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ABSTRACT
Background: The number of neutrophils is significantly reduced in myelodysplastic syndrome (MDS),
but the molecular basis remains unclear. We recently found that miR-34a was significantly increased
in MDS neutrophils. Therefore, this study aims to clarify the effects of aberrant miR-34a expression on
neutrophil counts.
Methods: miR-34a mimics/inhibitor transfection were performed in neutrophil-like differentiated
HL60 (dHL60) cells, and a FACSCalibur flow cytometer was used to measure ROS production and
apoptosis. In addition, the Cdc42-WASP-Arp2/3 pathway inhibitor (ML141) and activator (CN02)
treated the dHL60 cells, and then ROS production, apoptosis and related proteins expression were
detected. And, luciferase reporter assay to verify the relationship of miR-34a and the Cdc42-WASP-
Arp2/3 pathway.
Results: overexpression of miR-34a could induce ROS production and apoptosis, decrease the
expression levels of DOCK8, p-WASP, WASP, Arp2, Arp3, and increase F-actin’s expression. Meanwhile,
knockdown of miR-34a could decrease ROS production and apoptosis, increase the expression of
DOCK8, p-WASP, WASP, Arp2, Arp3, and decrease F-actin’s expression. Immunofluorescence staining
showed aberrant miR-34a and Cdc42-WASP-Arp2/3 pathway could induce F-actin membrane transfer.
Luciferase reporter assay indicated that DOCK8 was a direct target gene of miR-34a.
Conclusion: These data indicatesmiR-34amay induceneutrophil apoptosis by regulatingCdc42-WASP-
Arp2/3 pathway-mediated F-actin remodeling and ROS production.
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1. Introduction

Myelodysplastic syndrome (MDS) is a heterogeneous group of
clonal disorders characterized by a decrease in neutrophil
count, ineffective hematopoiesis, and high risk of conversion
to leukemia [1, 2]. Most notably, the quantitative reduction
and functional defects of neutrophils lead to reduced bacteri-
cidal and fungicidal activities, which may cause serious infec-
tions [3, 4]. Recently, clinical trials in MDS have proven that
the application of hemopoietic growth factors can increase
the neutrophil count and function [5]. However, the molecular
basis of neutrophil quantitative reductionhas yet tobe clarified.

MicroRNAs (miRNAs) are negative regulators of the
expression of genes involved in hematopoiesis. The roles of
miRNAs in the pathogenesis of MDS and the transformation
into acute myelocytic leukemia (AML) has been verified in
many reports [6, 7], including miR-21, miR-194-5p and miR-
29b [8–10]. miR-34a can inhibit proliferation by inducing apop-
tosis, meanwhile suppress the malignant cell lines’ migration
and invasion [11]. Some damaged progenitors will die because

of the proapoptotic feature ofmiR-34a, while somewill differen-
tiated into neutrophils [12]. In early MDS, the expression of miR-
34a is abnormal and the upregulation of proapoptotic miR-34a
contributes to the increased apoptosis of hematopoietic stem
cells [13, 14]. Previous research by our team verified that miR-
34awasmarkedly increased inMDS neutrophils, and ectopically
introduced miR-34a significantly attenuated migration but
enhanced degranulation [15]. In another report, we identified
overexpression of c-Fos-targeting miR-34a as the cause of
MDS-derived neutrophilic granulocyte impairment and
showed that c-Fos reduction contributes to TNF-α overproduc-
tion via overexpression of miR-34a under inflammatory stimuli
in MDS [16]. Therefore, miR-34a-induced apoptosis may be
related to the reduction in neutrophil counts in MDS patients.
However, the roles ofmiR-34a in the neutrophil count reduction
in MDS are rarely studied, and the mechanism is still unclear.

In normal signaling, upstream cues load Cdc42 with the
GTP nucleotide, which induces the protein to bind Wiskott
Aldrich syndrome protein (WASP) with high affinity, and
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then the Cdc42(GTP)-WASP complex activates the actin
nucleation factor Arp2/3 complex, thereby causing assembly
of new actin filaments in vitro and in vivo [17, 18]. Researchers
found that F-actin is closely related to cell apoptosis and the
abnormal remodeling of F-actin can induce the accumulation
of reactive oxygen species (ROS) in yeast cells, thereby indu-
cing cell apoptosis [19]. In neutrophils of MDS patients, it
have been verified that the remodeling of F-actin and the
production of ROS are related [20].

