLF, whose receptors 
are members of the tyrosine kinase receptor class and contain 

intrinsic tyrosine kinase activity (2). Similar to the effect of 
the oligonucleotides on cells stimulated with growth factors 
that activate the hematopoietin receptor class, c-rafantisense 
oligonucleotides also inhibited growth factor-induced prolifer- 
ation of cells stimulated with CSF-1 or SLF by >95% in 
contrast to sense oligonudeotideg which showed no significant 
effect (Fig. 1 B). These results demonstrate that Raf-1 is also 
required for proliferation of cells stimulated with growth 
factors that transduce the growth factor-regulated signal 
through activation of intrinsic tyrosine kinases. 

c-raf Antisense Oligonucleotides Inhibit Expression of the Raf-1 
Protein. To determine whether c-rafantisense oligonucleo- 
tides were specifically inhibiting c-raf gene expression, we 
evaluated the effect of the oligonucleotides on Raf-1 protein 
expression in FDCP-1 cells stimulated with II.-3 by Western 
blot analysis (Fig. 2). Whole-cell lysates of untreated and sense 
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oligonucleotide- and antisense oligonucleotide-treated FDCP-1 
cells stimulated with IL-3 were probed with anti-Raf-1 (SP63) 
antisera raised against synthetic peptides corresponding to 
COOH-terminal amino acid sequences of Raf-1 (31). The 
anti-Raf (SP63) antisera specifically detected a 74-kD Raf pro- 
tein band that was competed by the peptide in untreated 
FDCP-1 control cells (Fig. 2) (31). c-rafantisense oligonu- 
cleotides completely inhibited Raf-1 protein expression after 
36 h of treatment in contrast to sense oligonucleotides that 
had no effect on Raf-1 expression (Fig. 2). A higher molec- 
ular weight protein that was detected by the anti-Raf an- 
tisera and was not competed by the peptide in the oligonu- 
cleotide-treated cells was also observed in untreated control 
cells on longer exposures (>1 rain) (Fig. 2). In contrast, nei- 
ther sense nor antisense oligonucleotides effected expression 
of A-Raf, a closely related protein normally expressed in 
FDCP-1 cells (Fig. 2) (32), indicating that loss of c-rafgene 
expression was specifically related to the effect of the oligo- 
nucleotides and was not the result of an overall decrease in 
the expression of cellular proteins. 

To demonstrate further that c-rafantisense-mediated inhi- 
bition of CSF-induced proliferation of factor-dependent cell 
lines was specifically related to loss of Raf-1 protein expres- 
sion, we evaluated the effect of the oligonucleotides on IL- 
3-induced proliferation of an NFS-60 cell line infected with 
a retrovirus expressing the v-raf gene (35), which does not 
contain sequences recognized by the antisense oligorlucleo- 
tides and therefore should not be affected (Fig. 3). c-raf an- 
tisense oligonucleotides inhibited IL-3-induced proliferation 
of uninfected NFS-60 cells by >95 %; however, IL-3-induced 
proliferation of NFS-60 cells expressing the v-rafgene was 
inhibited by only 26% in comparison with sense-treated con- 
trol cells, indicating that expression of the v-rafgene can over- 
come c-rafantisense inhibition of proliferation (Fig. 3). Taken 
together, these results demonstrate that c-rafantisense oligo- 
nucleotides inhibit the expression of the Raf-1 protein and 
that Raf-1 expression is specifically required for growth 
factor-induced proliferation. 

The Raf-1 Kinase Is Activated by IL-4 and Is Required for IL- 
4-induced Proliferation of Factor-dependent Cell Lines. Since 
results of previous experiments had indicated that Raf-1 was 
not activated in cells stimulated with IL-4 (16), we evaluated 
the requirement for Raf-1 in IL-4-induced proliferation using 
the antisense approach. In contrast to the results of previous 
experiments (16), c-rafantisense oligonucleotides inhibited 
both Ilo-2- and IL-4-induced proliferation of CTLL-2 T cells 
by >95% (Fig. 4 A). However, IL-4 stimulation of CTLL-2 
cells induced a fourfold lower proliferative response than IL-2 
stimulation (Fig. 4 A), suggesting that the number of cells 
in the culture that responded to II.-4 may have been insufficient 
for detection of Raf-1 activation in the phosphorylation- 
induced shift and in vitro kinase assay, c-raf antisense oli- 
gonucleotides also inhibited IL-4-induced proliferation of 
32D-C123 myeloid cells by 95% (data not shown) and 11.-4- 
dependent FDCP-1 cells by 94% (Fig. 4 B). 

Attempts to isolate an IL-4-dependent CTLL-2 T cell line 
from our cultures were unsuccessful; therefore, we evaluated 
IL-4-induced activation of Raf-1 kinase activity using the IL- 
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Figure 2. c-rafantisense oligonucleotides specifically inhibit Raf-1 protein 
expression. FDCP-1 cells treated with c-rafsense or antisense oligonucleo- 
tides as previously described were lysed 36 h after the addition of II.-3 
(30 ng/ml), and whole protein lysates were analyzed for Raf-1 protein 
expression by Western blot. Untreated FDCP-1 cells stimulated with II.-3 
were used for the media control. In media control lanes, 100/~g of protein 
from untreated cells was analyzed in the presence (+) or absence (-) of 
the competing peptide using anti-Raf (SP63) antisera, which detect the 
74-kD Raf-1 protein band. In sense and antisense lanes, 45/~g of protein 
from oligonucleotide-treated cells was analyzed for expression of Raf-1 
using SP63 antisera, and the 69-kD A-Raf protein band was detected by 
probing a parallel blot with anti-A-Raf antisera. A nonspecific higher mo- 
lecular weight protein band that was detected by SP63 antisera in the 
oligonucleotide-treated cells was also observed in the media control lanes 
on longer exposures (>1 rain). 

