
International  Journal  of

Environmental Research

and Public Health

Article

Systemic Inflammation (C-Reactive Protein) in Older Chinese
Adults Is Associated with Long-Term Exposure to Ambient
Air Pollution

Mona Elbarbary 1,* , Artem Oganesyan 2 , Trenton Honda 3, Geoffrey Morgan 1,4 , Yuming Guo 5 ,
Yanfei Guo 6 and Joel Negin 1

����������
�������

Citation: Elbarbary, M.; Oganesyan,

A.; Honda, T.; Morgan, G.; Guo, Y.;

Guo, Y.; Negin, J. Systemic

Inflammation (C-Reactive Protein) in

Older Chinese Adults Is Associated

with Long-Term Exposure to Ambient

Air Pollution. Int. J. Environ. Res.

Public Health 2021, 18, 3258.

https://doi.org/10.3390/ijerph

18063258

Academic Editors: Ioar Rivas and

Maribel Casas Sanahuja

Received: 19 January 2021

Accepted: 15 March 2021

Published: 22 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney,
NSW 2006, Australia; Geoffrey.morgan@sydney.edu.au (G.M.); joel.negin@sydney.edu.au (J.N.)

2 Department of Hematology and Transfusion Medicine, National Institute of Health, Yerevan 0051, Armenia;
a.t.oganesyan@gmail.com

3 Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA;
t.honda@northeastern.edu

4 School of Public Health, University Centre for Rural Health, The University of Sydney, Sydney,
NSW 2006, Australia

5 Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine,
Monash University, Clayton, VIC 3800, Australia; Yuming.Guo@monash.edu

6 Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
guoyanfei@scdc.sh.cn

* Correspondence: mona.elbarbary@sydney.edu.au or melb2717@uni.sydney.edu.au; Tel.: +61-416-405-016

Abstract: There is an established association between air pollution and cardiovascular disease (CVD),
which is likely to be mediated by systemic inflammation. The present study evaluated links between
long-term exposure to ambient air pollution and high-sensitivity C reactive protein (hs-CRP) in an
older Chinese adult cohort (n = 7915) enrolled in the World Health Organization (WHO) study on
global aging and adult health (SAGE) China Wave 1 in 2008–2010. Multilevel linear and logistic
regression models were used to assess the associations of particulate matter (PM) and nitrogen
dioxide (NO2) on log-transformed hs-CRP levels and odds ratios of CVD risk derived from CRP
levels adjusted for confounders. A satellite-based spatial statistical model was applied to estimate
the average community exposure to outdoor air pollutants (PM with an aerodynamic diameter of
10 µm or less (PM10), 2.5 µm or less (PM2.5), and 1 µm or less (PM1) and NO2) for each participant of
the study. hs-CRP levels were drawn from dried blood spots of each participant. Each 10 µg/m3

increment in PM10, PM2.5, PM1, and NO2 was associated with 12.8% (95% confidence interval; (CI):
9.1, 16.6), 15.7% (95% CI: 10.9, 20.8), 10.2% (95% CI: 7.3, 13.2), and 11.8% (95% CI: 7.9, 15.8) higher
serum levels of hs-CRP, respectively. Our findings suggest that air pollution may be an important
factor in increasing systemic inflammation in older Chinese adults.

Keywords: air pollution; C-reactive protein; inflammatory marker; CVD risk; China; elderly

1. Introduction

Air pollution is a significant global health challenge [1]. According to recent data
from the World Health Organization (WHO), 91% of the world’s population lives in places
where air pollution exceeds the WHO recommendations [2], contributing to over four
million premature deaths every year, as well as the development and exacerbation of
numerous chronic diseases, such as cardiovascular disease (CVD), respiratory disorders,
and cancer [3,4].

Among air pollutants, the negative impact on health is best established for particulate
matter of less than 10 and 2.5 microns in diameter (PM10 and PM2.5, respectively) [5–7].
Outdoor PM2.5 was shown to be the fifth leading cause of mortality in 2015 [8], and the
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worst impacts from ambient air pollution are seen in low- and middle-income countries
due to rapid industrialization and a lack of environmental regulation [8]. Southeast Asia is
at the highest risk in this regard [2]. Moreover, populations from these geographic areas
bear a high burden of chronic, noncommunicable diseases such as CVD [9]. The impact
of air pollution on the development and progression of CVD is of particular concern, as
numerous studies have demonstrated important and significant associations consistent
with a causal relationship between air pollution and CVD [10–12]. CVD accounts for most
of the mortality attributed to air pollution. Conversely, ambient air pollution is attributed
to 17.1% and 14.2% of deaths from ischemic heart disease and cerebrovascular disease,
respectively [8].

