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Abstract
Ventricular contouring of cardiac magnetic resonance imaging is the gold standard for volumetric analysis for repaired tetral-
ogy of Fallot (rTOF), but can be time-consuming and subject to variability. A convolutional neural network (CNN) ventricular 
contouring algorithm was developed to generate contours for mostly structural normal hearts. We aimed to improve this 
algorithm for use in rTOF and propose a more comprehensive method of evaluating algorithm performance. We evaluated 
the performance of a ventricular contouring CNN, that was trained on mostly structurally normal hearts, on rTOF patients. 
We then created an updated CNN by adding rTOF training cases and evaluated the new algorithm’s performance generating 
contours for both the left and right ventricles (LV and RV) on new testing data. Algorithm performance was evaluated with 
spatial metrics (Dice Similarity Coefficient (DSC), Hausdorff distance, and average Hausdorff distance) and volumetric 
comparisons (e.g., differences in RV volumes). The original Mostly Structurally Normal (MSN) algorithm was better at 
contouring the LV than the RV in patients with rTOF. After retraining the algorithm, the new MSN + rTOF algorithm showed 
improvements for LV epicardial and RV endocardial contours on testing data to which it was naïve (N = 30; e.g., DSC 0.883 
vs. 0.905 for LV epicardium at end diastole, p < 0.0001) and improvements in RV end-diastolic volumetrics (median %error 
8.1 vs 11.4, p = 0.0022). Even with a small number of cases, CNN-based contouring for rTOF can be improved. This work 
should be extended to other forms of congenital heart disease with more extreme structural abnormalities. Aspects of this 
work have already been implemented in clinical practice, representing rapid clinical translation. The combined use of both 
spatial and volumetric comparisons yielded insights into algorithm errors.

Keywords  Convolutional neural network · Congenital heart disease · Tetralogy of fallot · Ventricular contouring · Machine 
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Introduction

Early uses of neural networks in medicine used hundreds 
of thousands of cases to show physician-level accuracy 
in image-based diagnoses, e.g., for skin cancer [1] and 
diabetic retinopathy [2]. Since then, in cardiac imaging, 
there have been numerous uses of convolutional neural 
networks (CNNs) and other machine learning algorithms 
to both perform specific tasks and to generate new knowl-
edge [3–7]. Most of these examples have hundreds of cases 
and primarily focus on adult left ventricles, though there 
are examples that focus on the right ventricle [8, 9].

Cardiovascular magnetic resonance (CMR) imaging 
is a non-invasive and safe imaging modality, and its use 
is growing in congenital heart disease. CMR is generally 
considered to be the gold standard imaging modality for 
ventricular volume and function measurement, as calcu-
lating these parameters can be done with minimal spatial 
assumptions as compared to echocardiography [10–12]. 
Tetralogy of Fallot is the most common indication for 
CMR in congenital heart disease [13–15]; one reason for 
this is that the right ventricle (RV) specifically has a com-
plex 3-dimensional shape that is difficult to interrogate 
well with 2D imaging methods, and RV volumes and func-
tion are key indicators for performing pulmonary valve 
replacement in patients with repaired tetralogy of Fallot 
(rTOF) [16] and may relate to outcomes [17].

Ventricular volumes and function are calculated through 
contouring, where the endocardial and epicardial surfaces 
of the ventricular muscle are outlined, then summed using 
the method of disks [18]. Contouring the ventricles to 
determine volumes and function is thus an integral part of 
CMR post-processing, but contouring is a time-consuming 
process and has inherent intraobserver and interobserver 
variability. For an adult CMR with a normal-shaped heart, 
contouring has been reported to take about 20 min [19]; 
for a patient with complex congenital heart disease, man-
ual contouring undoubtedly takes longer. Thus, this task 
is an ideal target for automation.

Recently, machine learning techniques, namely neural 
networks, have been developed to automate ventricular 
contouring. For instance, Bai et al. [19] recently used 
4875 CMR studies from the UK Biobank (UKBB) to train 
a CNN to automatically generate ventricular contours. 
They used 3,975 subjects for training the neural network, 
300 validation subjects for tuning model parameters, 
and finally, 600 test subjects for evaluating performance. 
Suinesiaputra et al. [20] used two versions of a different 
automated method to analyze UKBB CMRs. The UKBB 
CMR dataset consists of mainly healthy adults in the UK 
(mean 63.4 ± 7.56 years, 52% female, source: http://bioba​
nk.ndph.ox.ac.uk/showc​ase/field​.cgi?id=21003​), with 

generally structurally normal hearts. The protocol for the 
UKBB has been described [21], as has the post-processing 
[22].