4-dependent FDCP-1 cell line. II.,4 activation of Raf-1 was 
tested in kinase assays using either MBP or kinase-inactive 
GST-MEK- as a substrate (36) (Fig. 5, A and C). Raf-1 ki- 
nase activity was activated within 5 min, increased between 
5 and 10 min, and declined by 30 min after the addition of 
IL-4 to growth factor-deprived FDCP-1 cells (Fig. 5, A and 
C). Concomitant with increased kinase activity, we also ob- 
served a shift in Raf-1 mobility, and the kinetics of mobility 
shift paralleled the increase and decrease in kinase activity 
(Fig. 5 B). The rapid and transient activation of Raf-1 in 
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Figure 3. Expression of v-raf blocks c-raf antisense inhibition of Ib 
3-induced proliferation. NFS-60 cells that express the v-rafgene and the 
parental NFS-60 cell line were treated with c-rafoligonucleotides and evalu- 
ated for the effect of the oligonucleotides on Ib3-induced proliferation 
as described in Fig. 1. 



cells stimulated with IL-4 indicates that Raf-1 is a compo- A 
nent of IL-4-activated signal transduction pathways. 

c-raf Antisense Oligonucleotides Inhibit CSF-induced Murine 
Bone Marrow Colony Formation. To investigate the require- 
ment for Raf-1 in the growth of normal bone marrow cells, 
we next examined the effect of c-rafoligonucleotides on CSF- 
induced colony formation of murine progenitor cells. Un- ~' 

x 

separated and purified Lin- murine bone marrow-derived 
progenitor cells were treated with c-rafsense or antisense oli- 
gonucleotides and then plated in soft agar colony assays in g 30 
the presence of II-,3, GM-CSF, or CSF-1. Cell viability was 
>90% for all samples, as assessed by trypan blue exclusion 
counting before plating, c-rafantisense oligonucleotides in- ,- 20 
hibited I1,3- and CSF-l-induced colony formation of un- 
separated bone marrow cells by 87 and 86%, respectively, 
and inhibited GM-CSF-induced colony formation by 65% 
(Table 1). Colonies growing in the presence of the antisense ~0 
oligonucleotides were significantly smaller (<50 cells) than 
those formed by normal or sense-treated cells (>200 cells) 
but showed the same morphological distribution of colony 0 
types. Increasing the oligonucleotide concentration did not 
result in increased inhibition of GM-CSF-induced colony for- 
mation (data not shown). Lineage-negative bone marrow cells 
represent a population of cells that is enriched for primitive 
hematopoietic progenitors ('~2.0% of unseparated bone B 
marrow) (27), whereas unseparated bone marrow includes lo0 
more committed progenitors. Therefore, to evaluate the re- 
quirement for Raf-1 in primitive progenitor cell growth, the 
effect of c-raf oligonucleotides on CSF-induced colony for- 
mation of Lin- cells was also evaluated. C-rafantisense oli- ~ 80 
gonucleotides inhibited IL-3-, CSF-I-, and GM-CSF-induced 
colony formation of Lin- -purified progenitors by >98% in 
comparison with sense oligonucleotides, which had little or g 60 
no effect on colony formation (Table 1 and Fig. 6). Thus, 
Raf-1 is absolutely required for CSF-induced growth of 
progenitor-enriched bone marrow cells, j 

c-raf Antisense Oligonucleotides Inhibit CSF-induced Human ~ 40 
Bone Marrow Colony Formation. The c-raf antisense oligo- 
nucleotides are complementary to the region surrounding the 
translation start site of both the murine and the human c-raf 
gene; therefore, the effect of c-rafoligonucleotides on growth a0 
factor-induced colony formation of unseparated and purified 
CD34 + human bone marrow progenitors was evaluated 
using identical oligonucleotides. The CD34 cell surface an- 
tigen is expressed on immature hematopoietic precursors, and 
populations of CD34 + cells are highly enriched for human 
hematopoietic stem cells (37, 38). c-rafantisense oligonucle- 
otides inhibited GM-CSF-induced colony formation by 48% 
and Ib3 induced colony formation by 56% in unseparated 
human bone marrow cell populations (Table 2). However, 
similar to the results obtained with purified Lin- murine 
progenitors, c-raf antisense oligonucleotides completely in- 
hibited colony formation (>95%) of CD34 + purified pro- 
genitors stimulated with these same cytokines (Table 2). The 
few colonies formed in the presence of the antisense oligonu- 
cleotides were significantly smaller than colonies of untreated 
or sense-treated cells, and colony formation was not inhibited 
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Figure 4. Raf-1 is required for I1:4-induced proliferation of CTL1:2 
T cells and FDCP-1 myeloid cells. (.4) CTLL-2 T cells treated with c-raf 
oligonucleotides at the concentrations indicated and stimulated with I1:2 
(100 U/ml) or IL-4 (40 ng/ml). (B) 11:4-dependent FDCP-I cells treated 
with c-rafoligonucleotides (7.5/zM) and stimulated with II:4 (40 ng/ml). 
The effects of c-rafoligonucleotide treatment on 11:4- and I1:2-induced 
proliferation were evaluated by [3H}thymidine incorporation. 