One of the primary suggested mechanisms via which outdoor air pollutants might
lead to CVD is chronic systemic inflammation [13]. Air pollution can directly lead to
pulmonary inflammation through activation of alveolar macrophages and the upregulation
of inflammatory cytokine expression, such as tumor necrosis factors and interleukins [14,15].
These inflammatory cytokines can, in sufficient concentration, lead to a hepatic acute phase
response, with resultant increases in numerous serum proteins associated with systemic
inflammation, including C-reactive protein (CRP). CRP is a well-known inflammatory
biomarker and can be a valuable indicator for both acute and chronic inflammation [16].
Although high blood levels of CRP can be caused by a range of health conditions, chronic
and sustained increases in this protein have been consistently tied to the development and
progression of CVD [17].

Several previous studies studied the association between particulate matter air pol-
lution and CRP; however, significant questions remain [18–20]. For example, in a recent
meta-analysis of 40 observational studies, including a total of 244,681 participants, investi-
gators found that, while long-term exposure to ambient air pollution was more strongly
associated with CRP levels than short-term exposure, the majority of prior literature fo-
cused on short-term exposure windows [21]. Additionally, while the burden of air pollution
exposure is known to be significantly greater in developing nations, the studies linking PM
to CRP so far have been disproportionally performed in populations from economically
developed regions [22], such as Europe and the United States (US) [21]. To date, there
have been no studies evaluating the long-term relationship between ambient air pollution
and levels of CRP in the Chinese population, which is still, despite substantial progress,
exposed to high levels of outdoor pollution [23]. The results of studies assessing associa-
tions between NO2 exposure and CRP levels were inconclusive [24–27], and no data have
been published regarding PM1, which is believed to be even more toxic than other pollu-
tants [28]. Lastly, most prior studies were conducted on young populations, which may
be at lower risk for the detrimental cardiovascular consequences of air pollution-induced
chronic inflammation [21].

Thus, the current study aims to fill these gaps in the literature by examining the
association between exposure to long-term, ambient air pollutants and levels of serum
hs-CRP among older Chinese adults.

2. Materials and Methods
2.1. Study Popultation

The current study is based on the data collected from the WHO’s study on global
aging and adult health (SAGE)—a longitudinal study evaluating in detail the health and
wellbeing of adult populations in middle-income countries (China, Ghana, Mexico, India,
Russia, and South Africa). Our study analyzed the cross-sectional, baseline, interview-
based survey data of older Chinese adult respondents from 2008 to 2010 (SAGE China
Wave 1). Multistage clustering and probability sampling were applied for participant
recruitment, described in detail elsewhere [29]. This resulted in a nationally representative
sample from 64 townships across China. The study was approved by the Ethics Committee
of The Chinese Center for Disease Control and Prevention.
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2.2. Exposure Assessment

Predictive models estimated exposure concentrations of PM1, PM2.5, PM10, and NO2
on the basis of satellite remote sensing, meteorology, land use, and other data combined
with ground-monitored information on the pollutants from stations throughout mainland
China. For PM1, daily ground-level measurements were acquired from 77 stations of the
China Atmosphere Watch Network (CAWNET) during September 2013 and December
2014. For the other three pollutants, the data were obtained from 1479 stations of the China
National Environmental Monitoring Center (CNEMC) from May 2014 to December 2016.

Detailed descriptions of the predictive models for each pollutant can be found else-
where [30,31]. In short, two National Aeronautics and Space Administration (NASA)
Moderate Resolution Imaging Spectroradiometer (MODIS) data processing algorithms and
inverse variance weighting at 0.1◦ (10 km) grid cell resolution provided data on aerosol
optical depth (AOD). These data, along with data on land use, vegetation, and meteorology,
were combined with ground-monitored PM1 data via a generalized additive model for the
prediction of daily PM1 grid cell concentrations from 2005 to 2014. The same methods were
applied for the prediction of grid cell concentrations of PM2.5 and PM10 from 2005 to 2016.

