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Background Classification and annotation of enzyme proteins are fundamental for
enzyme research on biological metabolism. Enzyme Commission (EC) numbers
provide a standard for hierarchical enzyme class prediction, on which several
computational methods have been proposed. However, most of these methods are
dependent on prior distribution information and none explicitly quantifies amino-acid-level
relations and possible contribution of sub-sequences.

Methods In this study, we propose a double-scale attention enzyme class prediction
model named DAttProt with high reusability and interpretability. DAttProt encodes
sequence by self-supervised Transformer encoders in pre-training and gathers local
features by multi-scale convolutions in fine-tuning. Specially, a probabilistic double-
scale attention weight matrix is designed to aggregate multi-scale features and
positional prediction scores. Finally, a full connection linear classifier conducts a final
inference through the aggregated features and prediction scores.

Results On DEEPre and ECPred datasets, DAttProt performs as competitive with the
comparedmethods on level 0 and outperforms them on deeper task levels, reaching 0.788
accuracy on level 2 of DEEPre and 0.967 macro-F1 on level 1 of ECPred. Moreover,
through case study, we demonstrate that the double-scale attention matrix learns to
discover and focus on the positions and scales of bio-functional sub-sequences in the
protein.

ConclusionOur DAttProt provides an effective and interpretable method for enzyme class
prediction. It can predict enzyme protein classes accurately and furthermore discover
enzymatic functional sub-sequences such as protein motifs from both positional and
spatial scales.
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1 INTRODUCTION

Enzyme proteins are a type of functional protein that is necessary
for biological metabolism in vivo. They accelerate (termed
catalyze) chemical reactions in the cell, supplying reaction
products and energy during metabolizing Berg et al. (2002).

In general, each enzyme specializes in one single reaction,
making a unique attribution for this protein. According to this
selectivity of enzymes and the type of catalyzed reactions, the
International Union of Biochemistry and Molecular Biology
Cornish-Bowden (2014) assigns standard enzyme commission
(EC) numbers for enzyme proteins as a curator-friendly and
machine-readable paradigm Dalkiran et al. (2018). An
enzyme’s EC number consists of 4 levels of integer digits
concatenated by periods. The first level (level 1) refers to
one of the 6 main enzymatic classes (e.g., 1 for
oxidoreductases and 6 for ligases) and levels 2 and 3
represent subclass and sub-subclass. The last level (level 4)
stands for the substrate of the enzyme.

Enzyme protein class prediction is a hierarchical classification
task. The task classifies enzyme and non-enzyme protein
sequences at level 0 and further predicts the EC number of
each enzyme protein by layer. In essence, enzyme class
prediction infers the catalyst function of proteins. Classical
methods apply one or more plain classifiers (e.g., KNN
variants, Pepstats, and SPMap) to protein sequences (one-hot
encoding) and biological prior features (e.g., position-specific
scoring matrix PSSM and Functional domain FunD
composition) for enzyme class prediction (Shen and Chou,
2007; Dalkiran et al., 2018). However, these methods require
manually crafted and length-dependent features and extra
evolutionary information from prior features.

Recently, deep learning predictors have been successfully
applied to encode protein (Deng et al., 2015; Wang et al.,
2015; Long et al., 2018) and classify enzymes Li et al., 2018;
Gao et al., 2019; Strodthoff et al., 2020). Li et al. (2018) proposed
an end-to-end classification model, DEEPre, which introduces
CNN layers to select and strengthen raw features constructed
from the input sequence directly. Inspired by the success of self-
supervised approaches in natural language processing, Strodthoff
et al. (2020) proposed a pre-trained AWD-LSTM (Merity et al.,
2017) based deep language model to predict enzyme class.
Compared to classical predictors, this model can make
relatively accurate predictions only by raw sequences.
Although the deep learning methods above construct high-
level protein features well, they do not explicitly compute
position-wise amino acid relationships and protein motif
significance. There are two techniques that can overcome the
problems above.

The first technique is the self-attention mechanism. This
technique can explicitly catch the correlation between amino
acids in protein sequences and has been applied to powerful
sequential models in the recent decade. Self-attention directly
quantifies the attention weight between each positional pair of
feature vectors by their dot product (Gehring et al., 2017).
Recently, Vaswani et al. (2017) proposed the Transformer, an
epoch-making architecture that extends self-attention to a multi-

head attentionmodule. Then BERT (Devlin et al., 2018) brings up
a pre-training language model using stacked bidirectional
Transformer encoders. Both Transformer and BERT prove
that self-attention is capable of capturing long-term
dependencies in sequence without temporal delay.