in a lineage-specific manner. Thus, similar to the result with 
murine bone marrow cells, Raf-1 was absolutely required for 
CSF-induced colony formation of primitive human progen- 
itors cells. 
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Figure 5. 1I..4 activates Raf-1 ki- 
nase activity in Ib4-dependent 
FDCP-1 cells. (A) Raf-1 kinase ac- 
tivity in FDCP-1 cells stimulated with 
Ib4 as measured by Raf-1 phosphory- 
lation of MBP. Phosphorylation of 
MBP was detected by autoradiog- 
raphy, and the falter was then probed 
with anti-Raf SP63 antisera to 
visualize the amount of Raf-1 present 
in the kinase reaction. (B) Raf-1 pro- 
tein from the same immunoprecipi- 
ration was evaluated for IL-4--induced 
electrophoretic retardation, lmmuno- 
precipitated proteins were resolved on 
a 7.5% SDS-polyacrylamide gel and 
analyzed by Western blot using SP63 
antisera. The Ib4-induced shift in the 
molecular weight of Raf-1 cannot be 
detected on the 4-20% polyacryl- 
amide gel used to resolve the MBP 
band. (C) Raf-1 kinase activity in I1., 
4--stimulated FDCP-1 cells was evalu- 
ated by phosphorylation of kinase- 
inactive GST-agarose affinity-purified 
MEK. Relative activity for each time 
point as determined by phosphor- 
imager analysis was 29 (0 rain), 42 (5 
min), 50 (10 rain), and 33 (30 min) 
x 103 cpm. Equal amounts of Raf-1 
protein were loaded for each sample 
(data not shown). 

Discussion 
To examine the functional requirement for Raf-1 for the 

growth of hematopoietic ceils, we used c-rafantisense oligo- 
nucleotides to inhibit Raf-I expression in growth  factor- 
dependent myeloid cell lines and in normal hematopoietic 
progenitors. The antisense approach has been previously used 
in the functional analysis of  numerous genes (39-41). In our 
experiments, c-rafantisense oligonucleotides inhibited growth 
factor-induced proliferation of  leukemic cell lines stimulated 
with II,2, IL-3, GM-CSF, EPO, G-CSF, CSF-1, and SLF. Thus, 
Raf-1 is required for growth  factor-induced proliferation 
through stimulation of both  the hematopoietin class of  
receptors and the tyrosine kinase receptor class. In addition, 
using the antisense approach, we have determined that Raf-1 
is required for proliferation induced through the receptors 
for LIE IL-6, and OSM, which represent a subclass of  the 
hematopoietin receptor family that transduces growth factor- 
activated signals through association with the gpl30 receptor 
subunit (7, 33, 34). 

Results of  previous experiments had indicated that one 
member  of  the hematopoietin receptor family, I1.-4, did not 
activate the Raf-1 kinase in a T cell line (16). However, c-raf 
antisense oligonudeotides inhibited IL-4-induced prolifera- 
tion in both myeloid and T cell lines, indicating that Raf-1 
was required for IL-4-induced proliferation of these cells. The 
difference in these results may be explained by the fact that 
previous experiments evaluating IL-4-induced activation of  
Raf-1 were conducted with Ib2-dependent  cells that prolifer- 

Table 1. Effect of c-raf Oligonucleotides on CSF-driven Murine Bone Marrow Colony Formation 

Unseparated bone marrow* 
Number of colonies per plates 

Lin- purified progenitors* 
Number of colonies per plate 

Percent of Percent of 
Control Sense Antisense Inhibition Control Sense Antisense Inhibition 

CSF 
Media only 1 • 0.8 - -- - 0 -- - -- 
IL-3 19.2 • 0.8 20.3 • 1.2 2.5 • 0.8 87 45.0 _+ 3.8 49.5 • 4.4 0.5 • 0.5 99 
GM-CSF 67.7 _+ 2.9 60.3 +_ 2.5 21.3 • 1.1 65 111.0 + 4.0 112.2 • 1.7 1.7 _+ 1.1 98 
CSF-1 59.5 +_ 4.0 53.0 +_ 3.8 7.8 • 1.3 85 42.2 • 2.5 56.2 • 3.4 1.0 _+ 0.8 98 

* Normal bone marrow cells were aspirated from the femurs of BALB/c mice using complete RPMI 1640 containing 10% FCS and 3 mg/ml t-gluta- 
mine and penn/strep. 
* Lin- cells were selected using previously published techniques (19). Briefly, unseparated bone marrow cells were incubated with RB6-8S5, Mac-1 
(Boehringer Mannheim), B220 (RB6-6B2), L3T4 (PharMingen), and Lyt-2 antibodies, which recognize myeloid- and lymphoid-specific cell surface 
antigens for 30 min at 4~ Cells were then washed twice and incubated with anti-rat IgG-coated magnetic beads at a bead/cell ratio of 40:1 for 
30 min at 4~ Labeled ceils were removed by a magnetic particle concentrator, and unlabeled cells (Lin-) were recovered in the supernatant. Un- 
separated bone marrow ceils (3 x l0 s) or Lin- cells (3 x 104) were treated with the oligonucleotides as described in Fig. 1 and then plated in 
triplicate in soft agar plates as previously described (19). Cultures were supplemented with IL-3 (30 ng/ml), GM-CSF (50 ng/ml), or CSF-1 (50 
ng/ml) as indicated. 
S Colony formation was evaluated on day 7 for unseparated bone marrow cells and on day 12 for Lin- cells. Results are the mean + SEM for triplicate 
plates from two separate experiments. Percent inhibition was determined after adjusting for background. 
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Figure 6. GM-CSF-induced colony formation of murine Lin- bone marrow-derived progenitors is inhibited by c-rafantisense oligonucleotides. 
Purified Lin- cells (3 x 104) either untreated or treated with c-rafantisense or sense oligonucleotides as described in Materials and Methods were 
stimulated with GM-CSF (30 ng/ml) and plated in soft agar. Day 7 colonies were stained with 0.1% INT for 3 d at 37~ and photographed. 