For NO2, the OMI-NO2 level 3 data product (OMNO2d version 3) provided data on
satellite-derived tropospheric column densities of NO2 (molecules/cm2) at 0.25◦ (13 × 24 km2)
resolution [32]. Predictions of daily grid cell concentrations for NO2 from 2013 to 2016 were
obtained via a random forest model using ground-monitored NO2 data linked with data on
satellite NO2, vegetation, land use, road density, and meteorology [33].

Monitored pollutant data and 10-fold cross-validation were used to assess the predic-
tive ability of the models for all four pollutants (Table S2, Supplementary Materials). The
long-term exposure to air pollutant was defined as the moving average concentrations in
the participants’ township for the 1, 3, and 5 year periods prior to the participant enter-
ing the study. As each township entered the study and provided biological samples at a
different time during the 2008–2010 baseline study period, the moving average exposure
was different for each township. Participants’ community locations were geo-coded, and
participant-specific long-term concentration estimates were calculated for PM10, PM2.5,
PM1, and NO2.

2.3. Hs-CRP Level Measuremenets

Hs-CRP is a systemic inflammatory marker that is produced in the liver after stimula-
tion through cytokines. Hs-CRP levels were measured using the dried blood spot (DBS)
technique considering difficulties related to the collection, processing, and storage of the
serum specimens. DBS was validated as a feasible tool for the assessment of CRP levels on
a population level, as its values have been consistently correlated with those measured by
standard serum sampling [34,35]. Hs-CRP levels were analyzed using an enzyme-linked
immunosorbent assay (ELISA) (Diagnostic Biochem Canada Inc, London, Canada) with
less than 16% of the coefficient of variability (CV) for the assay. A higher accuracy of
the detection range (0.01–10 mg/L) of hs-CRP is most applicable for the establishment of
low-degree inflammatory states, especially in individuals without clinical manifestations
of inflammation and CVD [36].

2.4. Covariates

Covariates were selected for inclusion in our health effects models according to prior
associations with air pollution and hs-CRP. These include demographic, health behavior,
socioeconomic status, indoor air pollution, and comorbid disease variables. Demographic
data included sex, age, and body mass index (BMI). Health behavior variables included
dietary intake of fruits and vegetables, alcohol and tobacco use, and physical activity.
Fruit and vegetable consumption was included in a binary fashion as either sufficient
(two and more daily servings of fruits and three or more daily servings of vegetables)
or insufficient. Alcohol use (current use or no current use) and smoking status (current
use or no current use) were likewise included as binary variables. Physical activity was
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characterized by the global physical activity questionnaire, which included questions on
the duration, frequency, and intensity of physical activity during work, transport activities,
and recreation/leisure time activities. Correspondingly, these responses were collapsed
into three groups (low, moderate, and high physical activity) defined according to total
energy requirements in metabolic equivalents representing the intensity and time spent on
each activity. Socioeconomic variables included the level of education and self-reported
household income. The level of education was categorized as having attended (1) no
school, (2) primary school, (3) middle school, or (4) high school and higher. Self-reported
household income was included in a binary fashion (high versus low), using the median
household income of 20,000 CNY as a cutoff. Indoor pollution was assessed using data
on the type of fuel being used for cooking at home. It was, thus, classified as either clean
(electricity and natural gas) or unclean (coal, wood, dung, and agricultural residues). Lastly,
self-reported comorbidities, such as hypertension, chronic lung disease, and diabetes, were
also assessed and included through participant self-report.

2.5. Statistical Analysis

We examined the association between log hs-CRP levels and 10 µg/m3 increases in the
3 year moving average of annual average PM10, PM2.5, PM1, and NO2 in single-pollutant,
multilevel linear, and logistic regression models, where participants were considered as
the first-level unit and the township as the second-level unit. For linear models, hs-CRP
was log-transformed to approximate a more normal distribution; for logistic regression
models, we examined the probability of a hs-CRP >3 mg/L, as this cutoff point has been
used as a clinical indicator for high-risk CVD [37]. In all models, we included the following
covariates: age, sex, BMI, tobacco use, physical activity, education level, fruit and vegetable
intake, alcohol use, type of fuel used at home, median household income, and location of
residence (urban/rural).