Several works have shown the potential of self-attention–based
models, especially Transformers, for modeling biological
sequences (e.g., DNA and protein) and predicting molecular
functions. Ji et al. (2021) pre-trained a BERT on k-mer DNA
fragments and fine-tuned the model on a small sample of DNA
sequences. The fine-tuned model predicts multiple functional
DNA sites with high precision. Clauwaert et al. (2021) trained a
Transformer-based network to locally annotate genomic
sequences. They discovered that the attention heads of the
Transformer successfully encoded the binding sites of
transcription factors. Vig et al. (2020) experimented on pre-
trained BERTs with multiple protein sequence datasets. They
showed that BERTs can discover the folding structure and target
binding sites of proteins. Rives et al. (2021) deployed a large
number of raw protein sequences to train a self-supervised
Transformer. They proved that the representation space of
their model covers latent knowledge scaled from amino acid
to protein homologs. The works above indicate from different
perspectives that self-attention–based models are qualified for
protein embedding and downstream enzyme class
prediction tasks.

The second technique is the multi-scale convolution.
Abundant functional and structural information of biological
sequences are implicitly encoded in some variable-length
patterns, termed motifs Debret et al. (2009). 1-D convolution
is widely used to extract fixed-length pattern features of biological
sequential data due to its fixed kernel size and shift-invariant
property. Therefore, multi-scale convolutions (i.e., a group of
convolutions with different kernel sizes) can capture patterns of
multiple lengths including protein motifs.

In practice, some methods have been proposed to extract
hierarchical local protein features with the multi-scale
convolutions. Li and Yu (2016) extracted local representations
from pre-processed protein features on different scales using
convolutions of three kernel sizes. The local representations
were concatenated and fed into the recurrent neural network
to predict protein secondary structure. Elbasir et al. (2019)
applied a multi-layer multi-scale CNN to simulate k-mer
methods in biological sequence analysis. The CNN-encoded
features emphasize amino acids whose contribution to protein
crystallization is experimentally verified. Zeng et al. (2020)
introduced textCNN Chen (2015) to the feature extraction
process of protein–protein interaction site prediction. The
textCNN designs a multi-scale convolution layer to capture
features of multi-length sub-sequences. Jin et al. (2021)
aggregated k-mer amino acids by multi-scale convolution and
merged all scale-wise features by self-attention. Their
experiments demonstrated that multi-scale convolution
enriches the embedded features for protein crystallization
prediction. The applications above show that multi-scale
convolutions have some similarity to biological methods in
extracting local sub-sequential information.
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In this study, we construct a sequence classification model
based on a double-scale attention mechanism, called DAttProt,
for enzyme class prediction. DAttProt is the first model applying
Transformer encoders and BERT-styled Masked LM Devlin et al.
(2018) pre-training progress to the enzyme class prediction task.
Our main contributions are as follows:

1. Self-supervised pre-training for sequence
representation: We pre-train Transformer encoders by
protein sequences from the Swiss-Prot Bairoch and
Apweiler (2000) database. The pre-training procedure is
self-supervised and aimed at finding inner correlations and
representations of amino acids.

2. A feature agreement algorithm for multi-scale features: We
deploy multi-scale convolutions to extract features from multiple
semantic levels of adjacent amino acids. A feature agreement
algorithm based on vector dot-product is designed to allocate
attention weights to multi-scale feature aggregation and
positional enzyme class scores summary.

3. Interpretable double-scale matrix: Additionally, the feature
agreement algorithm provides a probabilistic and interpretable
weight matrix on both positional and special scales. This double-
scale attention matrix focuses on the position and length of key
motifs of protein enzyme catalysis.

We compare our DAttProt (with two depths: 3-layer and 6-
layer) with “DEEPre” (to distinguish the DEEPre method from
the DEEPre dataset, we use “DEEPre” to represent the DEEPre
method, similarly hereinafter), “ECPred” (to distinguish the
ECPred method from the ECPred dataset, we use “ECPred” to
represent the ECPred method, similarly hereinafter), and
UDSMProt methods on the DEEPre and ECPred datasets,
with, respectively, 3 and 2 levels of prediction tasks. The
results indicate that our DAttProt performs generally
competitively with the compared methods and significantly
outperforms them in the last task level.

Additionally, we make case studies and analyses on the
interpretability of our DAttProt method through 351 protein
samples and visualize several detailed examples. The case studies
prove that the double-scale attention matrix of DAttProt can
discover functional sites and regions of the protein sequences
indicating their enzymatic functions. All data of this work
excluding large model and open-access database files are
available at our Github repository.

2 MATERIALS AND METHODS

2.1 Datasets and Tasks
All datasets (accessed on 6 January 2021) presented in this study
are openly available. Specifically, the datasets and their
corresponding tasks applied in this study are illustrated as
follows.

The DEEPre database contains 22,166 low-homology enzymes
and 22,142 non-enzyme protein sequences that are non-
redundant. Enzyme sequences are assigned to 6 main classes
and further divided into 58 sub-classes. To avoid data lacking and
imbalance problems within all sub-classes, the hierarchical
classification is decomposed into 3 independent tasks using a

level-to-level strategy. The DEEPre database is available at its
website.