ated in response to IL-4 but were not IL-4 dependent (16). 
Furthermore, our results indicated that the proliferative re- 
sponse to I b4  in this cell line was submaximal when com- 
pared with the growth-promoting effects of IL-2, suggesting 
that the level of  IIr receptor expression or the number of 
cells responding to Ib4  in the earlier biochemical experiments 
may have been insufficient to detect Raf-1 activation. Con- 
sistent with the results of  the antisense experiments, our anal- 
ysis of  Ib4-induced activation of  Raf-1 in an Ib4-dependent  
FDCP-1 ceU line detected rapid and transient activation of  
Raf-1 kinase activity similar to that seen with other hemato- 
poietic growth factors (42). It has been previously demon- 

strated that mitogen and growth factor-activated Raf-1 can 
phosphorylate nonphysiologic substrates such as MBP (36) 
and can phosphorylate and activate MEK, a recently identified 
physiologic substrate of  Raf-1 (15, 43-45). The phosphory- 
lation of MBP and MEK by Raf-1 protein immunoprecipi- 
tated from IL-4-stimulated cells demonstrates that I/.-4 acti- 
vates Raf-1 kinase activity. Numerous studies have established 
that the apparent increase in the molecular weight of  Raf-1 
that is observed in growth factor- or mitogen-stimulated cells 
is related to rapid phosphorylation of  the Raf-1 protein (9, 
16-20). A change in the electrophoretic mobility of Raf-1 
in conjunction with activation of  Raf-1 kinase activity in IL- 

Table 2. Effect of c-tar Oligonucleotides on CSF-induced Human Bone Marrow Colony Formation 

Unseparated bone marrow* 
Number of colonies per plate s 

CD34 + purified progenitors* 
Number of colonies per plate 

Percent of Percent of 
Control Sense Antisense Inhibition Control Sense Antisense Inhibition 

CSF 

Media only 1.5 _+ 0.5 - - - 8.5 _+ 0.5 - - - 

IL-3 72.5 _+ 8.5 69.0 _+ 7.0 32.0 _+ 4.0 56 34.1 + 0 28 + 1.0 0.5 _+ 0.5 99 
GM-CSF 69.5 _+ 1.5 50.5 + 6.5 28.0 _+ 7.0 48 21.0 _+ 9.0 20 _+ 2.5 7.0 _+ 2.0 99 

" Bone marrow cells obtained from human donors after informed consent were layered on lymphocyte separation medium to obtain light density 
cells. Cells were grown in IMDM supplemented with 25% FCS, 1% detoxified BSA penicillin (100 U/ml), streptomycin (100 ~g/ml), and 3 mg/ml 
t-glutamine. Cells were stimulated with human IL-3 (30 ng/ml) or GM-CSF (50 ng/ml), 
* CD34 + cells were obtained by positive selection using previously published techniques (15). Briefly, magnetic beads with the CD34-specific BL-3C5 
mAb attached to them were added to cells at a bead/cell ratio of 1:1, and an anti-Fab antiserum (10 ttl/10 ~) was used for detachment of beads from 
positively selected cells. CD34 + cells were then recovered by magnetically separating the beads using a magnetic particle concentrator. Unseparated 
bone marrow cells (3 x 105) and CD34+ cells (3 x 104) were treated with oligonucleotides and evaluated in soft agar colony assays as described 
in Table 1. 
S Colony formation of both unseparated and human bone marrow cells was evaluated on day 12. Results are the mean _+ SEM for triplicate plates 
from two separate experiments. Percent of inhibition was determined after adjusting for background. 
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4-stimulated cells suggests that, similar to the mechanism 
of Raf-1 activation seen with other growth factors, IL-4 also 
induces a rapid and transient phosphorylation of the Raf-1 
protein. Additional experiments are required to determine 
the essential phosphorylation sites for IL-4-induced activa- 
tion of Raf-1. Taken together with the results of previous 
experiments, the studies evaluating IL-4 activation of Raf-1 
kinase activity indicate that the Raf-1 kinase is activated by 
all hematopoietic growth factors that have been tested to date. 