Stratified analyses were performed to investigate possible effect modification. Strat-
ifications were made for several socioeconomic values that could have a direct impact
on susceptibility to inflammation or could be linked with pollution [38,39]. These values
involved level of education (high-school graduation or less versus college degree or more)
and annual household income (<20,000 CNY versus ≥20,000 CNY with the median used
as the cutoff point). Further subdivisions included several health indicators, conditions, or
behaviors with a potential to enhance inflammation, such as age (<65 versus >65 years),
diabetes, and chronic lung disease (using self-reported diagnosis). The evaluation of effect
modification was carried out by the inclusion of multiplicative terms between pollutant
variables and the potential effect modifiers in the adjusted models. For the significance
of effect modification, the p-value for the hypothesis test of the interaction was selected
as <0.01. The percentage change in hs-CRP was used to present the results of the linear
regression analysis and the percentage change in probability of hs-CRP above 3 mg/L
(CVD risk threshold) was used for the results of the binary model. Both results were
calculated using [exp(10 × β) − 1] × 100.

Several sensitivity analyses were carried out to ensure our results were robust to
different model specifications. These included (1) examining different pollution exposure
windows (i.e., 1 year and 5 year), and (2) excluding participants with comorbidities which
may represent causal intermediates between air pollution exposures and CRP levels,
such as respiratory and cardiovascular comorbidities. For all analyses, STATA version 15
(StataCorp, College Station, TX, USA) was used. The statistical significance was determined
as a p-value <0.05.

3. Results
3.1. Study Population

The baseline characteristics of participants involved in this study are presented in
Table 1. In total, 7915 individuals were included in the final analysis, representing 59.2% of
the study population of 13,367 aged 50 and older. Baseline demographic characteristics
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for the participants with complete hs-CRP measurements and nonparticipants due to
incomplete hs-CRP were compared (Table S2, Supplementary Materials).

Table 1. Baseline characteristics of study participants.

Characteristics Mean SD or %

PM10 1 year (µg/m3) 90.23 28.80
PM2.5 1 year (µg/m3) 53.94 17.08
PM1 1 year (µg/m3) 43.67 13.04
NO2 1 year (µg/m3) 30.52 12.36
Age (years) 63.22 9.35
BMI (kg/m2) 24.11 4.81
Systolic blood pressure (mmHg) 148.26 24.55
Diastolic blood pressure (mmHg) 84.64 13.55

Total annual household incomes
• ≤20,000 CNY 4181 52.82
• >20,000 CNY 3512 44.37

Sex (n, %)
• Male 3774 47.68
• Female 4141 52.32

Smoking status
• Current tobacco use 2615 33.14
• No current tobacco use 5275 66.86

Alcohol use
• Current alcohol drinking 2377 30.19
• No current alcohol drinker 5496 69.81

Education
• No formal education 1762 22.26
• Primary school 3173 40.09
• Middle school 1521 19.22
• High school or higher 1459 18.43

Place of residence
• Rural 4276 54.02
• Urban 3639 45.98

Physical activity
• Low level 2707 34.31
• Moderate level 2243 28.43
• High level 2939 37.25

Nutrition
• Insufficient intake of fruits and vegetables 3336 42.15
• Sufficient intake of fruits and vegetables 4579 57.85

Type of fuel used at home
• Clean 4588 58.42
• Unclean 3265 41.58

History of Diabetes
• Yes 554 7.06
• No 7298 92.94

History of Chronic lung diseases
• Yes 629 8
• No 7236 92

BMI = body mass index, PM10 = particulate matter with a diameter of 10 µm or less, PM2.5 = with a diameter of
2.5 µm or less, PM1 = particulate matter with a diameter of 1 µm or less, NO2 = nitrogen dioxide.

The mean age of the participants was 63.22 years (±9.35), 52% of whom were female.
Most of the participants were residents of rural areas (54%) who used clean types of fuel at
home (58%) with no current use of tobacco (67%) or alcohol (70%) and who had sufficient
intake of fruits and vegetables (58%). About 53% reported having less than 20,000 CNY of
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annual household income. Most of the study population had no history of diabetes (93%)
or chronic lung disease (92%).