Based on our previous study and other researchers’ reports,
we hypothesized thatmiR-34amight regulate apoptosis via the
Cdc42-WASP-Arp2/3 pathway and F-actin remodeling. The HL-
60 cell line, derived from a patient with acute promyelocytic
leukemia, consists predominantly (>90%) of promyelocytes,
which ectopically overexpressed miR-34a and MDS granulo-
cytes [15, 16, 21]. In this study, we introduced miR-34a
mimics and its inhibitor, and performed Cdc42-WASP-Arp2/3
pathway inhibitor (ML141) and activator (CN02) treatments in
neutrophil-like differentiated HL60 (dHL60) cells (which is a
cell line used to study MDS) to ultimately clarify the molecular
basis of aberrant miR-34a expression on neutrophil counts.

2. Materials and method

2.1. Cells and reagents

The human leukemic cell line HL60 was purchased from the
Chinese Academy of Sciences Cell Bank (http://www.
cellbank.org.cn/index.asp) and cultured at 37°C in RPMI
1640 supplemented with 10% heat-inactivated fetal bovine
serum in a 5% CO2 atmosphere. Neutrophil-like dHL60 cells
were induced to differentiate by culturing for 48 h in
medium supplemented with 500 mM dibutyryl cAMP
(dbcAMP) (Sigma-Aldrich, U.S.A.). The primary antibodies
were obtained from Abcam (U.S.A.).

2.2. Cell transfection

miR-34a mimics/inhibitor and their negative sequences(NC)
were prepared by Shanghai GenePharma Co., Ltd. (Table 1).
2 × 106 cells/well were transfected with the above sequences
using Lipofectamine 2000 (Invitrogen, U.S.A.). Finally, qRT-
PCR was employed to evaluate the efficiency of transfection.

2.3. Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from cells and then was synthesized
the cDNA. qRT-PCR was performed using a 7500 real-time PCR
system (Applied Biosystems). The qRT-PCR cycling program
setting was: pre-denaturation at 95°C for 5 min, followed by
39 cycles at 95°C for 10 s and 60°C for 34 s. The primers of
the qRT-PCR are listed in Table 1. The mRNA levels were

normalized to GAPDH/U6 expression levels and calculated
using the 2-ΔΔCq formula.

2.4. ROS measurement

The levels of ROS was measured by chloromethyl-2’,7’ dichlor-
odihydrofluorescein diacetate (CM-H2DCFDA) staining.
Briefly, 2×105 cells were collected, centrifuged, suspended
and then stained with 10 µM CM-H2DCFDA for 50 min.
After washing two times, FACSCalibur flow cytometer (BD,
Accuri C6, U.S.A.) measured the fluorescence at 538 nm. The
percentage of DCF-positive cells and their mean fluorescence
intensity (MFI) were statistically analyzed.

2.5. SOD, CAT and GSH-Px measurement

Superoxide dismutase (SOD), catalase (CAT) and glutathione per-
oxidase (GSH-PX)measurementwereperformedusingbiochemi-
cal detection kits. Cell sample preparation and detection steps
were operated according to the manufacturer’s instructions.
Repeat three times per test for each group. The kits came from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China).

2.6. Apoptosis assay

After successful transfection for 48 h, we collected the trans-
fected cells and determined their apoptosis using an apopto-
sis detection kit (BD, #556547, U.S.A.). Briefly, the cells were
washed two times with PBS and then resuspended in
Annexin V binding buffer at a density of 1×105 cells/mL.
Cells were simultaneously stained with fluorescein isothiocya-
nate (FITC)-labeled Annexin V and propidium iodide (PI) for
15 min in the dark. Then, a FACSCalibur flow cytometer (BD,
Accuri C6, U.S.A.) was employed to detect and analyze the per-
centage of Annexin V+ and PI+ cells. The sum of Annexin V+
percentage and PI+ percentage is the apoptosis rate.

