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Abstract

Regional-based association analysis instead of individual testing of each SNP was introduced in genome-wide association
studies to increase the power of gene mapping, especially for rare genetic variants. For regional association tests, the kernel
machine-based regression approach was recently proposed as a more powerful alternative to collapsing-based methods.
However, the vast majority of existing algorithms and software for the kernel machine-based regression are applicable only
to unrelated samples. In this paper, we present a new method for the kernel machine-based regression association analysis
of quantitative traits in samples of related individuals. The method is based on the GRAMMAR+ transformation of
phenotypes of related individuals, followed by use of existing kernel machine-based regression software for unrelated
samples. We compared the performance of kernel-based association analysis on the material of the Genetic Analysis
Workshop 17 family sample and real human data by using our transformation, the original untransformed trait, and
environmental residuals. We demonstrated that only the GRAMMAR+ transformation produced type I errors close to the
nominal value and that this method had the highest empirical power. The new method can be applied to analysis of related
samples by using existing software for kernel-based association analysis developed for unrelated samples.
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Introduction

Genome-wide association studies (GWAS) identified a large

number of loci involved in the control of complex traits. However,

the results of these studies can explain only a small proportion of

trait heritability [1–4]. Several new approaches have been

proposed to find missing heritability. In particular, the analysis

of variants in a region was introduced as an alternative to testing

each variant [5], [6]. Simultaneous consideration of a set of single

nucleotide polymorphisms (SNPs) from a gene or metabolic

pathway addresses the problems of rare variants, computational

complexity, and multiple testing, and it simplifies results interpre-

tation and increases the power of the association analysis [7].

Usually, region-based tests use different methods of collapsing

rare variants within a region of interest. In this case, a set of rare

variants in the region is replaced by a single genetic variable which

can then be tested for association with the help of conventional

GWAS methods [5], [8–10]. The collapsing approach assumes

that a large proportion of rare variants is causal and that their

effects have the same direction. The power of association analysis

decreases if these assumptions do not hold [11].

A new kernel machine regression-based method was recently

proposed for conducting regional association analysis [12–16]. For

quantitative traits, this method compares the average similarity of

a set of SNPs from the analyzed region for each pair of individuals

with a pairwise phenotypic similarity. The pairwise genetic

similarity is measured by using the kernel function which reduces

information on multiple SNPs for a pair of individuals into a single

scalar factor. Compared with collapsing-based methods, kernel-

based methods are more robust to the opposite direction of causal

variant effects, a low proportion of causal variants, and the ‘‘lower

MAF, larger effect size’’ assumption [16–18]. Using family data

has long been argued to be of possible benefit in whole genome re-

sequencing studies. However, little attention has been paid to the

development of kernel-based methods for family data until now.

Recently, the method developed for samples of independent

individuals [14] was extended to accommodate related samples

[19]. The method is based on the variance component approach

which was previously proposed for individual SNP-based associ-

ation analysis [20] as well as for the kernel-based regression for

prediction [21] in family data. The distribution of the test statistic

under the null hypothesis in this case differs from that in the

unrelated samples [19], and existing software for kernel-based

regional association analysis could not be used for the related

samples. Another approach, which could introduce the data on

relatives into kernel-based regression, is a special transformation

reducing correlations between phenotypes and between genotypes,
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suggested by Abney et al. [22] for linear regression analysis of

association between individual SNPs and phenotypes. However, a

replacement of the real genotypes by the transformed ones disturbs

the kernel weight matrix. There is no method that can use the

transformed genotypes to build the kernel weight matrix, and

therefore, there is no software package implementing kernel-based

methods that can test association in samples of related individuals

correctly.

Here, we describe a new kernel-based association analysis

method for genetically related samples, which is based on a

transformation of trait values. This method analyzes related

samples by using existing software developed for unrelated

samples.

Materials and Methods

Model
Let inheritance of a quantitative trait y be described by the

linear regression mixed model

y~mzbggzuze,

where m is the trait’s mean; bg is the impact of marker genotype g
on quantitative trait; u is polygenic component and e is a random

environmental effects.

We assume that the quantitative trait follows multivariate

normal distribution with vector of means

E yð Þ~mzbgg,

and covariance matrix

V~s2
GRzs2

eI,

where s2
G and s2

e are variance components defined to account for

background polygenic and environmental effects, respectively; R is

a pairwise relationship matrix. Relationship coefficients are

defined by a pedigree structure of the sample, or are estimated

from the genomic data [23].