3.2. Air Pollution Exposure

Figure 1 shows the distribution of residential ambient air pollution concentrations.
Mean (±SD) annual estimates of PM10, PM2.5, and NO2 were 91.11 (±28.95 µg/m3), 54.02
(±17.02 µg/m3), and 28.97 (±22.42 µg/m3), respectively. NO2 concentrations were highly
correlated with PM2.5 (r = 0.92), but less so with PM10.
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3.3. Association of Exposure to PM and NO2 with hs-CRP Levels

For all pollutants, we found statistically significant positive associations with serum
hs-CRP (Figure 2). Each 10 µg/m3 increment in 3 year moving averages of PM10, PM2.5,
PM1, and NO2 was associated with 12.8% (95% confidence interval (CI): 9.1, 16.6), 15.7%
(95% CI: 10.9, 20.8), 10.2% (95% CI: 7.3, 13.2), and 11.8% (95% CI: 7.9, 15.8) higher serum
levels of hs-CRP, respectively.
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3.4. Odds Ratio of CVD Risk Increase

Figure 3 presents the results of the logistic regression models. We observed higher
odds ratios (ORs) of CVD risk (defined as hs-CRP > 3 mg/L) for 10 µg/m3 increments of
PM10 (OR: 1.12 (95% CI: 1.10, 1.14)), PM2.5 (1.19 (95% CI: 1.15, 1.23)), PM1 (1.10 (95% CI:
1.05, 1.15)), and NO2 (1.10 (95% CI: 1.05, 1.16)).

3.5. Sensitivity Analysis

Our sensitivity analyses examining 5 year and 1 year exposure windows (Figures S1
and S2, Supplementary Materials) did not differ meaningfully from our main models, in
terms of both the magnitude and the direction of the effect estimates, for every pollutant
assessed. Likewise, when excluding potential causal intermediates (respiratory and cardio-
vascular comorbidities) we did not observe important changes in our effect estimates (data
not shown).
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3.6. Effect Modification

The results of our effect modification models are presented in Table 2 for linear models
and in Table 3 for logistic regression models. In our linear models, we observed a sta-
tistically significant effect modification for median household income on PM1 exposure
(p < 0.001), with larger associations observed for household incomes above the median
(percentage change hs-CRP: 8.38, 95% CI: 3.46, 13.53) than below the median (% change
hs-CRP: 7.56, 95% CI: 3.62, 11.64). Similar effects for NO2, PM2.5, and PM10 did not reach
statistical significance. Participants over 65 years of age had nominally, although nonsignif-
icant, larger effects due to PM2.5 and PM10 exposure. No significant effect modification
was observed for other investigated variables in our linear models. A similar pattern
was observed in our logistic regression models, although no statistically significant effect
modification was observed (Table 3).
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Table 2. Stratified analysis of percentage change in hs-CRP level with 10 µg/m3 increase in 3 year
moving averages in each pollutant level.

Characteristics
PM10

%
(95% CI)

PM2.5
%

(95% CI)

PM1
%

(95% CI)

NO2
%

(95% CI)

Sex p = 0.09 p = 0.26 p = 0.25 p = 0.50

• Male 11.21 a

(6.44, 16.18)
13.73

(7.21, 20.64)
9.76

(5.68, 14.01)
10.16

(4.86, 15.73)

• Female 12.58 a

(7.65, 17.75)
16.06

(9.53, 22.98)
9.71

(5.73, 13.85)
11.91

(96.56, 17.52)

Smoking p = 0.11 p = 0.34 p = 0.35 p = 0.52

• Yes 7.22 b

(2.2, 12.67)
7.81

(0.53, 15.63)
6.56

(1.86, 11.49)
3.53

(−2.48, 9.92)

• No 14.29 b

(9.75, 19.01)
17.95

(11.99, 24.24)
10.76

(7.18, 14.46)
14.07

(9.29, 19.06)

Age p = 0.02 p = 0.03 p = 0.68 p = 0.34

• ≤65 years 11.34 c

(6.93, 15.93)
13.41

(7.59, 19.54)
10.67

(7.13, 14.33)
11.69

(6.97, 16.63)