As noted, most machine learning CMR contouring tools 
are trained on adults with structurally normal hearts. Other 
approaches to addressing the issue of training algorithms 
with small numbers of cases of congenital heart disease also 
have been proposed [23], though not many.

Given the importance of CMR values, especially RV val-
ues, on decision making for children and adults with rTOF, 
it is vital to improve contouring in congenital heart disease 
to reduce contouring time and potentially reduce variability. 
Thus, we evaluated a CNN that was trained on UKBB data 
combined with selected other pathologies such as hyper-
trophic cardiomyopathy, but no congenital heart disease. We 
evaluated its performance on left ventricular (LV) and RV 
contouring in rTOF, testing LV epicardium (LV epi), LV 
endocardium (LV endo), and RV endo, at end diastole (ED) 
and end systole (ES), as these are the contours most com-
monly drawn clinically. We hypothesized that the algorithm 
would be worse at contouring the RV than the LV given the 
more complex shape of the RV and higher likelihood of RV 
dilation in rTOF, and that adding rTOF training data for 
the algorithm would improve both LV and RV contouring 
in rTOF. Our study is novel because we examined a poten-
tial method to solve the problem of small case numbers in 
pediatric cardiology. By using an existing algorithm, trained 
on a large number of adult datasets, testing it on congenital 
CMRs, and then improving it with a small number of con-
genital CMRs, we can evaluate whether this strategy could 
be viable for other uses of machine learning in pediatric 
cardiology as well. Further, we evaluated the performance 
of the algorithms using both spatial- and volumetrics.

Materials and Methods

Patient Datasets

Patients were included that had a diagnosis of tetralogy of 
Fallot with pulmonary stenosis or atresia that had under-
gone initial repair and underwent a follow-up CMR study 
at our institution between 1/2016 and 7/2019. Patients 
with tetralogy of Fallot with absent pulmonary valve were 
excluded. This study was performed under UTSW IRB STU 
122017–037.

The rTOF cases were divided into two groups by time, 
with the earlier cases assigned to the training dataset. This 
training dataset was used to evaluate the initial CNN for use 
in rTOF, and then used to retrain the CNN. The more recent 
cases were assigned to the testing dataset and were used 
to compare performance of the initial (mostly structurally 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21003
http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21003
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normal, MSN) and revised (MSN + rTOF) contouring 
algorithms.

Typical CMR Parameters

CMR was performed on a 1.5T Ingenia scanner (Philips 
Healthcare, Best, The Netherlands) using a 32-channel 
torso phased-array digital receiver coil. ECG gated bal-
anced cine steady-state free precession images (bSSFP) were 
obtained in a short-axis stack of 9–13 slices from above the 
atrioventricular valves to the apex, in 30 phases per cardiac 
cycle with a slice thickness of 8–10 mm, no gap, field of 
view between 272 mm × 272 mm and 390 mm × 390 mm, 
echo time 1.11–1.68 ms, temporal resolution at a median 
of 34.5 ms (25.3–50 ms). The cines were performed with 
breath-holding technique if possible, otherwise, 2 signal 
averages were used in combination with respiratory bellows 
gating for patients who could not perform a breath hold. 
There were no changes to the bSSFP sequence through the 
study, and hence the same sequence was used for patients in 
both the training and testing datasets.

Manual CMR Ventricular Contouring

Manual contouring of the rTOF training and testing data-
sets was done for clinical purposes using standard post-
processing practices as described by Fratz et al. [18] using 
cvi42 version 5.9 (Circle Cardiovascular Imaging, Calgary, 
Alberta, Canada). As is standard, flow data were incorpo-
rated as internal check to ensure accuracy of ventricular 
contours. All clinical contouring was performed by readers 
with > 1 year of CMR experience and checked by readers 
with > 5 years CMR experience. For intraobserver and inter-
observer variability calculations in the testing dataset, half 
the cases were recontoured by the initial person who did the 
contours (VG), while interrater contours were performed 
by another expert with 6 years CMR experience (BEUB).

