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INTRODUCTION
Indocyanine green (ICG) lymphography is a valuable 

diagnostic tool for the lymphatic system and the clinical 
management of lymphedema.1 This imaging technique is 
recognized for its ability to visualize lymphatic vessels, pro-
vide critical insights into the lymphatic flow, and identify 
potential obstructions or anomalies.2 The utilization of ICG, 
a fluorescent dye, in conjunction with a near-infrared spec-
tral camera, allows for the real-time assessment of lymphatic 
functionality, marking a significant advancement over tradi-
tional lymphatic imaging methods, which often lack the reso-
lution and specificity to visualize fine lymphatic structures.3,4

Despite its advantages, there is still not a globally 
accepted ICG lymphography protocol to conduct and inter-
pret the results.5 The interpretation of ICG lymphography 
remains subjective, relying on the expertise of clinicians. 

This subjectivity underscores the necessity for standardized 
and objective methods of analysis. The recent innovations 
in artificial intelligence (AI), particularly computer vision 
and convolutional neural networks (CNNs), present prom-
ising developments to address these limitations.6,7 CNNs are 
well-suited for analyzing complex visual patterns in medical 
images due to their ability to automatically learn hierarchi-
cal features from raw pixel data.8 Previous studies have suc-
cessfully applied CNNs for various medical imaging tasks, 
such as diabetic retinopathy detection and skin cancer clas-
sification.9,10 The ability of AI to learn from and interpret 
complex patterns in imaging could improve the analysis of 
ICG lymphography, providing reproducible and accurate 
methods of assessment.11 In this study, we aimed to explore 
the efficacy of AI, specifically CNN algorithms, in classifying 
ICG lymphography patterns: linear, reticular, splash, star-
dust and diffuse.

METHODS

Patient Selection
This institutional review board approved study 

included ICG lymphography images collected retrospec-
tively from patients who underwent ICG lymphography at 
a single institution. Patients were eligible for inclusion if 
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they were aged 18 or older with suspected or diagnosed 
lymphedema, and had no contraindications to ICG injec-
tion. Patients were excluded if they had a history of allergic 
reactions to iodine or indocyanine green, were pregnant, 
or had active infections in the extremity of interest.

ICG Lymphography Protocol
Patients were positioned supine on the examination 

table. Upper extremity studies were performed, with the 
arm resting on an armboard at a 60-degree angle to the  
body. Lower extremity images were captured with the leg  
extended on the procedure table. The near-infrared cam-
era was positioned approximately 15–20 cm above the 
extremity, ensuring that the camera’s field of view encom-
passed to optimize ICG signal intensity.

The ICG solution was prepared by combining one vial 
of ICG (25 mg) with 10 mL of saline. For upper extremity 
imaging, a total of 0.8 mL of the ICG solution was injected 
intradermally at four sites: the first and fourth web spaces 
of the hand and the volar wrist. For lower extremity imag-
ing, a total of 0.8 mL was injected at four sites as described 
by Suami et al.12 These sites maximize lymphosomal 
uptake of the upper and lower extremities for ICG lym-
phography imaging.

Immediately after the ICG solution was completely 
injected, a dynamic scan was performed to capture still 
images and video of the ICG fluorescence as it propagated 
through the lymphatic vessels. Following the dynamic 
scan, the patient was instructed to perform gentle exer-
cises, such as hand clenching or foot pedaling, for 15 min-
utes. External interventions like milking and massaging 
were avoided to prevent interference with the natural flow 
dynamics of the ICG. Finally, a delayed scan was performed 
to capture still images and record additional videos.

Dataset Compilation and Labeling
A total of 68 ICG lymphography static images from the 

delayed scan were collected. The images were not catego-
rized by upper or lower extremity, laterality, or specific 
anatomical locations and landmarks within the extremi-
ties. This is purposefully done to ensure the generalizabil-
ity of the AI model for both upper and lower extremity 
lymphedema. These images were labeled by the study 

authors to identify five distinct lymphatic flow patterns: 
linear (Fig. 1), reticular (Fig. 2), splash (Fig. 3), stardust 
(Fig. 4), and diffuse (Fig. 5). To ensure label consistency, 
the manual labeling process was performed independently 
by two study authors experienced in recognizing ICG pat-
terns. Any discrepancies in labeling were resolved through 

Takeaways
Question: Can artificial intelligence accurately classify 
indocyanine green (ICG) lymphography patterns to 
enhance ICG lymphography procedures for diagnosis 
and treatment of lymphedema?

Findings: We developed a convolutional neural network 
model, which achieved 97.78% accuracy in categorizing 
ICG lymphography images into five recognized patterns: 
linear, reticular, splash, stardust, and diffuse. The model’s 
high performance demonstrates its potential for automat-
ing and standardizing ICG lymphography interpretation.