• >65 years 13.78 c

(8.07, 19.80)
19.22

(11.26, 27.75)
9.89

(4.93, 15.08)
11.70

(5.25, 18.55)

Income p = 0.08 p = 0.49 p < 0.001 p = 0.06

• ≤20,000 CNY 9.57 d

(4.58, 14,80)
10.35

(3.47, 17.68)
7.56

(3.62, 11.64)
5.46

(0.20, 10.99)

• >20,000 CNY 6.33 d

(0.59, 12.39)
9.55

(1.34, 18.42)
8.38

(3.46, 13.53)
9.19

(2.37, 16.49)
PM10 = particulate matter with a diameter of 10 µm or less, PM2.5 = with a diameter of 2.5 µm or less,
PM1 = particulate matter with a diameter of 1 µm or less, NO2 = nitrogen dioxide. a Adjusted for age, BMI,
tobacco use, physical activity, education level, fruit and vegetable intake, alcohol use, type of fuel used home,
household annual income, location of residence (urban/rural). b Adjusted for age, sex, BMI, physical activity,
education level, fruit and vegetable intake, alcohol use, type of fuel used at home, household annual income, and
location of residence (urban/rural). c Adjusted for sex, BMI, tobacco use, physical activity, education level, fruit
and vegetable intake, alcohol use, type of fuel used at home, household annual income, and location of residence
(urban/rural). d Adjusted for age, sex, BMI, tobacco use, physical activity, education level, fruit and vegetable
intake, alcohol use, type of fuel used at home, and location of residence (urban/rural).

Table 3. Stratified analysis of the probability of increased risk of CVD associated with 10 µg/m3

increase in 3 year moving averages in each pollutant level.

Characteristics
PM10
OR

(95% CI)

PM2.5
OR

(95% CI)

PM1
OR

(95% CI)

NO2
OR

(95% CI)

Sex p = 0.93 p = 0.66 p = 0.07 p = 0.309

• Male 1.11
(1.08, 1.15) a

1.19
(1.12, 1.26) a

1.07
(0.99, 1.15) a

1.11
(1.03, 1.20) a

• Female 1.10
(1.08, 1.13) a

1.20
(1.15, 1.26) a

1.11
(1.04, 1.19) a

1.15
(1.07, 1.23) a

Smoking p = 0.78 p = 0.58 p = 0.06 p = 0.051

• Yes 1.12
(1.07, 1.16) b

1.17
(1.09, 1.25) b

1.00
(0.92, 1.10) b

1.03
(0.93, 1.13) b

• No 1.10
(1.08, 1.13) b

1.20
(1.16, 1.25) b

1.13
(1.07, 1.21) b

1.18
(1.11, 1.26) b
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Table 3. Cont.

Characteristics
PM10
OR

(95% CI)

PM2.5
OR

(95% CI)

PM1
OR

(95% CI)

NO2
OR

(95% CI)

Age p = 0.06 p = 0.04 p = 0.35 p = 0.08

• ≤65 years 1.08
(1.06, 1.11) c

1.14
(1.08, 1.20) c

1.08
(1.01, 1.15) c

1.05
(0.98, 1.13) c

• >65 years 1.13
(1.11, 1.16) c

1.27
(1.20, 1.33) c

1.13
(1.04, 1.21) c

1.25
(1.16, 1.36) c

Income p = 0.73 p = 0.93 p = 0.05 p = 0.86

• ≤20,000 CNY 1.10
(1.07, 1.13) d

1.15
(1.09, 1.22) d

1.02
(0.95, 1.09) d

1.08
(0.99, 1.18) d

• >20,000 CNY 1.10
(1.07, 1.12) d

1.18
(1.13, 1.24)

1.08
(1.00, 1.17) d

1.12
(1.05, 1.20) d

PM10 = particulate matter with a diameter of 10 µm or less, PM2.5 = with a diameter of 2.5 µm or less,
PM1 = particulate matter with a diameter of 1 µm or less, NO2 = nitrogen dioxide. a Adjusted for age, BMI,
tobacco use, physical activity, education level, fruit and vegetable intake, alcohol use, type of fuel used home,
household annual income, and location of residence (urban/rural). b Adjusted for age, sex, BMI, physical activity,
education level, fruit and vegetable intake, alcohol use, type of fuel used at home, household annual income, and
location of residence (urban/rural). c Adjusted for sex, BMI, tobacco use, physical activity, education level, fruit
and vegetable intake, alcohol use, type of fuel used at home, household annual income, and location of residence
(urban/rural). d Adjusted for age, sex, BMI, tobacco use, physical activity, education level, fruit and vegetable
intake, alcohol use, type of fuel used at home, and location of residence (urban/rural).