In the analysis of the genomic region including a set of M SNP

markers, the kernel-based score test statistic Q is defined as a

weighted sum of the individual score statistics T2
Score,m for testing

the effects of individual markers on the phenotype under linear

regression model [16]:

Q~
X

m

wmT2
Score,m,

where wm is a weight of mth individual marker.

Score statistic for testing individual SNP’s effect
The score statistic for testing association between trait and

genotypes of given marker m is defined as:

T2
Score,m~

b̂b2
m

Var b̂bm

� � ,

where b̂bm and Var b̂bm

� �
are an effect of marker genotype and its

variance in genetically related sample, respectively, estimated as

[20]

b̂bm,Score~
~ggT

mV{1~yy

~ggT
mV{1~ggm

ð1Þ

and

Var b̂bm,Score

� �
~

~yyT V{1~yy

N(~ggT
mV{1~ggm)

:

Here N is a size of the sample, ~ggm and ~yy are vectors of centered

genotype and phenotype values; genotypes with 0, 1 or 2 minor

alleles are coded as 0, 0.5 and 1, correspondently. Thus the score

test statistic for genetically related sample is:

T2
Score,m~

N ~ggT
mV{1~yy

� �2

~ggT
mV{1~ggm

� �
~yyT V{1~yy
� � : ð2Þ

GRAMMAR+ transformation
Here we introduce such transformation of phenotype values,

y+, which allows estimating SNP effect and score statistic using

simple linear regression:

b̂bm,Grz~
~ggT

my+

~ggT
m~ggm

ð3Þ

and

T2
Grz,m~

N ~ggT
my+

� �2

~ggT
m~ggm

� �
y+T y+ð Þ

and demonstrate that the estimates (3) approximate the values

defined by expressions (1) and (2).

To obtain y+ trait transformation, we rewrite expressions (1)

and (2) as

b̂bm,Score~
~ggT

mV{1
2

� �
V{1

2~yy
� �

~ggT
mV{1

2

� �
V{1

2~ggm

� �, ð4Þ

and

T2
Score,m~

N ~ggT
mV{1

2

� �
V{1

2~yy
� �h i2

~ggT
mV{1

2

� �
V{1

2~ggm

� �
~yyT V{1

2

� �
V{1

2~yy
� � ,

respectively.

The formulas (4) are expressed through two vectors V{1
2~yy and

V{1
2~ggm. Moreover, we present the vector V{1

2~ggm as

V{1
2~ggm~~ggmcm

1
2, ð5Þ

where a cm is scalar introduced as
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cm~
~ggT

mV{1~ggm

~ggT
m~ggm

: ð6Þ

Since V is positive-defined matrix, and cm is a positive value,

the equation (6) can be rewritten as

(c
1
2
m~ggm)T (c

1
2
m~ggm)~(V{1

2~ggm)T (V{1
2~ggm)

One can see that equation (5) is a solution of last equation.

Recently we demonstrated that when a trait of interest is

controlled by a large number (M) of the genetic loci of small effect,

the values of cm for different markers do not differ significantly one

from another and may be approximated by averaged value as

c~
1

M

XM
m~1

cm,

which depends on trait heritability h2, total variance s2, and the

relationship matrix R [24]:

c~
1

s2h2
1{ 1{h2
� � 1

N
tr Rh2zI 1{h2

� �� �{1
� �

:

Here we suggest to use the approximation c
1
2
m&c

1
2 which gives:

V{1
2~ggm&~ggmc

1
2:

Replacing the vector V{1
2~ggm with the vector ~ggmc

1
2 in expressions

(4) we obtain

b̂bm,Score&
~ggT

m V{1
2~yyc{1

2

� �
~ggT

m~ggm

, ð7Þ

and

T2
Score,m&

N ~ggT
m V{1

2~yyc{1
2

� �h i2

~ggT
m~ggm

� �
c{1

2~yyT V{1
2

� �
V{1

2~yyc{1
2

� � :