Initial Convolutional Neural Network (CNN) 
Algorithm

The machine learning algorithm employed herein to predict 
ventricular contours was a CNN based on the U-net architec-
ture [24]. The CNN was trained to associate pixel intensities 
of a CMR image to segmentation maps corresponding to 
the desired ventricular contours. During the training stage, 
the model parameters of the CNN were optimized to reduce 
an energy function computed using the pixel-wise cross-
entropy loss function, which penalizes the CNN when it 
does not correctly predict the segmentation label of a given 
pixel.

The initial CNN was trained on the UKBB CMR dataset 
on ~ 5000 CMR studies, as well as a set of 100 pathologic 

CMR studies including cases of hypertrophic cardiomyopa-
thy, dilated cardiomyopathy, and myocardial infarction, but 
no rTOF cases. Given that these are mostly normal hearts, 
we labeled this algorithm the Mostly Structurally Normal 
(MSN) algorithm. The MSN algorithm is available in Circle 
cvi42 version 5.9 (Circle Cardiovascular Imaging, Calgary, 
Canada).

The CNN was trained on images with spatial resolution of 
198 × 198 pixels with a pixel spacing of 1.855 × 1.855 mm/
pixel. This allowed the network to be trained on images 
with varying field-of-views and acquisition specific resolu-
tion. Batch normalization layers are used to standardize the 
intensity of input images. To increase the generalizability of 
the network, image augmentation techniques such as rota-
tion, scaling, translation, and mirroring were applied to the 
input data. Early stopping was also used to avoid overfitting. 
No other regularization techniques, i.e., dropout or weight 
decay, were used during the training of this network.

The cvi42 software uses a proprietary, heuristic-based 
algorithm to post-process the results of the CNN into con-
tours that reside in a 4 × 4 subpixel space of the original 
input image. All results reported in this paper are reported 
on the post-processed cvi42 contours.

Training a New Convolutional Neural Network (CNN) 
Algorithm

The manual rTOF contours from the training dataset 
were then used to retrain the MSN algorithm to yield the 
MSN + rTOF algorithm. This was accomplished by incorpo-
rating the rTOF training data into the pool of MSN training 
data. During training stage of the MSN + rTOF algorithm, 
the number of rTOF cases was oversampled in each training 
epoch to ensure that the CNN does not learn to ignore the 
rTOF cases in the early stages of training since the > 5000 
MSN data vastly outnumber the rTOF instances. The rTOF 
images were processed to match the spatial resolution for 
which the MSN network was trained. Aside from changes 
to the training data, the exact same CNN architecture 
and optimization parameters were used in the MSN and 
MSN + rTOF experiments. The same cvi42 post-processing 
algorithm was used for this network.

Evaluation of Contouring Performance—Spatial 
Metrics

The manually generated contours used for clinical reporting 
were considered the gold standard contours and thus were 
the basis for all comparisons.

Contours were analyzed using both spatial- and volumet-
rics. In terms of spatial metrics, the Dice Similarity Coef-
ficient (DSC) represents spatial overlap in three dimensions 
and is calculated using the formula DSC = (2*(A ∩ B)/
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(A + B)) where A ∩ B represents the volume of the spatial 
overlap, and A and B represent the volumes of the original 
clinical ventricular contour and comparison contour, respec-
tively [25]. A DSC of 1 represents perfect spatial overlap, 
while 0 means no spatial overlap at all. The Hausdorff dis-
tance (HD) is a spatial distance measure and is the maximum 
distance of a point on one contour to the nearest point on 
the other contour [26]; we took the mean of these values 
across all slices. Given that the Hausdorff distance is sensi-
tive to outliers, we also used the Average Hausdorff Distance 
(AVD), which is the Hausdorff distance averaged over all 
points on both contours. We used the mean AVD over all 
slices [26].

Evaluation of Contouring Performance—
Volumetrics

The ventricular end-diastolic volumes (EDV), end systolic 
volumes (ESV), and ejection fractions (EF) were compared 
between contouring methods by assessing the absolute value 
of the percentage difference in volume or EF as compared to 
the manually calculated volumes (%error).

Statistical Comparisons

For patient characteristics, Mann–Whitney and t-tests with 
Welch’s correction were used. For spatial comparisons, 
Wilcoxon signed-rank tests were used. For volumetric com-
parisons, Wilcoxon matched-pair signed-rank test, linear 
correlation, and Bland–Altman analyses were performed. 
In all cases, p < 0.05 was considered significant. Statistical 
analyses were performed using GraphPad Prism version 8.1 
(GraphPad Software, San Diego, CA).