2.7. Cdc42 activator and inhibitor treatment

Cdc42 activator (Cytoskeleton, #CN02, U.S.A.) is useful for
efficient activation of Cdc42. The Cdc42 inhibitor ML141
(Sigma, #217708, U.S.A.) is a highly potent and selective
inhibitor of Cdc42. More than 2×106 cells were cultured
with 0.1 units/mL CN02 for 5 min. Then, the cells were
exchanged into CN02-free medium and cultured with
0.3 mM H2O2 for 4 h. Alternatively, more than 2×106 cells
were cultured with 2.5 µM ML141 for 48 h. Then, exchanged
the cells into ML141-free medium and cultured with 0.3 mM
H2O2 for 4 h. Finally, measured the expression levels of apop-
tosis, ROS levels and related proteins.

Table 1. Primer sequences in qRT-PCR and cell transfection.

Names Sequence (5 ‘-3’)

miR-34a reverse transcription primer GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACACAACCAG
Universal reverse primer CAGTGCGTGTCGTGGAGT
miR-34a CGGTGGCAGTGTCTTAGCT
U6-F CTCGCTTCGGCAGCACA
U6-R AACGCTTCACGAATTTGCGT
miR-34a mimics UGGCAGUGUCUUAGCUGGUUGU
miR-34a inhibitor ACAACCAGCUAAGACACUGCCA
NC GGGAGUGAAGACACGGAGCCAGA

Note: F means forward primer, R means reverse primer.
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2.8. Western blotting

After lysis and quantification of total protein concentration,
50 μg total protein was added to the wells of sodium
dodecyl sulfate-polyacrylamide gel electrophoresis gels, and
incubated with the primary antibodies at 37°C for 2 h. The
primary antibodies were the anti-DOCK8 (1:10000,
ab175208), anti-WASP (1:500, ab180816), anti-p-WASP
(1:500, ab59278), anti-Arp2 (1:500, ab128934), anti-Arp3
(1:500, ab151729), and anti-F-actin (1:500, ab205) antibodies.
Finally, a ChemiDoc image analysis system (Bio-Rad Labora-
tories, Inc.) was used to analyze and quantify the relative
protein levels. And the levels of GAPDH protein were used
for normalization.

2.9. Immunofluorescence analysis

After fixing and permeating with 4% paraformaldehyde 0.5%
Triton X-100 respectively, 1×106 cells samples were incubated
with anti-F-actin primary antibodies (1:100, ab205) for 2 h.
Then, incubated the cells with Alexa Fluor 488-conjugated
IgG (ZSGB-BIO, ZF-0512, China) at 37°C for 1 h. DAPI (10 μg/

ml) was used for cellular nuclei staining, and then took
photos at 400× magnification. Image-Pro Plus 6.0 software
(Media Cybernetics, U.S.A.) to calculate the mean optical
density (MOD) of F-actin and the ratio of membrane and cyto-
solic F-actin expression.

2.10. Luciferase reporter assay

The binding sites between miR-34a and dedicator of cytokin-
esis 8 (DOCK8) (https://cm.jefferson.edu/rna22/Interactive/
RNA22 Controller) were predicted using software RNA
Central and RNA22 v2. The full-length 3’UTR of human
DOCK8 mRNA was cloned into the pGL3 promoter vector to
construct the luciferase reporter plasmid. The DOCK8 3’UTR
was mutated by site-directed mutagenesis. For the transfec-
tion, 2×106 cells were transfected using Lipofectamine 2000
(Invitrogen) with 150 nM miR-34a mimics or inhibitor. After
24 h, cells were co-transfected with 100 ng luciferase reporter
plasmid. Prepared cell extracts after 48 h later, and then
detected the fluorescence intensity and calculated the rela-
tive luciferase activity.

Figure 1. Effects of miR-34a on ROS production, apoptosis and related protein expression. Cells were preformed the miR-34a mimics/inhibitor transfection. (A)
qRT-PCR to detect the expression levels of miR-34a. (B and C) FACSCalibur flow cytometer images and statistical analysis of apoptosis rate. (D) Statistical analysis of
the percentage of DCF-positive cells and their MFI. (E and F) Western blot analysis of the expression levels of DOCK8, p-WASP, WASP, Arp2 and Arp3. Compared
with the NC group, *P < 0.05, **P < 0.01, ***P < 0.001.
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2.11. Statistical methods

Data are listed as the mean ± standard deviation (SD).
Figures were graphed using GraphPad Prism 5 (GraphPad
Software, U.S.A.). Statistically significant differences
between groups were determined by one-way analysis of
variance (ANOVA) with the Bonferroni post hoc test. P <
0.05 were considered statistically significant.