The vector V{1
2~yyc{1

2 from (7) does not include information

about the marker genotypes; it may be calculated once for every

analyzed trait. We denote this vector of transformed phenotype

values as GRAMMAR+ transformation, y+. Replacing

y+~V{1
2~yyc{1

2 in formulas (7) gives expressions (3):

b̂bm,Score&
~ggT

my+

~ggT
m~ggm

~b̂bm,Grz,

and

T2
Score,m&

N ~ggT
my+

� �2

~ggT
m~ggm

� �
y+Ty+ð Þ

~T2
Grz,m:

Thus the proposed phenotype transformation allows us to

perform the association analysis of genetically related samples

using simple linear regression applied in analysis of unrelated

samples. GRAMMAR+ transformed traits can be calculated in the

‘polygenic’ procedure in the GenABEL package v 1.7–2 or later

(see http://www.genabel.org/ for the GenABEL project web-site).

Simulated data
To test the new method on exome data, we used the Genetic

Analysis Workshop 17 (GAW17 [25]) family sample which consists

of 697 individuals in 8 families genotyped for 24,487 exome SNPs

in 2,850 gene regions. As 10,703 SNPs were monomorphic in the

dataset, only 1,702 gene regions that have more than one

polymorphic exome SNP were selected for further analysis. Three

quantitative traits (Q1, Q2, and Q4) available from the GAW17

family sample were tested, with Q1 and Q4 being adjusted for

modeled covariates prior to the analysis. GAW17 data set includes

200 repeats of simulated traits, which are not enough for

estimating the empirical power of different methods. Therefore,

we simulated an additional 1000 replicas of Q1 and Q2 by using

the GAW17 genotypes of causal loci and models of the trait

inheritance described in ref. 25.

Original untransformed traits, GRAMMAR+ trait transforma-

tions, and environmental residuals were analyzed by using SKAT

R-package [16]. The polygenic model, as implemented in the

polygenic function of the GenABEL package, was used to compute

the GRAMMAR+ trait transformations and the environmental

residuals. The number of polymorphic variants in the GAW17

family data set was not enough to estimate the genomic

relationship matrix. Therefore, we used a pedigree structure to

estimate within-family kinship. To reduce between-family rela-

tionship, we used ten first principal components (PCs) of a

pedigree kinship matrix as covariates. The linear weighted kernel

was applied with three sets of beta function parameters: (0.5, 0.5),

(1, 1), and (1, 25). Test statistics at chromosomes which did not

include causal variants were considered as realizations from the

null distribution. These empirical null distributions were pooled

for all simulations and used to estimate the type I errors and

empirical significance thresholds.

Real human data
We used real data from the Erasmus Rucphen Family (ERF)

study, which is embedded in a young genetically isolated Dutch

population [26]. The sample included data on 2,596 individuals

with a call rate $0.95 genotyped on 234,246 autosomal SNP

markers with a MAF $0.05 and a call rate $0.99. We analyzed

the following traits: height, body mass index (BMI), serum levels of

high-density lipoprotein cholesterol (HDL), low-density lipoprotein

cholesterol (LDL), total cholesterol (TC), and triglycerides (TG).

All traits were adjusted for age and sex.

SNP markers were analyzed as 23,384 regions obtained with a

sliding window of 20 markers shifting by 10 markers. The kernel-

based analysis and the trait transformations applied were the same

as for the GAW17 data. Genomic kinship was used to run

polygenic model and to construct the principal components. The

type I error was calculated as a proportion of P values not

exceeding a given threshold.

Region-Based Association Analysis of Relatives
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Results

GAW17 data
Type I errors for the analysis of the original traits, GRAM-

MAR+ trait transformation, and environmental residuals are

shown in Figure 1 and Table S1. In GAW17, the Q4 was

simulated by using the polygenic model but not specific SNP

information and is in that a realization of the null hypothesis.

Therefore, Q4 is most suitable for type I error estimation. Under

all variants of the weight function, type I errors for the original

(untransformed) Q4 were very high. In contrast, the environmen-

tal residuals demonstrated conservative type I errors. Only for

GRAMMAR+ transformed traits were type I errors for Q4 close

to the nominal level for all weight function variants. The same

conclusions can be made for Q1 and Q2. However, type I errors

for GRAMMAR+ transformations of Q1 and Q2 were slightly

higher than the nominal values, which may be explained by the

peculiarity of the analyzed sample. In GAW17, many false-

positively implicated genes contain variants with exactly the same

genotypic distribution as the causal variants used in the simulation

model [17]. Such a case is expected when the sample size is much

smaller than the number of the rare variants.