Meaning: Artificial intelligence–based classification of 
ICG lymphography patterns can significantly enhance the 
accuracy and objectivity of lymphedema diagnosis, poten-
tially improving clinical decision-making and patient 
outcomes.

Fig. 1. Image showing the linear pattern.

Fig. 2. Image showing the reticular pattern.

Fig. 3. Image showing the splash pattern.
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consensus discussion with a third expert, the senior author 
of the study. The dataset included five linear, 15 reticular, 
seven splash, 21 stardust, and 20 diffuse patterns. Images 
were selected randomly but to reflect one pattern within 
one single frame. Images with multiple patterns in one 
single frame were not included in the dataset.

Dataset Preprocessing
Data were divided into three subsets: 80% for training, 

10% for validation, and 10% for testing, ensuring a random 
distribution to mitigate bias and overfitting. The choice of 
an 80% training, 10% validation, and 10% testing data split 
was based on common practices in machine learning to 
ensure sufficient data for model training while allowing for 
performance evaluation on unseen data.13 Before training, 
images underwent preprocessing in a computational envi-
ronment to standardize their size and enhance contrast, 
optimizing them for neural network analysis.

AI Model Design and Training
We selected CNNs as an ideal algorithm for our study 

to evaluate ICG lymphography images due to their proven 
efficacy and accuracy in analyzing complex visual patterns 
in images.14,15 Our model was developed using TensorFlow, 
an open-source platform for machine learning, and Python 
3, known for its simplicity and efficiency in coding.16,17

We used the MobileNetV2 architecture as our base 
model, which is pretrained on the extensive ImageNet 
dataset.18 This choice was given due to MobileNetV2’s effi-
ciency and effectiveness in mobile and embedded vision 
applications, along with its capability for transfer learning. 
Transfer learning allowed us to leverage the pretrained 
model’s learned features, significantly reducing the need 
for extensive computational resources and training time 
for our study.19 To design the MobileNetV2 model for our 
specific task of classifying ICG lymphography patterns, we 
used custom dense layers to the pretrained base. These 
layers were designed to refine the model’s output to accu-
rately reflect the five recognized lymphatic flow patterns. 
All coding and AI model development processes were car-
ried out by the study authors.

Enhancing Model Performance with Data Augmentation
We implemented data augmentation techniques to 

bolster the model’s ability to generalize across varied lym-
phography images.20 These included random rotations, 
width and height shifts, shear transformations, zoom, 
and horizontal flipping. Data augmentation artificially 
expands the training dataset by generating transformed 
versions of the training images, thereby providing the 
model with a broader range of lymphatic flow patterns to 
learn from. This approach is instrumental in preventing 
overfitting and enhancing the model’s robustness to varia-
tions in new, unseen images.21

AI Model Evaluation
The performance of our AI model was rigorously 

evaluated using the separate test set that we randomly 
partitioned in the beginning and kept aside. The primary 
metrics for evaluation were accuracy and loss, which were 
monitored throughout the training process. Accuracy met-
ric measures the proportion of correctly predicted images 
out of the total, whereas loss metric quantifies the differ-
ence between the predicted patterns and the actual pat-
terns, serving as an indicator of the model’s error rate.22 
These metrics were pivotal in assessing the model’s capa-
bility to classify ICG lymphography patterns accurately 
and reliably, providing a quantitative basis for the efficacy 
of integrating AI into lymphatic system imaging analysis.

RESULTS
Our CNN model demonstrated success in classifying ICG 

lymphography patterns, achieving a high accuracy rate of 
97.78%. Throughout the training phase, which spanned 50 
epochs, our model exhibited steady improvement in both 
accuracy and loss metrics. The accuracy metric indicates the 
model could correctly identify all five ICG lymphography 
patterns in test set images. The model’s loss, quantifying the 
discrepancy between the predicted patterns and the actual 
patterns, was notably low at 0.0678. This low loss value signi-
fies that the model predictions were remarkably close to the 
true classifications, further underscoring our model’s reli-
ability in analyzing ICG lymphography images.

The analysis of the model’s performance across differ-
ent lymphatic flow patterns revealed a consistent level of 
accuracy, with minimal variation in its ability to recognize 

Fig. 4. Image showing the stardust pattern.

Fig. 5. Image showing the diffuse pattern.
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the five predefined patterns: linear, reticular, splash, star-
dust, and diffuse. This uniformity in performance is indic-
ative of the model’s robust feature extraction and learning 
capabilities, enabling it to discern and categorize the com-
plex visual characteristics inherent in each pattern type.

DISCUSSION
This study represents the very first research to incorpo-

rate AI into ICG lymphography and has successfully dem-
onstrated that AI can be implemented to provide accurate 
and objective interpretation and classification of ICG 
lymphographic patterns. The high accuracy (97.78%) 
and low loss (0.0678) achieved by our model underscores 
the potential of AI and computer vision to enhance ICG 
lymphography. These findings suggest that AI could assist 
clinicians by standardizing the interpretation of lymphatic 
function, staging lymphedema severity, informing treat-
ment decisions, and monitoring treatment response.