3. Results

3.1. miR-34a regulates ROS production, apoptosis
and Cdc42-WASP-Arp2/3 pathway in neutrophil-like
dHL60 cells

After miR-34a mimics/inhibitor transfection, qRT-PCR
detected the expression levels of miR-34a and found that
miR-34a mimics transfection could significantly increase
miR-34a levels and miR-34a inhibitor transfection could sig-
nificantly decrease miR-34a levels compared with those in
the negative transfection cells (NC group) (Figure 1A).
After efficient transfection, a FACSCalibur flow cytometer
was used to measure ROS levels and apoptosis rate. As
shown in Figure 1(B and C), compared with the NC
group, the overexpression of miR-34a could increase the
percentage of apoptosis cells, while knockdown of miR-

34a could reduce the percentage of apoptosis cells. As
shown in Figure 1(D), compared with the NC group, the
overexpression of miR-34a could increase the percentage
of DCF-positive cells and their MFI, but knockdown of
miR-34a could reduce the percentage of DCF-positive cells
and their MFI. Additionally, Western blotting found that
overexpression of miR-34a decreased DOCK8, p-WASP,
WASP, Arp2, Arp3 expression, and knockdown of miR-34a
increased DOCK8, p-WASP, WASP, Arp2, Arp3 expression
compared with that in the NC group (Figure 1E and F). Fur-
thermore, the overexpression of miR-34a could decrease
the levels of SOD, CAT and GSH-PX, and knockdown of
miR-34a could increase their levels (shown at Table 2).
These data indicate that miR-34a regulates ROS production,
apoptosis and Cdc42-WASP-Arp2/3 pathway in neutrophil-
like dHL60 cells.

3.2. Cdc42-WASP-Arp2/3 pathway regulates ROS
production and apoptosis in neutrophil-like
dHL60 cells

After Cdc42-WASP-Arp2/3 pathway inhibitor (ML141) and
activator (CN02) treatment, Western blot showed that
ML141 treatment could decrease DOCK8, p-WASP, WASP,
Arp2, Arp3 expression, and CN02 treatment could increase
DOCK8, p-WASP, WASP, Arp2, Arp3 expression compared
with those in the untreated cells (Figure 2A and B). In
addition, Cdc42 activator treatment (ML141 + group) could
increase the percentage of DCF-positive cells and their MFI,
while Cdc42 inhibitor treatment (CN02 + group) could
reduce the percentage of DCF-positive cells and their MFI
(Figure 2C). Apoptosis assay showed that ML141 treatment
could increase the apoptosis, and CN02 treatment could

Table 2. Levels of SOD, CAT and GSH-PX after miR-34a mimics/inhibitor
transfection.

NC miR-34a mimics miR-34a inhibitor

SOD (IU/ml) 51.50 ± 1.28 25.53 ± 0.93*** 75.93 ± 0.83***
CAT (IU/mgprot) 11.00 ± 0.53 5.10 ± 0.53*** 15.20 ± 0.80***
GSH-PX (IU) 78.23 ± 1.35 63.50 ± 0.95*** 90.10 ± 1.35***

Compared with the NC group, ***P < 0.001.

Figure 2. Effects of the Cdc42-WASP-Arp2/3 pathway on ROS production and apoptosis. Cells were treated with Cdc42-WASP-Arp2/3 pathway inhibitor (ML141)
and activator (CN02) treatment. (A and B) Western blot to detect the expression levels of DOCK8, p-WASP, WASP, Arp2, Arp3 and F-actin. (C) Statistical analysis of
the percentage of DCF-positive cells and their MFI. (D and E) FACSCalibur flow cytometer images and statistical analysis of apoptosis rate. (F) Levels of SOD, CAT
and GSH-PX in each group. Compared with the ML141-untreated (ML141-) group, *P < 0.05, **P < 0.01, ***P < 0.001. Compared with the CN02-untreated (CN02-)
group, #P < 0.05, ##P < 0.01, ###P < 0.001.
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reduce the apoptosis (Figure 2D and E). Furthermore, ML141
treatment could decrease the levels of SOD, CAT and GSH-PX,
and CN02 treatment could increase their levels (Figure 2F).
These data indicated that the Cdc42-WASP-Arp2/3 pathway
regulates ROS production and apoptosis in neutrophil-like
dHL60 cells.