The c-raf antisense oligonudeotides used in this experi- 
ment specifically inhibit expression of the Raf-1 protein 
without affecting expression of A-Raf, a closely related pro- 
tein that is not homologous to Raf-1 in the region recog- 
nized by the antisense oligonudeotides. Similarities in the 
mechanism of activation and the downstream events regu- 
lated by raffamily genes have suggested that A-Raf may sub- 
stitute for Raf-1 in growth factor-regulated signaling pathways 
(46-48). However, since A-Raf but not Raf-1 was expressed 
in c-rafantisense-inhibited FDCP-1 cells, this result indicates 
that A-Raf does not substitute for the function of Raf-1 in 
IL-3-induced proliferation. The loss of Raf-1 expression in 
the absence of any effect on expression of a closely related 
protein demonstrated that loss of c-raf gene expression is 
specifically related to the effect of the oligonudeotides and 
is not related to an overall decrease in cellular protein levels. 
It did not, however, rule out the possibility that the oligo- 
nucleotides also affected expression of unrelated cellular pro- 
teins that were also required for growth factor-induced 
proliferation. Therefore, we further established the specificity 
of c-rafantisense oligonucleotide inhibition of growth factor- 
induced proliferation using an NFS-60 cell line containing 
a v-rafgene, whose expression is not affected by the antisense 
oligonucleotides. Expression of the v-rafgene significantly 
reversed c-rafantisense inhibition of IL-3-induced prolifera- 
tion of NFS-60 cells, demonstrating that Raf-1 expression 
is specifically required for growth factor-induced prolifera- 
tion. Since the NFS-60 cells expressing v-rafwere not a donal 
population of cells, partial inhibition of Ib3-induced prolifer- 
ation of these cells may result from c-rafantisense inhibition 
of cells in the culture that have little or no expression of the 
v-raf gene. 

Similar to the requirement for Raf-1 in growth factor- 
induced proliferation of progenitor cell lines, Raf-1 was ab- 
solutely required for colony formation of purified normal mu- 
rine (Lin-) and human (CD34 +) bone marrow-derived pro- 
genitor cells stimulated with IL-3, GM-CSF, or CSF-1. In 
addition, colony formation of unseparated murine bone 
marrow cells stimulated with IL-3 or CSF-1 was inhibited 
by 87 and 85%, respectively; however, GM-CSF-induced 
colony formation was inhibited only by 62%. Partial inhibi- 
tion of GM-CSF-induced colony formation of unseparated 
murine bone marrow cells suggested that Raf-1 may not be 
required for the GM-CSF-induced growth of some normal 
progenitors. However, the morphological distribution of 
colony types normally induced by GM-CSF was not altered 

in c-rafantisense-treated plates, indicating that there was not 
a differential requirement for Raf-1 in different cell types. Al- 
ternatively, it was possible that the oligonucleotide concen- 
tration we used was insufl~dent to inhibit GM-CSF-induced 
colony formation completely. However, this does not seem 
likely, since increasing the oligonucleotide concentration did 
not result in increased c-rafantisense inhibition of GM-CSF- 
induced colony formation. Complete inhibition (>99%) of 
GM-CSF-induced colony formation of Lin- progenitors 
demonstrates that Raf-1 is absolutely required for colony for- 
mation of progenitor-enriched bone marrow cells. However, 
our data do not exclude the possibility that the small GM- 
CSF-induced colonies in unseparated bone marrow cells that 
proliferate in the presence of c-rafantisense oligonudeotides 
arise from more mature progenitors that have a reduced re- 
quirement for Raf-l-mediated proliferative signals. 

In comparison with their effects on colony formation of 
unseparated murine bone marrow cells, c-rafantisense oligo- 
nucleotides partially inhibited both Ib3- and GM-CSF- 
induced colony formation of unseparated human bone marrow 
cells. Differences in the effects of the oligonucleotides on mu- 
rine versus human bone marrow cells are consistent with 
known structural differences between the Ib3 and GM-CSF 
receptor systems in human and mouse. Specifically, in humans, 
the IL-3 and GM-CSF receptors share a common/J subunit 
that is the signaling component of these receptors, whereas 
in the mouse Ib3 can use either a common ~ subunit or a 
distinct B subunit (49-51). 

Previous studies have suggested a role for Raf-1 in lineage 
determination in v-raf-transformed hematopoietic progenitor 
cells (52). However, the requirement for Raf-1 in the differen- 
tiation of normal bone marrow-derived progenitors could 
not be determined in the colony assays, since proliferation 
is required for differentiation of hematopoietic cells. Experi- 
ments designed to uncouple differentiation and proliferation 
are currently underway to determine whether Raf-1 is specifi- 
cally required for differentiation of hematopoietic cells. 

We have established that Raf-1 is required for growth 
factor-induced proliferation of leukemic murine progenitor 
cell lines and colony formation of normal murine and human 
bone marrow-derived progenitor cells regardless of the growth 
factor used to stimulate cell growth. A requirement for Raf-1 
was established for growth factor-induced proliferation 
through activation of receptors that are members of the 
hematopoietin receptor family, including the Ib4 receptor 
and the receptors for IL-6, LIF, and OSM, which use the gp130 
signaling molecule. Raf-1 is also required for proliferation 
induced through activation of the tyrosine kinase receptor 
class by CSF-1 and SLF. These results indicate that Raf-1 is 
a component of multiple signal transduction pathways that 
regulate hematopoietic cell proliferation and differentiation, 
and they demonstrate that activation of Raf-1 represents a 
common coupling mechanism for several different structural 
classes of hematopoietic receptors. 

2197 Muszynski et al. 



We thank J. Pierce (Laboratory of Cellular Metabolism and Biochemistry, National Cancer Institute [NCI]) 
for the gift of 32D-CSF cells, S. Ruscetti (Laboratory of Molecular Oncology, NCI) for HCD-57 cells, 
M. Schwabe (Laboratory of Biochemical Physiology, Biological Response Modifiers Program, NCI) for 
B9 cells, and P. Donovan (ABL Basic Research Program, NCI) for DA-1A cells. We also thank Maria 
Ortiz for assistance with the colony assays, K. Boudreaux, K. Mood, and J. Mikovits for oligonucleotide 
synthesis, and Dr. Dan Longo for review of the manuscript. 