When phenotypes were analyzed without PCs as covariates, the

type I errors deviated further from the nominal level. The analysis

of original traits and GRAMMAR+ trait transformations became

more liberal and that of the environmental residuals became even

more conservative (Table S1).

The estimates of empirical power for Q1 and Q2 are shown in

Figure 2 and Tables S2 and S3. For all variants of weight function,

the empirical power for GRAMMAR+ transformed traits was

higher than for the original ones (paired two-sided Student’s t-test

P values,0.001 and 0.01 for Q1 and Q2, respectively).

We compared the empirical (keeping the empirical type I error

fixed at 0.05) and nominal (at a= 0.05, which translates to

different type I errors for different transformations) power for the

original data, GRAMMAR+ transformations, and environmental

residuals (Fig. 3). Nominal power for the original traits was higher

than the empirical one whereas that for the environmental

residuals was lower than the empirical one. Only for GRAM-

MAR+ transformed traits were the nominal and empirical powers

similar, although empirical power was slightly less than the

nominal. As with the slight liberality of the type I errors, this

difference between the nominal and empirical powers for

GRAMMAR+ transformed data is probably due to the high LD

between simulated causal variants and some number of null

genetic variants within the GAW17 sample.

In the framework of SKAT software the test’s P value is

estimated by using two approaches, one based on non-central chi-

square distribution and other based on bootstrap resampling. We

compared P values obtained by these two approaches by using the

first simulation of Q1 trait and demonstrated that they produce

very close estimates for all variants of the trait presentation (Figure

S1). The correlation and regression coefficients varied from 0.998

to 0.999 and from 0.996 to 0.997, respectively, for different

variants of the traits (transformation).

Real human data
Figure 4 and Table S4 show proportions of the P values#0.05

obtained for the original, PC adjusted, GRAMMAR+ transformed

traits and environmental residuals. The results are very close to

those obtained for GAW17 data. Regardless of the variant of the

weight function, the proportions of P values#0.05 for the original

traits were very high and those for the environmental residuals

were very small. When phenotypes were adjusted for PCs, the

proportion of P values#0.05 became smaller than for original

traits, but still significantly higher than the nominal level. Only for

GRAMMAR+ transformed traits the proportions of P val-

ues#0.05 were close to the nominal level for all weight function

variants. Slightly increased type I error for the GRAMMAR+
transformed height was apparently due to hundreds loci involved

in the genetic control of this trait [27].

Discussion

Our proposed transformation enables the regional association

analysis of the data including samples of relatives to be performed

by using methods and software developed for analyzing genetically

independent samples, e.g., kernel machine-based methods imple-

mented in SKAT. We demonstrated that type I errors obtained for

three simulated and six real quantitative traits under three variants

of weight function were very close to the nominal values when we

analyzed GRAMMAR+ transformed data by using SKAT.

Neither original traits nor environmental residuals demonstrated

such properties. The theoretical derivation of GRAMMAR+
method was made on the basis of the score test for individual SNP

association in samples of relatives; the GRAMMAR+ test can be

viewed as an approximation of a more exact GRAMMAR-

Gamma method [24]. In the GRAMMAR-Gamma method,

gamma factors are assumed to be similar for different markers and

Figure 1. Type I errors for three trait transformations of three GAW17 phenotypes. Different modes of weight function are marked as w1,
w2 and w3 corresponding to the parameters of beta function equal to (0.5, 0.5), (1, 1) and (1, 25). Error bars indicate the standard errors.
doi:10.1371/journal.pone.0065395.g001
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may be approximated by their mean. We demonstrated that for

the real human traits, this assumption is correct because of the

rather small variance of individual gamma factors [24]. Here, we

approximate the square root of individual gamma factors by the

square root of their mean. Variance for the square root of gamma

factors is greater than that for gamma factors because the factors

are greater than zero and less than one. Therefore, GRAMMAR-

Gamma approximation is the preferred association analysis

method for individual SNPs, and GRAMMAR+ transformation

expands the range of applicable tools to the case when biased (e.g.,

because of dependencies in the data) test statistics cannot be simply

restored by linear correction.