3.3. miR-34a regulates F-actin expression/remodeling
in neutrophil-like dHL60 cells

Using immunofluorescence staining (Figure 3A), we
found that miR-34a mimics transfection induced an increase
in F-actin expression and miR-34a inhibitor transfection
induced a decrease in F-actin expression compared with NC
group (Figure 3B). Importantly, while miR-34a mimics’ trans-
fection increased the expression of F-actin protein, it also

promoted F-actin transfer to the periphery of the cell. Com-
pared with NC group, miR-34a inhibitor transfection inhibited
F-actin transfer to the periphery of the cells (Figure 3C). These
data indicated that miR-34a could regulate F-actin expression
and remodeling.

3.4. Cdc42-WASP-Arp2/3 pathway regulates F-
actin expression/remodeling in neutrophil-like
dHL60 cells

Meanwhile, immunofluorescence staining found that ML141
treatment induced an increase in F-actin expression, and
CN02 treatment induced a decrease in F-actin expression
compared with ML141- and CN02- group, respectively
(P < 0.05, Figure 4B). Additionally, ML141 treatment

Figure 3. Effects of miR-34a on F-actin expression/remodeling. (A) Immunofluorescence staining to determine the expression and distribution of F-actin (Magnifi-
cation: 400×). (B) MOD of F-actin protein expression. (C) Ratio of membrane and cytosolic F-actin expression. Compared with the NC group, *P < 0.05, ***P < 0.001.
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promoted F-actin transfer to the periphery of the cell, and
CN02 treatment inhibited F-actin transfer to the periphery
of the cells (Figure 4C). These data indicated that Cdc42-
WASP-Arp2/3 pathway could regulate F-actin expression
and remodeling.

3.5. miR-34a induces apoptosis by regulating Cdc42-
WASP-Arp2/3 pathway-mediated F-actin remodeling
in neutrophil-like dHL60 cells

To verify the relationship of miR-34a and the Cdc42-WASP-
Arp2/3 pathway, we characterized the binding site of

Figure 4. Effects of Cdc42-WASP-Arp2/3 pathway on F-actin expression/remodeling. Cells were treated with ML141 and CN02 respectively. (A) Immunofluores-
cence staining to determine the expression and distribution of F-actin (Magnification: 400×). (B) MOD of F-actin protein. (C) Ratio of membrane and cytosolic F-
actin expression. Compared with ML141- group, ***P < 0.001. Compared with the CN02- group, #P < 0.05.
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miR-34a in the 3’UTR of DOCK8 mRNA (Figure 5A). Luciferase
reporter assays (Figure 5B) indicated that miR-34a overex-
pression (miR-34a mimics’ transfection) decreased DOCK8
transcriptional activity (decreased relative luciferase activity)

and miR-34a knockdown (miR-34a inhibitor transfection)
increased DOCK8 transcriptional activity (increased relative
luciferase activity). Furthermore, compared with the control
group, the mutant reporter co-transfected with mutant
DOCK8 did not show a significant increase/decrease in the
relative luciferase activity. These data suggest that DOCK8 is
a direct target gene of miR-34a. Taken together, miR-34a
regulates apoptosis through regulation of F-actin remodeling
via the Cdc42-WASP-Arp2/3 pathway.

4. Discussion

In early MDS, the miR-34a expression is abnormal and its
upregulation increased the hematopoietic stem cell apopto-
sis and neutrophil migration [13–16]. The introduction of
miR-34a decreased the active form of Cdc42 and DOCK8.
DOCK8 is involved in the migration of miR-34a-mediated
neutrophil [15]. A decrease in DOCK8, p-WASP, WASP,
Arp2 and Arp3 levels by the miR-34a overexpression trans-
fection and an increase in DOCK8, p-WASP, WASP, Arp2
and Arp3 levels by the miR-34a knockdown transfection
indicated that miR-34a might target the Cdc42-WASP-
Arp2/3 pathway. Our luciferase reporter assay verified that
miR-34a targeted DOCK8, and thus targeted and regulated
the Cdc42-WASP-Arp2/3 pathway in neutrophils. Is the
Cdc42-WASP-Arp2/3 pathway involved in miR-34a-regulated
apoptosis of neutrophils? Inactivation (or inhibition) of the

Figure 6. Schematic diagram of miR-34a regulating neutrophil apoptosis in MDS.