The content of this publication does not necessarily reflect the views or policies of the Department of 
Health and Human Services, nor does mention of trade names, commercial products, or organizations 
imply endorsement by the U. S. government. 

Address correspondence to Karen W. Muszynski, P.O. Box B, Frederick Cancer Research & Development 
Center, Frederick, MD 21702-1201. 

Received for publication 9 December 1994 and in revised form 5 January 1995. 

~fel'~nces 

1. Metcalf, D. 1984. The Hematopoietic Colony-Stimulating 
Factors. Elsevier Science Publishers, Amsterdam. 493 pp. 

2. Ullrich, A., and J. Schlessinger. 1990. Signal transduction by 
receptors with tyrosine kinase activity. Ceil. 61:203-212. 

3. Isfort, R.J., andJ.N. Ihle. 1990. Multiple hematopoietic growth 
factors signal through tyrosine phosphorylation. Growth Factors. 
2:213-220. 

4. Miyajima, A., T. Kitamura, N. Harada, T. Yokoto, and K. 
Arai. 1992. Cytokine receptors and signal transduction. Annu. 
Rev. Immunol. 10:295-331. 

5. Cosman, D., S.D. Lyman, R.L. Idzerda, M.P. Beckmann, L.S. 
Park, R.G. Goodwin, and C.J. March. 1990. A new cytokine 
receptor superfamily. Trends Biochem. Sci. 15:265-270. 

6. Bazan, T.F. 1993. Structural design and molecular evolution 
of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. USA. 
87:6934-6938. 

7. Gearing, D.P., M.R. Comear, D.J. Friend, S.D. Gimpel, C.J. 
Thut, J. McGourty, K.K. Porasher, J.A. King, S. Gillis, B. 
Mosley et al. 1992. The II:6 signal transducer, gp 130: an on- 
costatin M receptor and affinity convertor for the LIF receptor. 
Science (Wash. DC). 255:1434-1437. 

8. Miyashita, T., L. Hovey, T. Torigoe, S. Krajewsky, J. Tropp- 
mair, U.R. Rapp, andJ.C. Reed. 1993. Novel form ofoncogene 
cooperation: synergistic suppression of.apoptosis by combina- 
tion of bcl-2 and raf oncogenes. Oncogene. 9:2751-2756. 

9. Morrison, D.K., D.R. Kaplan, U. Rapp, and T.M. Roberts. 
1988. Signal transduction from membrane to cytoplasm: growth 
factors and membrane-bound oncogene products increase Raf-1 
phosphorylation and associated protein kinase activity. Proc. 
Natl. Acad. Sci. USA. 85:8855-8859. 

10. Kovacina, K.S., K. Yonezawa, D.L. Brautigan, N.K. Tonks, 
U.R. Rapp, and R.A. Roth. 1990. Insulin activates the kinase 
activity of the Raf-1 proto-oncogene by increasing its serine 
phosphorylation. J. Biol. Chem. 265:12115-12118. 

11. App, H., R. Hazan, A. Zilbertstein, A. Ullrich, J. Schlessinger, 
and U.R. Rapp. 1991. Epidermal growth factor (EGF) stimu- 
lates association and kinase activity of Rafd with the EGF 
receptor. Mol. Cell. Biol. 11:913-919. 

12. Kolch, W., G. Heidecker, P. Lloyd, and U. Rapp. 1991. Raf-1 
protein kinase is required for growth of induced NIH-3T3 cells. 
Nature (Lond.). 349:426-428. 

13. Wood, K.W., C. Sarnecki, T.M. Roberts, andJ. Blenis. 1992. 
ras mediates nerve growth factor receptor modulation of three 
signal-transducing protein kinases: MAP kinase, tar-l, and 
RSK. Cell. 68:1041-1050. 

14. Sozeri, O., K. Vollmer, M. Liyanage, D. Frith, G. Kour, G.E. 

Mark, and S. Stabel. 1992. Activation of the c-rafprotein ki- 
nase by protein kinase C phosphorylation. Oncogene. 7:2259- 
2262. 

15. Kyriakis, J.M., H. App, X. Zhang, P. Banerjee, D.L. Brau- 
tigan, U.R. Rapp, and J. Avruch. 1992. Raf-1 activates MAP 
kinase-kinase. Nature (Lond.). 358:417-421. 

16. Turner, B., U. Rapp, H. App, M. Greene, K. Dobashi, and 
J. Reed. 1991. Interleukin 2 induces tyrosine phosphorylation 
and activation of p72-74 Raf-1 kinase in a T-cell line. Proc. Natl. 
Acad. Sci. USA. 88:1227-1231. 

17. Miyazawa, K., PC. Hendrie, C. Mantel, K. Wood, L.K. 
Ashman, and H.E. Broxmeyer. 1991. Comparative analysis of 
signaling pathways between mast cell growth factor (c-kit 
ligand) and granulocyte-macrophage colony-stimulating factor 
in a human factor-dependent myeloid cell line involves phos- 
phorylation of Raf-1, GTPase-activating protein and mitogen- 
activated protein kinase. Extx Hematol. 19:1110-1123. 

18. Carroll, M.P., J.L. Spivak, M. McMahon, N. Weich, U.R. 
Rapp, and W.S. May. 1991. Erythropoietin induces Raf-1 acti- 
vation and Raf-1 is required for erythropoietin-mediated 
proliferation. J. Biol. Chem. 266:14964-14969. 