The ECPred database consists of 247,527 enzymes and
42,382 non-enzyme (including 55,180 enzymes and
25,333 non-enzymes of UniRef50 Suzek et al. (2015) clusters)
protein sequences. The prediction procedure is layered into 5
levels. Levels 0 and 1 are enzyme main classes and non-enzyme
prediction. Levels 2, 3, and 4 are detailed sub-class prediction,
where enzyme proteins of the UniRef50 clusters are rearranged
into training and validation sets for binary classification. Our
enzyme class prediction on ECPred covers level 0 (an enzyme and
non-enzyme discriminator) and level 1 (6 main-class enzyme
selectors). The ECPred database is available at its Github
repository.

Both DEEPre and ECPred pick out protein sequences from
Swiss-Prot Bairoch and Apweiler (2000), a reviewed protein
dataset from the UniProtKB Apweiler et al. (2004) database.
The Swiss-Prot database includes 553,941 proteins. Protein
samples recorded in Swiss-Prot are non-redundant and
manually annotated with high-quality experimental results,
computed features, and scientific conclusions. The Swiss-Prot
database is available at its website.

In order to enrich the prior proteinic knowledge, our DAttProt
model is pre-trained on the full Swiss-Prot protein database. We
randomly split raw Swiss-Prot sequences by ratios of 90:5:5 into
training, validation, and testing set, referring to UDSMProt
Strodthoff et al. (2020). We, respectively, fine-tune our
DAttProt model on DEEPre Li et al. (2018) and ECPred
Dalkiran et al. (2018) datasets independently on each task level.

We select 351 protein sequences from DEEPre and ECPred
datasets for case study. All of these samples are annotated in the
Swiss-Prot database and their accession numbers are recorded in
the Supplementary Table S2.

2.2 DAttProt Method
As displayed in Figure 1, our double-scale attention model
DAttProt is composed of four modules: sequence encoding,
multi-scale convolutions, the position-wise feature agreement
algorithm, and linear classification.

The core mechanism of our DAttProt method is mixing spatial
and positional scale attention. Our DAttProt is based on the
thought that a protein sequence classification task allocates
primary interest to specialized patterns. These patterns may
vary in spatial scale, positional scale, and mixed scales.

To be specific, the multi-scale property of attention-focused
patterns lies in the following three aspects:

• Spatial: sub-sequences of various spatial or hierarchical
levels contribute diversely to the sequence class
predictions. Keywords or core phrases in natural
language sentences generally vary in length. In
bioinformatic analysis, methods such as k-mer search for
critical short chains with appointed k-scale.

• Positional: positional reliance universally exists in
sequences. Empirically, sequential attributes are
dominated by critical locations. An essay can be
summarized in a few words, and biological molecular
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functions or structures can be inferred from some
specialized regions or sites hiding in the sequence.

• Mixed: positional scales are relative to spatial or hierarchical
scales, as crucial patterns for sequence classification may
vary in size and locate in scattered sites.

The general motivation of our DAttProt method is to quantify
the attention allocated by the classification on both spatial and
positional scales. Generally, our DAttProt model processes
protein sequential data in three stages: 1) extracting primary
global features by constructing Transformer encoder layers
transferred from pre-training tasks, 2) double-scale (spatial
and positional) relations analysis and spatial scale features
merging, and 3) position-wise linear classification inference
and prediction summary.

At the second stage above, DAttProt fits a double-scale
attention weight matrix of features on both spatial and
positional scales. The matrix, in the form of a joint probability
distribution, is quantified by our dot-product–based feature
agreement algorithm.

Given a sentence, humans tend to roughly group basic units
into possible semantic parts according to a prior lexicon and,
afterward, search for their logical association and significance

Hahn and Keller (2016); Bramall and Higgins (1995). Inspired by
these human reading habits, the double-scale attention matrix
derives a spatial-scale conditional distribution for feature fusion
and a positional-scale margin distribution successively voting for
prediction summary.

In Table 1, we list the meanings of important symbols in this
study. The detailed realization of the DAttProt model is as
follows.

2.2.1 Protein Sequence Pre-Processing and Encoding
Generally, amino acids in protein sequence are represented by 22
characters in the alphabet, including 20 standard amino acids and
2 non-standard amino acids. However, there are very few
sequences containing ambiguous or unknown amino acids in
protein databases JCBN (1984). Token B represents Aspartic acid
(token D) or Asparagine (token N) and token Z represents
Glutamic acid (token E) or Glutamine (token Q). We replace
a token BwithD orN randomly with equal probabilities encoding
it each time, as well as token Z. An unknown amino acid is
marked as token X, which is treated as equivalent to tokenMASK
in our DAttProt due to their generality in context.

Protein data might be variable-length sequences; however, a
fixed-length l is necessary for mini-batch or full-batch training.