Our findings align with the broader literature that rec-
ognizes the value of computer vision and AI applications 
in plastic surgery.6,23–28 Our model uses transfer learning to 
leverage the extensive data available in the ImageNet data-
base, thereby reducing the need for large, labeled datasets 
which are often scarce in medicine.29 The high accuracy 
rate achieved by our CNN model is indicative of its robust-
ness in pattern recognition, even with a relatively small 
dataset. The application of data augmentation techniques 
contributed to the model’s ability to generalize well to new 
data, thereby enhancing its predictive performance. These 
results are promising, especially considering the complex 
nature of ICG lymphography patterns and the importance 
of precise pattern classification in clinical practice.

Our model’s capability to accurately predict the 
visual characteristics among linear, reticular, splash, star-
dust and diffuse patterns has significant clinical implica-
tions. Accurate discrimination between these specific 
patterns provides insight into the underlying physiol-
ogy and functionality of lymph vessels and flow.30 Linear 
patterns indicate normal lymph flow along a contractile 
vessel, while reticular and diffuse patterns suggest impair-
ment.31 Equipping clinicians with an objective, reproduc-
ible method to extract this level of detail empowers more 
informed clinical decision-making regarding disease stag-
ing, preoperative planning, and patient outcomes.

The consistency of the model across various images, 
without the need for specific considerations of laterality 
or anatomical landmarks, demonstrates its wide applica-
bility. This suggests the model’s potential for analyzing 
lymphatic patterns across different anatomical regions, 
supporting its use in diverse clinical settings. Another 
noteworthy potential application is use in tracking longi-
tudinal changes of lymphatic patterns over serial assess-
ments. Due to its high sensitivity, the model can detect 
subtle changes, enabling early detection of lymphatic 
dysfunction. This early detection capability allows oppor-
tunity for prompt intervention and halting of the progres-
sion of lymphedema.32 Longitudinal monitoring of ICG 
patterns aided by this model could also help lend addi-
tional objectivity to outcome assessments of therapeutic 
and surgical interventions for lymphatic disorders.

The complex visual patterns in ICG lymphography 
studies often pose a steep learning curve for trainees in 
lymphatic imaging interpretation.33 Integrating user-
friendly AI tools with robust diagnostic performance as 
demonstrated here with our AI model could help flat-
ten that learning curve and improve the clinical skills 
of surgical trainees and early-career lymphatic medicine 
practitioners.

Global adoption of ICG lymphography has been grad-
ual despite its advantages over alternative imaging modali-
ties.34 Computer assisted review of this fluorescent guided 
imaging technique can provide an accessible and scalable 
solution to lessen the reliance on the availability of highly 
specialized on-site expertise for results interpretation.35,36

Explainability and interpretability of the AI model are 
crucial aspects to consider, especially in clinical applica-
tions. Understanding how the model makes its predictions 
can increase clinicians’ trust and facilitate the integration 
of AI-assisted decision support into clinical workflows. 
Future work should explore techniques such as visualizing 
the model’s attention maps to provide insights into the 
image regions that contribute to the model’s predictions.37

Although our results demonstrate the efficacy of AI in 
enhancing ICG lymphography imaging, it is essential to 
acknowledge the limitations of this study. Our model was 
trained on a small dataset size of 68 images from a single 
institution. The dataset, though diverse and augmented, 
was limited to images from a single institution and single 
ICG lymphography device, which may affect the generaliz-
ability of the model. Future research should aim to include 
a larger and more varied dataset of lymphatic pathologies, 
potentially sourced from multiple institutions and devices, 
to further validate the model’s efficacy. This study did not 
account for interobserver variability in the data labeling 
process. Future iterations of this research could incorpo-
rate a consensus approach or multiple expert validations 
to label the ICG lymphography patterns, enhancing the 
reliability of the training data. Although beyond the scope 
of the current study, comparing model performance to 
interpretations by a panel of expert clinicians could bet-
ter quantify the advancements over traditional methods. 
Aggregate costs of image acquisition and processing, 
model development, and computer interface develop-
ment warrant additional analysis.

CONCLUSIONS
This study demonstrates the significant potential of 

integrating AI into the analysis of ICG lymphography for 
automated classification of ICG lymphography patterns. 
By achieving a high accuracy rate of 97.78%, our AI model 
offers a promising solution to the challenges of subjec-
tivity and variability among current clinical practices. 
Integration of AI-based decision support systems can help 
provide objective, reliable, and reproducible assessments 
of lymphatic function, improving the clinical and surgical 
management of lymphatic disease.
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