19. Carroll, M.P., I. Clark-Lewis, U.R. Rapp, and W.S. May. 1990. 
Interleukin-3 and granulocyte-macrophage colony-stimulating 
factor mediate rapid phosphorylation and activation of cytostolic 
c-Raf. J. Biol. Chem. 265:19812-19817. 

20. Baccarini, M., D.M. Sabatini, H. App, U.R. Rapp, and E.R. 
Stanley. 1990. Colony stimulating factor-1 (CSF-1) stimulates 
temperature dependent phosphorylation and activation of the 
Raf-1 proto-oncogene product. EMBO (Eur. Mol. Biol. Org.) 
J. 9:3649-3657. 

21. Dexter, T.M., J. Garland, D. Scott, E. Scolnick, and D. Met- 
calf. 1980. Growth of factor-dependent hemopoietic precursor 
cell lines. J. Extz Med. 152:1036-1047. 

22. Greenberger, J.S., R.J. Eckner, M. Sakakeeny, P. Marks, D. 
Reid, G. Nabel, A. Hapel, J.N. Ihle, and K.C. Humphries. 
1983. Interleukin-3-dependent hematopoietic progenitor cell 
lines. Fed. Proc. 42:2672-2778. 

23. Pierce, J.H., E. Marco, G.W. Cox, D. Lombardi, M. Ruggiero, 
L. Varesio, L.W. Wang, G. Choudhury, A.Y. Sakaguchi, P. Di 
Fiore, and S.A. Aaronson. 1990. Macrophage-colony-stimulat- 
ing factor (CSF-1) induces proliferation, chemotaxis, and re- 
versible monocytic differentiation in myeloid progenitor cells 
transfected with the human c-fms/CSF-1 receptor cDNA. Proc. 
Natl. Acad. Sci. USA. 87:5613-5617. 

24. Ile, J.N, H.C. Morse, J. Keller, and K. Holmes. 1984. 
Interleukin-3 dependent retrovirus induced lymphomas: loss 

2198 Raf-1 Protein Is Required for Growth of Hematopoietic Cells 



of the ability to terminally differentiate in response to differen- 
tiation factors. Curt. Totx Micwbiol. lmmunol. 113:85-91. 

25. Kuscetti, F.W., N.J. Janesch, A. Chakraborti, S.T. Sawyer, and 
W.D. Hankins. 1990. Friend spleen focus-forming virus in- 
duces factor independence in an erythropoietin-dependent 
erythroleukemia cell line. J. Viwl. 63:1057-1062. 

26. Gillis, S., M.M. Ferm, W. Ou, and K.A. Smith. 1978. T cell 
growth factor: parameters of production and a quantitative 
microassay for activity. J. Immunol. 120:2027-2031. 

27. Spangrude, G.J., S. Heimfeld, and I.L. Weissman. 1988. 
Purification and characterization of mouse hematopoietic stem 
cells. Science (Wash. DC). 241:58-62. 

28. Smeland, E., S. Funderud, G. Kvalheim, G. Gaudernack, A.M. 
Rasmussen, L. Rusten, M.Y. Wang, H.K. Biomhoff, R.W. 
Tindle, and T. Egeland. 1992. Isolation and characterization 
of human hematopoietic progenitor cells: an effective method 
for positive selection of CD34 § cells. Leukemia (Basingstoke). 
6:845-852. 

29. Stec, W.J., G. Zon, W. Egan, and B. Stec. 1984. Automated 
solid-phase synthesis, separation, and stereochemistry of phos- 
phorothioate analogues of oligodeoxynucleotides.J. Am. Chem. 
Sot 106:6077-6079. 

30. Stanley, E.K., A. Bartocci, D. Patinkin, M. Rosendaal, and 
T.R. Bradley. 1986. Regulation of very primitive multipotent, 
hemopoietic cells by hemopoietin-1. Cell. 45:667-674. 

31. Schultz, A.M., T.D. Copeland, G.E. Mark, U.R. Rapp, and 
S. Oroszlan. 1985. Detection of the myristylated gag-raf trans- 
forming protein with tar-specific antipeptide sera. Virology. 
146:78-89. 

32. Kolch, W., E. Weissinger, H. Mischak, J. Troppmair, S.D. 
Showalter, P. Lloyd, G. Heidecker, and U.R. Rapp. 1990. 
Probing structure and function of the Raf protein kinase do- 
main with monoclonal antibodies. Oncogene. 5:713-720. 

33. Hibi, M., M. Murakami, M. Saito, T. Hirano, T. Taga, and 
T. Kishimoto. 1990. Molecular cloning and expression of an 
Ib6 signal transducer, gp130. Cell. 63:1149-1157. 

34. Gearing, D.P., C.J. Thut, T. VandenBos, S.D. Gimpel, P.B. 
Delaney, J. King, V. Price, D. Cosman, and M.P. Beckman. 
1991. Leukemia inhibitory factor receptor is structurally related 
to the Ib6 signal transducer gp 130. EMBO (Eur. Mol. Biol. 
Org.) J. 10:2839-2848. 

35. Heidecker, G., M. Huleihel, J.L. Cleveland, W. Kolch, T.W. 
Beck, P. Lloyd, T. Pawson, and U.R. Rapp. 1990. Mutational 
activation of c-Raf-1 and definition of the minimal transforming 
sequence. Mol. Cell. Biol. 10:2503-2512. 