FIGURE 1 | DAttProt model overview. The sequence “MADE . . .Q” is an example of input protein sequence. FC is the abbreviation of a full connection layer. Convk
and Spacek represent the k-kernel–sized convolution and the k-sized spatial scale. p(pos) is the weight vector on the positional scale and p(space,pos) is the weight
matrix on both spatial and positional scales.

TABLE 1 | Glossary of important symbols in this article.

Symbol Meaning Symbol Meaning

x Input protein sequence of tokens dk, dv Dimensions of key, value features
l Length of input sequence Fglobal Output of the Transformer encoders
S Primary sequence embedding of x Sk k-th spatial scale or kernel size
d Dimension of an embedding vector FSk Feature on spatial scale Sk

M Number of classes Fj
Sk

FSk ’s feature vector at position j

N Number of kernel sizes Fj
cent

Center vector at position j

h Number of heads in Transformer A Agreement matrix
pos Position W Double-scale attention matrix
space Spatial scale or kernel size Fmixed Mixed-scale encoder output
Fin Input of a Transformer encoder C Positional prediction matrix
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We regulate input sequences to l length by chopping and padding.
To be specific, for data longer than l, we cut out l-sized sub-
sequences randomly. For those shorter, we complement PAD
tokens at the end, which are encoded as zero vectors without
gradients, and their features are also masked to zeros or
minuteness constants.

Given an input sequence x of length l, embedding S ∈ Rl×f is
encoded by the sum of amino acid token embedding (scaled
output of a parameterized embedding layer) and cosine positional
encoding PEVaswani et al. (2017) as defined by Eq. 1. Settled and
regular positional encoding guarantees that well-trained
DAttProt is robust for data of variable lengths. S is then sent
into a pre-trained Transformer encoder block.

PE pos,2i( ) � sin pos/100002i/f( )
PE pos,2i+1( ) � cos pos/100002i/f( ) (1)

2.2.2 Transformer Encoders
Each Transformer encoder layer consists of a multi-head self-
attention module and a position-wise feed-forward module, both
with residual connection and layer normalization. A multi-head
attention mechanism is the key component of the Transformer.
Given an input sequence coding Fin ∈ Rl×f and h groups of
project matrices Wi

Q ∈ Rf×dk ,Wi
K ∈ Rf×dk ,Wi

V ∈ Rf×dv{ }
i
,

multi-head attention projects Fin to h heads of query, key, and
value spaces by Eq. 2. (In our DAttProt, dk = dv = f/h.) Each head
proceeds a scaled dot-product attention by Eq. 3 and
concatenates headi with other heads. Then a matrix WO

projects all the head expressions to the output space.

Qi, Ki, Vi ← FinW
i
Q, FinW

i
K, FinW

i
V (2)

headi � softmax
Qi · Ki( )T		

dk

√( ) · Vi (3)

Matrix multiplication operations can be effectively deployed in
parallel. This is a prominent advantage of the Transformer over
RNN-style models, especially in industry.

2.2.3 Multi-Scale Feature Agreement Algorithm
The pre-trained Transformer encoder block extracts global feature
Fglobal ∈ Rl×f from the perspective of the whole sequence.
DAttProt employs 1D multi-scale convolutions to capture local
reliance and patterns from Fglobal on N assigned spatial scales Sk{ }.
In detail, each convolutional kernel size corresponds to a Sk and
step size is uniform 1 to traverse the whole sub-sequential space.
Appropriate padding and chopping are operated to hold the output
feature-length at l. On each spatial scale Sk, features are divided by		
Sk

√
considering their variance expansion after convolutions. Then

these local multi-scale features are linearly projected to the same
subspace where agreement scores are calculated in the following
feature agreement algorithm.

We suppose in a heuristic way that features on different spatial
scales but the same positional scale are of great significance only if
they are highly identical. For instance, if a feature vector
vspace�Sk,pos�j is isolated in a spatial cluster vpos�j{ }, it may
imply that this Sk-sized sub-sequence centering on position j is

either semantically redundant or incomplete. Inspired by the
scaled dot product algorithm of Transformer Vaswani et al.
(2017) and the dynamic routing in the capsule networks
Sabour et al. (2017), we introduce a feature agreement
algorithm as a criterion to quantify each spatial feature’s
similarity to the others at its position.

The lengths of feature vectors on the spatial scale are close due
to layer normalization Ba et al. (2016) in encoders and scaling
after convolutions; thus, their dot products with an average
central vector are capable of indicating their similarities
(i.e., their agreement levels). Let FSk ∈ Rl×f be the feature map
on the k-th spatial scale Sk, and F

j
Sk
∈ Rf be FSk’s feature vector at

position j. The central vector Fj
cent and agreement score of Fj

Sk
are

calculated by Eqs 4, 5.