Regional kernel-based analysis is one of such tools. In this study,

we show that the distribution of its test statistic under the null

hypothesis does not correspond to the declared distribution when

original traits or environmental residuals are analyzed by using

methods developed for unrelated samples. Similar behavior was

previously found for individual SNP-based association analysis,

where ignoring the genetic structure of the sample increases the

Figure 2. Power for three trait transformations of two GAW17 phenotypes. See legend in Fig. 1 for coding of weight function modes. Error
bars indicate the standard errors.
doi:10.1371/journal.pone.0065395.g002

Figure 3. The nominal power plotted against the empirical power for three trait transformations. Each set of six points of the same
colour represents the power values for two GAW17 phenotypes (Q1 and Q2) under three different weight function modes. The diagonal line indicates
one-to-one correspondence.
doi:10.1371/journal.pone.0065395.g003
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type I error rate and analyzing independent environmental

residuals becomes more conservative [28].

In the framework of single SNP association analysis, the

problem of inequality of real and nominal distributions of test

statistics under the null hypothesis can be solved in different ways.

One of them is based on the genomic control approach. An

inflation/deflation factor, which is the ratio between expected

values of test statistics for genetically related and unrelated samples

under the null hypothesis, does not depend on the allele

frequencies under the additive model of trait inheritance [29]. In

this case, the inflation/deflation factor can be estimated empiri-

cally and easily used for correcting the bias in the test statistic.

Distribution of the test statistic for the kernel-based methods under

the null hypothesis is rather complex. The distribution is a

weighted mixture of chi-square distributions, which can be

approximated by non-central chi-square distribution with param-

eters depending on the analyzed trait, genotypes in the analyzed

region, and covariance matrix for related samples [19], [30].

Therefore, in-depth investigations should be conducted to find out

whether and how the genomic control method can be introduced

into kernel-based analysis of related samples.

Another approach to the problem of inequality of real and

nominal distributions of test statistics under the null hypothesis is

based on empirical threshold level estimation which can be

obtained with the help of resampling techniques. However, special

resampling methods which keep the structure of the data intact are

needed to guarantee correct empirical estimation of P values for

the kernel-based methods in case of family data.

The relative sample structure can also be corrected by using a

method based on the principal components approach (PCA). This

method was proposed to correct the population structure under

the kernel-based association analysis [31] because the principal

components may be easily introduced into the model as covariates.

PCA accurately corrects independent samples from stratified or

admixed populations [32], but not for samples with a complex

genetic structure [33], such as pedigrees or samples from

genetically isolated populations. The results of our investigation

support the following conclusion: type I errors remained far from

the nominal value when principal components were introduced

into a model of inheritance of original traits.

Therefore, none of the known approaches can correct the

distribution of the test statistic under the null hypothesis when

original traits or environmental residuals are analyzed by using

kernel-based methods developed for samples of unrelated individ-

uals. A special method for kernel-based association analysis of

related samples was recently proposed by Schifano et al. [19]. To

date, this method has not yet been implemented in software. The

computational complexity of this method is greater than that of

our method because additional multiplication of the covariance

matrix is needed to calculate the non-central parameter of chi-

square distribution in the case of a related sample. Moreover, non-

central parameters have to be estimated for each of thousands of

tested regions. Our method multiplies the covariance matrix only

once for a given analyzed trait during its preliminary transforma-

tion. At the present time, our method is the only method which

can be used in practice for kernel-based regional association

Figure 4. Type I errors for four trait transformations of six human phenotypes. BMI: body mass index; HDL, LDL: high- and low-density
lipoprotein cholesterol serum levels; TC: total cholesterol; TG: triglycerides. Different modes of weight function are marked as w1, w2 and w3
corresponding to the parameters of beta function equal to (0.5, 0.5), (1, 1) and (1, 25). Error bars indicate the standard errors.
doi:10.1371/journal.pone.0065395.g004
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analysis of samples with related individuals. GRAMMAR+
transformation may be helpful for other association analysis tasks

for related samples when software for analyzing related samples

does not exist. For example, more complex methods for region-

based association analysis, such as optimal tests for rare variants

[18] and nonlinear dimension reduction with the Wright—Fisher

kernel [34], may be applied to related samples with the help of our

method. Moreover, GRAMMAR+ transformation may be a

computationally efficient alternative to other methods, including

correction on a relative structure in kernel-based analysis via a

covariance matrix such as the method by Schifano et al. [19],

because our trait transformation allows the use of kernel-based

methods with smaller computational complexity.
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