36. Force, T., J.V. Bonventre, G. Heidecker, U. Rapp, J. Avruch, 
and J.M. Kyriakis. 1994. Enzymatic characteristics of the 
c-Raf-1 protein kinase. Proa Natl. Acad. Sci. USA. 91:1270-1274. 

37. Andrews, R.G., J.W. Singer, and I.D. Bernstein. 1989. 
Precursors of colony-forming cells in humans can be distin- 
guished from colony-forming cells by expression of the CD33 
and CD34 antigens and light scatter properties. J. Exp. Med. 
169:1721-1731. 

38. Tindle, R.W., R.A.B. Nichols, L. Chan, D. Campana, D. 
Catovsky, and G.D. Birnie. 1985. A novel monoclonal anti- 
body BL-3C5 recognizes myeloblasts and non-B and T lym- 
phoblasts in acute leukaemias and CGL blast crises, and react 
with immature cells in normal bone marrow. Leukemia Res. 
9:1-9. 

39. Caracciolo, D., M. Valtieri, D. Venturelli, C. Peschle, A.M. 
Gewirtz, and B. Calabretta. 1989. Lineage-specific requirement 
of c-abl function in normal hematopoiesis. Science (Wash. DC). 
245:1107-1110. 

40. Skorski, T., C. Szczylik, M.Z. Ratahczak, L. Malaguarnera, 
A.M. Gewirtz, and B. Calabretta. 1992. Growth factor- 
dependent inhibition of normal hematopoiesis by N-ras an- 
tisense oligodeoxynucleotides. J. Ex F Med. 175:743-750. 

41. Gewirtz, A.M., and B. Calabretta. 1988. A c-myb antisense 
oligodeoxynucleotide inhibits normal human hematopoiesis in 
vitro. Science (Wash. DC). 242:1303-1307. 

42. Heidecker, G., W. Kolch, D.K. Morrison, and U.R. Rapp. 
1992. The role of Raf-1 phosphorylation in signal transduc- 
tion. Adv. Cancer Res. 58:53-73. 

43. Kyriakis, J.M., T.L. Force, U.R. Rapp, J.V. Bonventre, and 
J. Avruch. 1993. Mitogen regulation of c-tar-1 protein kinase 
activity toward mitogen-activated protein kinase-kinase.J. Biol. 
Chem. 268:16009-16019. 

44. Howe, L.R., S.J. Leevers, N. Gomez, S. Nakielny, P. Cohen, 
and C.J. Marshall. 1992. Activation of the MAP kinase pathway 
by the protein kinase raf. Cell. 71:335-342. 

45. Dent, P., W. Haser, T.A. Haystead, L.A. Vincent, T.M. 
Roberts, and T.W. Sturgill. 1992. Activation of mitogen- 
activated protein kinase by v-raf in NIH 3T3 cells in vitro. 
Science (Wash. DC). 257:1404-1407. 

46. Troppmair, J., J.T. Bruder, H. Munoz, P.A. Lloyd, J. Kyriakis, 
P. Banerjee, J. Avruch, and U.R. Rapp. 1993. MAPK/ERK 
activation by oncogenes, serum and TPA requires Raf and is 
necessary for transformation. J. Biol. Chem. 269:7030-7035. 

47. Stephens, R.M., G. Sithanandam, T.D. Copeland, D.R. Kaplan, 
U.R. Rapp, and D.K. Morrison. 1992. 95-kilodalton B-Raf 
serine/threonine kinase: identification of the protein and its 
major autophosphorylation site. Mol. Cell. Biol. 12:3733-3742. 

48. Oshima, M., G. Sithanandam, U.R. Rapp, and G. Guroff. 1991. 
The phosphorylation and activation of B-Raf in PC12 cells 
stimulated by nerve growth factor, j .  Biol. Chem. 266:23753- 
23760. 

49. Kitamura, T., K. Hayashida, K. Sakamaki, T. Yokota, K. Arai, 
and A. Miyajima. 1991. Reconstitution of functional receptors 
for human granulocyte/macrophage colony-stimulating factor 
(GM-CSF): evidence that the protein encoded by the AIC2B 
cDNA is a subunit of the murine GM-CSF receptor. Proc. Natl. 
Acad. Sci. USA. 88:5082-5086. 

50. Kitamura, T., N. Sato, K. Arai, and A. Miyajima. 1991. Ex- 
pression cloning of the human Ib3 receptor cDNA reveals a 
shared/~ subunit for the human Ib3 and GM-CSF receptors. 
Cell. 66:1165-1174. 

51. Takaki, S., S. Mita, T. Kitamura, S. Yonehara, N. Yamaguchi, 
A. Tominaga, A. Miyajima, and K. Takatsu. 1991. Identification 
of the second subunit of the murine interleukin-5 receptor: 
interleukin-3 receptor-like protein, AIC2B is a component of 
the high affinity interleukin-5 receptor. EMBO (Eur. Mol. Biol. 
Org.) J. 10:2833-2838. 

52. Principato, M., J.L. Cleveland, U.R. Rapp, K.L. Holmes, J.H. 
Pierce, H.C. Morse, and S.P. Klinken. 1990. Transformation 
of murine bone marrow cells with combined v-raf/v-myc on- 
cogenes yields clonally related mature B cells and macrophages. 
Mol. Cell. Biol. 10:3562-3572. 

2199 Muszynski et al. 