Fj
cent �

Fj
global + ∑N−1

k�0
Fj
Sk

N + 1
(4)

agreejSk �
Fj
Sk
· Fj

cent

f
(5)

Specially, we include the original feature map Fglobal (i.e., the
layer-normalized output of Transformer encoders) in the
computation of the central vector, where Fj

global denotes the j-
th position of Fglobal. With the supervision of Fglobal, the
convolutions tend to learn more position-concentrated
representations for their receptive fields. All the agreement
scores constitute an agreement matrix A ∈ RN×l, which is
transformed into a double-scale attention matrix W ∈ RN×l

later. Algorithm 1 describes the feature agreement algorithm
process.

Algorithm 1. Feature Agreement Algorithm.

2.2.4 Probabilistic Double-Scale Attention Matrix
To construct an attention matrix W in the form of a joint
distribution, we flatten the double-scale agreement matrix A
and reshape it back to size N × l after Soft-max transformation.

As mentioned above, we interpret W as a joint-distribution-
formed matrix, whose element Wkj quantifies the significance on
the k-th spatial and j-th positional scale:

Wkj � patt space � Sk, pos � j( ). (6)
W introduces an aligned attention mechanism on both spatial

and positional scales; thus, we name it the double-scale attention
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matrix. W derives the margin-distribution-formed vector v by
computing row sum. Element vj of v denotes attention score along
positional scales:

vj � ∑N−1

k�0
Wkj � ∑

k

patt space � Sk, pos � j( )
� patt pos � j( ).

(7)

Then through W and v, we derive position-wise weights for
spatial scale by Eq. 8:

patt space � Sk|pos � j( ) � Wkj

vj

� patt space � Sk, pos � j( )
patt pos � j( ) .

(8)

With Eq. 8, we sum up spatial scale features FSk into a mixed
feature Fmixed by Eq. 9, in which Fj

Sk
∈ Rf represents the j-th

location of spatial feature FSk.

Fmixed � ∑N−1

k�0
∑l−1
j�0

Wkj

vj
· Fj

Sk
(9)

As discussed in 2.2.3, the isolated spatial feature (i.e., a feature
vector with a large angle from the central vector in space) is not
significant at its position and obtains low agreement weight.
Therefore, through Eq. 9, Fmixed pays more attention to
informative features on each positional scale. Even if an
isolated vector contains part of a meaningful pattern,
convolutions with 1 step size will recapture a pattern of
greater integrity at another position.

2.2.5 Linear Classifier
DAttProt makes inferences from position-wise to global-wise.We
map the mixed-scale encoder output features Fmixed ∈ Rl×f to a
probabilistic space of M classes through linear (one-layer full
connection) and Soft-max transformations, yielding a positional
prediction matrix C ∈ Rl×M. On the j-th positional scale, the
element of C is a prediction score by Eq. 10:

Cdj � p x ∈ classd|pos � j( ), (10)
where d = 0, 1, . . . , M − 1.

Finally, we conclude the positional prediction from C, working
out the probability that input sequence x belongs to class d by
Eq. 11.

p x ∈ class d( ) � ∑l−1
j�0

Cdj · vj
� ∑

j

p x ∈ classd|pos � j( ) · patt pos � j( )
(11)

2.3 Pre-Training and Fine-Tuning
Self-supervised pre-training boots up DAttProt’s encoder
module as a language model. The pre-training task of
DAttProt is similar to the Masked Language Model (Masked
LM) task in BERT (Devlin et al., 2018). DAttProt learns to

predict 15% tokens of input sequence at random positions
(excluding unknown tokens X), where each input token is
randomly replaced by MASK token by 80% or another token
in the amino acid vocabulary by 10%. The language model
additionally trains a simple position-wise linear classifier to
complete token predictions. Similar to the original Transformer,
the warm-up strategy and learning rate decay are applied in pre-
training.

We fine-tune the encoders, multi-scale convolutions, and
linear classifier of DAttProt for the downstream tasks on the
DEEPre and ECPred datasets. For each task level on each
dataset, an individual DAttProt model is fine-tuned. We
minimize the cross-entropy loss using an AdamW optimizer
(Loshchilov and Hutter, 2018) both in pre-training and fine-
tuning.

2.4 Hyper-Parameter Settings
All hyper-parameters of 6-layer DAttProt can be looked up at
Github.

The pre-training model unifies the input sequences to 512
tokens long. The batch size is 32 due to the GPU memory
restriction (occupying about 14G for 6 layers and 6G for 3
layers), and the max pre-training epoch is 300. The
dimensions of initial embedding features and hidden states in
8-headed Transformer encoders are 16 and 512. Dropout
probabilities are globally set to be 0.1. We mask the PAD
tokens to avoid their participation in the multi-head self-
attention.

As described in section 2.3, we pre-train 6-layer Transformer
encoders with a schedule of the learning rate. We set the warm-up
iteration to be 50,000 where the learning rate reaches the
maximum of 0.00005 (0.0001 for the 3-layer model).