Figure 5. DOCK8 is a direct target gene of miR-34a. (A) The predicted binding
sites between miR-34a and DOCK8. (B) The relative luciferase activity in each
group. Compared with the control group, ***P < 0.001.
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Cdc42-WASP-Arp2/3 pathway could induce ROS production
and apoptosis, and activation of the Cdc42-WASP-Arp2/3
pathway could reduce ROS production and apoptosis.
Therefore, we demonstrated that miR-34a induces neutro-
phil apoptosis via the Cdc42-WASP-Arp2/3 pathway.

Neutrophil effector functions are dependent on the organ-
ization of the actin cytoskeleton [22]. There are 2 forms of
actin, a filamentous form (F-actin) and a monomeric form (G-
actin), and rapid conversion of G-actin to F-actin occurs
under the stimulation of neutrophils with chemotactic factors
[20]. The dynamics of the actin cytoskeleton lead to a loss of
mitochondrial membrane potential, resulting in ROS pro-
duction and apoptosis in budding yeast, and the release of
ROS by mitochondria instigates the pathways of programmed
cell death in eukaryotic cells [23]. In vitro experiment, the actin
disruption agent latrunculin B (LB) induced apoptosis by upre-
gulating COX-2 and NF-kB activation and producing ROS [24].
Rho family have been implicated as important signaling inter-
mediates that link cell surface signals to the actin cytoskeleton,
and theactin cytoskeleton links theRho familyGTPaseCdc42 to
the actin-nucleating Arp2/3 complex through N-WASP [25].
Immunofluorescence staining found that aberrant miR-34a
expression and activation/inhibition of the Cdc42-WASP-
Arp2/3 pathway regulate F-actin expression and distribution,
indicating that F-actin remodeling is regulated by miR-34a
andCdc42-WASP-Arp2/3 pathway. Correspondingly, the apop-
tosis increased with the remodeling of the F-actin protein.

Under both physiologic and pathologic conditions, ROS
and mitochondria plays a pivotal role in apoptosis induction
[26]. Excess ROS can cause serious damage to many biologi-
cal macromolecules, whose oxidation leads to their biologi-
cal properties damage and eventually to cell death [27].
Researchers also have found that ROS are mostly generated
by the impairment of the mitochondrial respiratory chain,
ROS generation is accompanied by cytochrome c release,
caspase-8 activation, etc, which would trigger apoptosis
[28]. In human lymphocytes, hypoxia/reoxygenation (H/R)
induced apoptosis through ROS production and mitochon-
drial membrane potential collapse [29]. Pretreatment with
1 mM N-acetylcysteine (NAC), a well-known ROS scavenger,
can attenuate apoptosis induced by the pathologic con-
ditions [30]. In this study, the high levels of ROS caused
by miR-34a mimics transfection was accompanied by a
high apoptosis rate, meanwhile the low levels of ROS
caused by miR-34a inhibitor transfection was accompanied
by a low apoptosis rate. And, Changes in ROS levels due
to Cdc42-WASP-Arp2/3 pathway activation/inactivation
were also proportional to the apoptosis rate. These data
indicate that miR-34a and its regulated Cdc42-WASP-Arp2/
3 pathway are involved in ROS-mediated apoptosis. Based
on the promoting effect of high levels of ROS on apoptosis,
the use of ROS scavengers may provide research ideas for
the reduction of neutrophil counts caused by abnormally
high expression of miR-34a.

5. Conclusions

In this study, we identified the apoptosis mechanisms of neu-
trophils by aberrantly increasing/decreasing miR-34a and
demonstrated that miR-34a induces neutrophil-like dHL60
cell apoptosis, which may be related to Cdc42-WASP-Arp2/3
pathway-mediated F-actin remodeling and ROS production
(Figure 6). These findings provide new insights into the

pathophysiology behind the quantitative reduction in MDS
neutrophils. In the future study, we will try to use different
cells (not only HL60) or study different miRNAs and their
pathways to reveal the more mechanism of neutrophils apop-
tosis in MDS.
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