4. Discussion

We found that NO2 and multiple size fractions of PM were all strongly and signif-
icantly associated with increased levels of hs-CRP in an older Chinese population. The
significance of these associations persisted after several sensitivity and subgroup analyses.
All investigated air pollutants were strongly and significantly associated with clinical
important elevations in hs-CRP (defined as hs- CRP > 3 mg/L), a level which has been
previously associated with the development of CVD.

Our results are consistent with findings from most previous studies of PM, although
the prior literature was mainly limited to short-term investigations in high-income countries
demonstrating larger increases in CRP levels compared to those presented here [21]. This
can presumably be explained by the substantially larger cumulative effects on tissue
damage and inflammation which occur with long-term exposure to elevated air pollution
levels [21].

A pooled data meta-analysis of nine studies by Liu et al. demonstrated statistically
significant associations between elevations in PM and increases in serum CRP levels
(p = 0.003), indicating an 18.01% and 5.61% increase in CRP with every 10 µg/m3 increment
in PM2.5 and PM10, respectively [21]. Moreover, after stratification by study location, i.e.,
Asian populations (both from Taiwan), the effects remained strong (p < 0.001). Several
publications not included in this systematic review also supported these findings [19,40,41].
Nonetheless, a study by Tsai et al. did not find any significant association with PM10
exposure in a Swiss cohort of 8121 participants [42].

The present study is among the first to evaluate the negative associations between
PM1 and inflammation. PM1 is rarely assessed in health studies compared to other air
pollutants. As a result, there is no standardized reference for PM1 levels set by the WHO.
PM1 may play a greater role than PM2.5 in associations with CVD [43]. Moreover, fine and
ultrafine particulates (with a diameter of <2.5 µm and <1 µm, respectively) are even more
harmful since they can penetrate deeper into lung tissues and spread throughout the body
via the bloodstream, causing both acute and chronic health effects [28,44,45]. Consistent
with this, increased exposure to PM has been shown to be associated with an increased
prevalence of chronic lung diseases, respiratory infections, CVD, and diabetes, whereby
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inflammation is regarded as the key underlying mechanism of adverse effects from air
pollution [46].

These associations, however, have been less consistent in the case of nitrogen dioxide.
Multiple studies from European countries, as well as one study from the US and another
one from Taiwan, failed to demonstrate any substantial links between levels of ambient
NO2 and serum CRP levels [24,26,27,40,47–52]. On the contrary, an analysis of two large
European cohorts involving 51,459 participants found a 1.9% increase in hs-CRP in asso-
ciation with a 7.4 µg/m3 increment in NO2 exposure [53]. Our study revealed stronger
associations (11.8% per 10 µg/m3 increase in 3 year moving averages of outdoor NO2),
which can be possibly explained by the older mean age of participants (63.2 vs. 47.6 years),
as well as greater co-exposure of other pollutants.

Contrary to some of the previous research, our study did not find any effect modifi-
cation from common covariates, such as age, sex, smoking, and income level. The only
exception was that the individuals with an average household income of more than 20,000
CNY had a higher percentage change in hs-CRP levels with every 10 µg/m3 exposure to
PM1. Prior evidence showed stronger associations among the elderly, smokers, people
with diabetes and higher BMI, alcohol consumers, those with poorer education, and those
with lower income levels. Use of certain medications, such as hormone therapy and statins,
as well as marital status, was also shown to have an effect modification [54–56].