The fine-tuned model applies convolutions of 5, 10, and 20
kernel sizes according to the common scales of annotated motif
features (the lengths of most motifs recorded in the Swiss-Prot
database are less than or equal to 20). For each scale of the
convolution, the number of output channels is 16 times the kernel
size, which is reduced to 16 after activation and a linear
transformation. The batch size is set to 128, and the max fine-
tuning epoch is 100 (50 for level 2).

The learning rate is set to be 0.00001 at the beginning of fine-
tuning. Then, it is multiplied by 0.95 after every hundred

TABLE 2 | Performance results on DEEPre dataset.

Method Task level/acc. (var. × 103)

0 1 2

“DEEPre” 0.883 (0.012) 0.826 (0.017) 0.436 (0.135)
UDSMProt Forward 0.867 (0.015) 0.816 (0.020) 0.753 (0.075)

Backward 0.861 (0.017) 0.834 (0.022) 0.739 (0.083)
Bi-direction 0.871 (0.010) 0.845 (0.020) 0.781 (0.066)

DAttProt 3-layer 0.858 (0.016) 0.821 (0.019) 0.736 (0.080)
6-layer 0.877 (0.018) 0.859 (0.020) 0.788 (0.071)

The results of level 2 are first calculated by the average of 6 sub-class classification
results. All the results are average values calculated by 5 times of experiments on 5 folds
and bold values are the best results of each task level (similarly hereinafter). acc: accuracy
var: variance.
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iterations. We add a regularization with 0.0001 weight decay to
avoid over-fitting.

3 RESULTS

3.1 Compared Methods
In this study, we compare our DAttProt with three methods on
two datasets described in section 2.1. The first compared method
is “DEEPre” Li et al. (2018) proposed by Li et al., which encodes
protein sequences and features of the PSSM matrix in both
sequence length–dependent and –independent ways. The
second method is “ECPred” Dalkiran et al. (2018) proposed by
Dalkiran et al., which refers to ensemble learning and trains three
types of predictors for each EC class. “DEEPre” and “ECPred”
methods are only deployed in their corresponding datasets, set as
a baseline for each dataset. Third, we compare with UDSMProt
Strodthoff et al. (2020) proposed by Strodthoff et al. on both
datasets. UDSMProt separately pre-trains one forward, one
backward, and one bi-direction AWD-LSTM, applying self-
supervised learning. UDSMProt additionally trains a CNN
baseline model, taking sequences and PSSM features as inputs.
However, we ignore this baseline model due to possible data
leakage problems related to PSSM features.

We pre-train two DAttProt encoder modules that are different
in the amount of Transformer encoder layers, one with 3 layers
and another with 6. For the DEEPre dataset, we use 5-fold cross-
validation to measure the accuracy according to the baseline
method “DEEPre” and the compared method UDSMProt. We
separately train predictors for levels 0, 1, and 2 and calculate the
mean accuracy of data branches in each level. For the ECPred
dataset, samples are divided into training and test sets referring to
the “ECPred” baseline method. We train predictors for levels 0
and 1 and take the average macro-F1 score as the performance
measure.

3.2 Analysis for Comparison Results
For DEEPre and ECPred datasets, the level-wise prediction
performance results of our DAttProt and the compared
methods mentioned above are respectively listed in Table 2, 3.

As shown in Table 2, 3, the 6-layer DAttProt is competitive
with the baseline and the AWD-LSTM–based UDSMProt
predictors. The baseline methods, “DEEPre” and “ECPred”,

deploy the PSSM matrix and count the distribution of
position-wise amino acids from the Swiss-Prot database. Our
DAttProt model accepts only raw sequences and predicts as
precisely as the baseline methods. This result indicates that the
Transformer encoder module can extract implicit distribution
information of the sequences. Especially, DAttProt and
UDSMProt outclass the “DEEPre” method on level 2 of the
DEEPre task, which reflects the reliability of pre-trained
methods on complex tasks.

However, only average accuracy and macro-F1 are compared
in comparison experiments. We record more results to measure
the performance of our DAttProt method. As shown in Table 5,
we list the average accuracy (acc.), Precision (P), Recall (R), and
F1 (macro-F1 for levels 1 and 2) of DAttProt on both DEEPre and
ECPred tasks.

On the last task level of each dataset, we conduct unpaired and
one-tailed heteroscedastic Student’s t-test Walpole (2006) on the
performance of 6-layer DAttProt over compared methods. On
level 2 of the DEEPre dataset, our 6-layer DAttProt gets
0.0014 p-value over bi-direction UDSMProt and p-values less
than 0.0001 over other compared methods. On level 1 of the
ECPred dataset, 6-layer DAttProt gets 0.0445 p-value over the
‘ECPred’ method and p-values less than 0.0001 over other
compared methods. All the p-values are less than 0.05,
showing that our 6-layer DAttProt method performs
significantly better than the compared methods on the task
levels above with significance level over 95%. In Table 6, we
list the p-values between 6-layer DAttProt and each compared
method on the last task level of each dataset.

Vaswani et al. (2017) proved that the deeper the Transformer
encoders, the more global relations the output features include.
Compared with the 6-layer DAttProt, the 3-layer DAttProt

TABLE 3 | Performance results on ECPred dataset.

Method Task level

0 1

P R F1 (var. × 103) mac.-P mac.-R mac.-F1 (var. × 103)

“ECPred” 0.972 0.965 0.964 (0.008) 0.970 0.948 0.963 (0.010)
UDSMProt Forward 0.967 0.958 0.955 (0.013) 0.958 0.926 0.933 (0.026)

Backward 0.969 0.962 0.967 (0.015) 0.957 0.933 0.935 (0.022)
Bi-direction 0.979 0.966 0.968 (0.011) 0.963 0.940 0.944 (0.025)

DAttProt 3-layer 0.962 0.934 0.944 (0.016) 0.953 0.904 0.925 (0.023)
6-layer 0.983 0.960 0.965 (0.012) 0.977 0.951 0.967 (0.016)

All the results are average values calculated by 5 times of experiments and bold values are the best results of each task level (similarly hereinafter). P: Precision R: Recall var: variance
mac-: macro-

TABLE 4 | Statistical data of matched motifs in case study.

Field Count

Protein samples 351
Total motif matches 483
Matched motif types 113
Motif size in range [1, 8) 370
Motif size in range [8, 15) 57
Motif size in range [15, 25) 50

For full data please refer to the Supplementary Table S2
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TABLE 5 | Detailed performance indexes of DAttProt.

Task Level Branch 3-layer 6-layer

acc P R F1 acc P R F1

DEEPre 0 Proteins 0.85 0.85 0.79 0.80 0.87 0.86 0.80 0.81
1 Enzymes 0.82 0.70 0.64 0.59 0.85 0.84 0.80 0.80
2 Oxidoreductases 0.61 0.56 0.46 0.48 0.72 0.70 0.62 0.63

Transferases 0.70 0.56 0.51 0.53 0.76 0.74 0.71 0.72
Hydrolases 0.72 0.42 0.40 0.39 0.80 0.59 0.54 0.55
Lyases 0.78 0.61 0.50 0.53 0.81 0.76 0.73 0.74
Isomerases 0.81 0.86 0.77 0.79 0.83 0.88 0.78 0.80
Ligases 0.80 0.62 0.56 0.58 0.81 0.70 0.64 0.65

ECPred 0 Proteins 0.91 0.96 0.93 0.94 0.94 0.98 0.96 0.97
1 Enzymes 0.92 0.95 0.90 0.93 0.96 0.98 0.95 0.97

TABLE 6 | p-values of the unpaired and one-tailed heteroscedastic Student’s t-test on 6-layer DAttProt over compared methods on the last task level of each dataset.

Dataset Compared methods

“DEEPre” “ECPred” UDSMProt 3-layer DAttProt

Forward Backward Bi-direction

DEEPre Lv.2 3.955e-57 - 6.114e-19 2.052e-24 1.387e-3 5.360e-26
ECPred Lv.1 - 4.446e-2 3.710e-6 3.027e-6 4.296e-5 5.890e-7

For each method, the calculated p-values are based on 25 results of DEEPre and 5 results of ECPred. We use MeN to represent M × 10N in the form of scientific notation

FIGURE 2 | : Examples of matched motifs in different sizes. Their spatial sizes vary from 3 to over 15. Pr(pos) is the marginal weight vector on the positional scale
and Pr(sizeK,pos) is the weight vector of K-sized sub-sequences on the positional scale (similarly hereinafter).
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performs globally weaker, especially on ECPred tasks. This result
emphasizes the contribution of global sequential reliance to the
predictions.

3.3 Case Study and Interpretability Analysis
According to section 2.2.4, DAttProt computes an intermediate
matrix called the double-scale attention matrix. We assume that
this matrix learns to give high attention scores to motif sites of
protein sequences (on the positional scale) and the kernel size
closest to the motif length (on the spatial scale). To practically
verify our hypothesis, we select protein samples fromDEEPre and
ECPred datasets whose motif features are annotated in the Swiss-
Prot database and input them into the fine-tuned DAttProt
model. We fetch out the positional and spatial scale weights of
the double-scale attention matrix to study its interpretability.