To our best knowledge, this is the first study to investigate the long-term effects of air
pollution exposure and levels of hs-CRP among residents from China. Previous studies
were primarily focused on populations from European and North American countries,
apart from two reports from Taiwan [49,57]. In an analysis of 30,034 Taiwanese residents,
Zhang et al. showed that every 5 µg/m3 of PM2.5 increase was linked with an average of
1.31% higher concentrations of CRP [57], considerably lower than the effects observed in
our study (15.7%, 95% CI: 10.9, 20.8), which are more comparable with those from European
and US cohorts [18,19,41,54,55,58]. On the contrary, Huang et al. found no statistically
significant associations between either PM or NO2 levels and increases in serum CRP in a
small sample of 175 patients undergoing continuous peritoneal dialysis [49]. In general,
the magnitude of positive associations between CRP and PM10 seen in our participants
was similar to those seen in previous studies [18,40,53,55].

Countries with developing economies and booming industrialization suffer most from
environmental problems, including air pollution [22]. For example, China, despite the
progress made over recent years, still has one of the highest levels of outdoor air pollution
compared to the rest of the world [23,59]. China also shares one of the highest burdens
from CVDs, to which 40% of all deaths in the country are attributed [60].

The elderly population may be particularly susceptible to the negative cardiovascular
impacts from ambient air pollution, given their substantial burden of chronic inflamma-
tory disorders, perturbations in immune function, and changes to physical activity that
accompany aging [12,61,62]. With the global population projected to get older over the next
decades, the combination of elevated exposure and susceptibility may lead to significant
increases in disease burden associated with air pollution exposure [63–65].

Strength and Limitations

The findings of the current study are enhanced by a number of significant method-
ological strengths. First, we were able to investigate the detrimental health effects of
air pollution in a specific population known to be at particular risk: older adults from
a developing country with higher-than-average air pollution. Second, the study sample
included a geographically diverse population of residents which is representative of China.
Third, individual-level data on many common risk factors enabled adjustment for a range
of personal confounders. Fourth, the applied models incorporated satellite-based estimates
of PM exposures, which, despite the absence of air monitoring data, created total spatial
coverage among participants of this study. Lastly, the present work is among very few
studies examining associations between CRP and PM1 and NO2, the data on which are
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largely limited and inconsistent. The findings of this study can help to fill the gap in PM1
data, further serving as an evidence background for pollution standards, public policies,
and guidelines for concentration cut-offs.

Our study also has limitations. The significance of the results is limited by its cross-
sectional design, restricting the observed associations to a single time point, although
estimates for air pollution exposure were derived from 2005–2007 with hs-CRP concentra-
tions measured in 2008–2010 as outcomes. Data on other important personal confounders
of participants, which potentially could have impacted the levels of hs-CRP, such as the use
of anti-inflammatory medications, second-hand smoke exposure, and presence of chronic
or acute inflammatory conditions, were unfortunately not obtained during the survey.
Additionally, no information on specific chemical components of PM, which could have
determined the effects, was available. Furthermore, the findings should be taken cautiously
since the inflammatory response was characterized by only one biomarker, which has its
own limitations in terms of sensitivity and specificity. Our models did not include detailed
information about residential differences, such as socioeconomic status, healthcare access,
available green space, or temperature changes, all of which are deemed to be potential
confounders for the exposure and outcome. The likelihood of exposure misclassification is
also increased by the absence of the participants’ specific activity patterns, such as traffic
and indoor time. Although we were not able to adjust for short-term air pollution exposure,
which may potentially affect the long-term associations between inflammatory markers
and outdoor air pollution exposure, measurements of hs-CRP excluded participants with
CRP levels >10 mg/L, which reduced the likelihood of impact on outcome measurements,
as previous long-term investigations also demonstrated no effect of short-term pollution
on long-term associations [18,26,55]. Lastly, not all surveyed participants consented to
provide their blood samples, which limited the generalizability of our findings and may
have created a selection bias, as the final sample consisted of healthier, wealthier, and more
educated participants. Nonetheless, the strength of observed associations is supported by
statistical robustness, with the PR and CI being well above the value of one.

5. Conclusions

In our study in a nationally representative sample of older Chinese adults, we observed
significant and consistent associations between long-term concentrations of ambient air
pollution (PM10, PM1, and NO2) and high-sensitivity C reactive protein (hs-CRP). Our
findings add further to the literature suggesting that air pollution may be an important
factor in increasing systemic inflammation in older Chinese adults.
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