We evaluate the double-scale attention matrix of our DAttProt
with over 300 annotated protein samples. For one annotation of a
functional site or region, if its length is closest to the kernel size
with the highest attention and its middle position is given a
weight more than 1.5 times that of the average weight, we

consider it as a match by the matrix. For each sequence, we
sort the matched areas by their double-scale attention scores in
descending order and select the first 16 (if any) of them. After
matching over 100 motifs in these enzymes, we conclude that our
model is able to locate the positions and sizes of functional
protein motifs. As shown in Figure 2, the double-scale
attention matrix matches some high-probability regions with
variable-sized annotated motifs that are closely related to their
enzyme functions or analysis. For example, the CAAX motif
found at the end of protein ZFN2B_HUMAN (accession number
Q8WV99) can be applied to molecular dynamics simulations
Sousa et al. (2013). The slightly longer motif, nuclear localization
signals (NLSs), is involved with protein functions in the cell
nucleus Schwab (2009).

Moreover, we find that for each protein sequence, the double-
scale attention matrix does not concentrate all the weights on one
region but tries to discover as many sub-sequences as possible. As
an example, three motifs (shown in Figure 3) are matched in
protein FKBP2_DEBHA (accession number Q6BP84). These
three motifs are all features of the patatin-like phospholipase

FIGURE 3 | Three matched motifs belonging to the PNPLA domain.
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(PNPLA) domain, which implies lipase and transacylase
properties of the containing proteins Sigrist et al. (2002). We
list all matched protein motifs and the corresponding sequence
ids in Supplementary Table S2.

Besides protein motifs, some other key sites or regions can be
found by using the double-scale attention matrix. In Figure 4, we
investigate the double-scale attention matrix of the protein
AYR1_SCHPO (accession number Q09851) and discover that
its enzymatic activity site of lipase, substrate binding site, and
nucleotide phosphate-binding region [referring to the Swiss-Prot
database Bairoch and Apweiler (2000)] are also given high
attention scores by DAttProt.

In conclusion, our DAttProt observes variable-sized protein
functional sites or regions and allocates high attention weights to
the central position and the scale closest to the motif size. The
statistical data of matched motifs in case study are listed in
Table 4.

4 CONCLUSION AND DISCUSSION

Enzyme class prediction is an important task for enzyme protein
classification and annotation. The task predicts the EC number of
a protein sequence which identifies the enzyme function in
biological metabolism. Previous computational methods of
enzyme class prediction rely on either prior distribution
information or deep learning architectures that ignore the
significance of biological interpretability.

In this study, we propose an effective and interpretable
double-scale attention method, DAttProt, for enzyme class
prediction tasks. The performance and interpretability of
DAttProt have been proved in our experiments. The pre-
trained Transformer encoders adequately extract the global
amino acid relations from raw protein sequences, offering an
alternative to the traditional assistant features such as the PSSM
matrix. Case study illustrates that the double-scale attention
matrix calculated during fine-tuning discovers biologically
meaningful sub-sequences such as functional motifs of
enzymes by allocating attention weights.

Previous deep learning methods for predicting enzyme classes
extract high-level protein features andmake classification inference in
a black box. The techniques and architectures they apply are proven in
practice and offer remarkable results such as high accuracy. However,
they cannot produce a convincing theory of prediction or the
underlying basis with biological and statistical knowledge.
Compared with these methods, our DAttProt method goes one
more step for biological interpretability. Two points considered in
our model design are the relationships between pairs of amino acids
and possible contributions of functional sites and regions in the
protein sequence.

In specific, our DAttProt method applies a self-attention
mechanism to quantify position-wise relations between each
pair of amino acids in parallel for sequence embedding. Then
multi-scale convolutions extract local features which are the basic
representations of sub-sequences in the protein. Our core idea lies
in the design of the feature agreement algorithm and its
production—the double-scale attention matrix. As a result,
DAttProt not only makes accurate classification results but
also offers straightforward evidence supporting the prediction.
Furthermore, DAttProt may provide some new discovery about
functional sites and regions in enzyme proteins.

Although DAttProt possesses the above advantages over previous
methods in enzyme class prediction tasks, it has a few limitations. The
model randomly chops the longer protein sequences to a fixed length
and might drop some information of these samples. The amount and
sizes of multi-scale convolution kernels need to be manually assigned
according to common motif lengths.

For further research, pre-processing and dimension reduction
of long sequence inputs will be introduced for better model
performance. To better processing and encoding long
sequences, some advanced methods Chen et al. (2018); Child
et al. (2019); Goyal et al. (2020); Dai et al. (2020); Roy et al. (2021)
might be applied to improve or replace Transformer encoders. To
further reduce manual intervention during fine-tuning, we
consider replacing multi-scale convolutions with a self-
adapting convolution module Su et al. (2019); Chen et al.
(2020); Lioutas and Guo (2020) that can flexibly adjust kernel
size for each input sequence or amino acid by inference.

FIGURE 4 | Matched sites and regions of AYR1_SCHPO. (A) Motif. (B) Amino acid involved in the enzymatic activity. (C) Binding site. (D) Extent of a nucleotide
phosphate-binding region.
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Furthermore, the heuristic feature agreement algorithm described
in section 2.2.3 can be improved in theory to be stricter and
capable of recognizing multi-functional sub-sequences.
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