Determination of Intra‑ and Interrater Variability 
of Contours

To determine intra- and interrater variation of contours, half 
of the patients in the testing dataset had contours redrawn 

by the original contourer (VG), as well as another expert in 
CMR with 6 years’ experience (BEUB). Intra- and interrater 
spatial- and volumetrics were calculated.

Examination of Sources of Error

Patients were sorted by worst performance on spatial and 
volumetric measures on both MSN and MSN + rTOF, and 
those whose performance declined the most from MSN to 
MSN + rTOF. The six cases that appeared most commonly 
in these lists were manually reviewed to find patterns that 
could explain poor algorithm performance.

In addition, we analyzed the data again after removing 
algorithm-generated contours in slices where there were no 
manual contours.

Results

Patient Characteristics

The rTOF training dataset initially consisted of 59 cases, but 
the CNN was designed to train on cases where both LV and 
RV contours were in the same cardiac phase, so 57 cases 
could be used for diastole, and 31 for systole. The rTOF 
testing dataset was initially 32 cases, but for similar reasons 
only 30 were used. The technical exclusion rate is similar to 
other such studies [20]. Patient characteristics are shown in 
Table 1. There were no significant differences in age, body 
surface area (BSA), heart rate, at time of CMR, or number of 
studies with breath-holding versus signal averages, between 
the training and testing datasets.

Performance of MSN Algorithm on Training rTOF 
CMR Data

We initially tested how well the MSN algorithm con-
toured the LV endo, LV epi, and RV endo for patients with 
repaired rTOF (Fig. 1). The spatial results are summarized 

Table 1   Patient characteristics

This table shows the age, body surface area, and heart rate for the patients with repaired tetralogy of Fallot (rTOF) that were used in the study. 
There were no significant differences between the training and testing datasets in age, BSA, heart rate, or number of cases done with breath-
holding

N Females (%) Age at CMR (yr) (Median, IQR) BSA at CMR (m2) 
(mean ± stdev)

Heart rate at 
CMR (bpm) 
(mean ± stdev)

Breath-held imaging

Training 57 31 (54%) 13.5 (10.0,17.5) 1.42 ± 0.45 77.2 ± 12.1 44 (77%)
Testing 30 19 (63%) 13.9 (11.7,18.0) 1.44 ± 0.52 74.4 ± 16.2 23 (77%)
p-value 0.766 (Mann Whitney) 0.82 (t-test with 

Welch’s correc-
tion)

0.39 (t-test with 
Welch’s correc-
tion)
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in Supplemental Table 1 and volumetric results in Supple-
mental Table 2. In short, the RV endo contours generated 
by the MSN algorithm were consistently worse than the LV 
contours when evaluated with DSC and HD; when using 
AVD, the LV endo were better than the LV epi as well. ED 
AVD results are shown in Fig. 2. The MSN algorithm was 
also worse at contouring the RV than the LV for ESV and 
EF, as assessed by %error compared to the manual contour-
ing (Fig. 3).

Testing the Retrained MSN + rTOF Algorithm on New 
Testing Data

Next, we evaluated the performance of the MSN + rTOF 
algorithm on new rTOF cases (testing dataset) and compared 
it to the standard MSN algorithm. Thirty cases were used 
and analyzed using both spatial- and volumetrics.

Regarding spatial metrics, LV epi and RV endo contours 
improved from MSN to MSN + rTOF in all three evaluation 
metrics (DSC, HD, AVD), with LV endo also having an 
improved DSC (Fig. 4, Supplemental Table 3).

Regarding volumetrics, MSN + rTOF showed an 
improved correlation with the current gold standard man-
ual RV EDV. Also, LV ED mass and RV EDV contoured 
by the MSN + rTOF algorithm showed reduced %error 
compared to the MSN algorithm. In all other cases, there 
were no significant differences in correlation and %error. 
Example data for RV EDV are shown in Fig. 5. Full data 
are shown in Supplemental Table 4.

Comparison of MSN + rTOF Algorithm to Intra‑ 
and Interrater Contours

Intrarater and interrater spatial and volumetric results are 
shown in Supplemental Tables 5 and 6, respectively. In 
brief, MSN + rTOF spatial performance was comparable 
to intra- and interrater contours for all except LV endo and 
epi as measured by HD and AVD. MSN + rTOF volumetric 
performance was significantly worse for the LV but gener-
ally within intra- and interrater contours for the RV.

Fig. 1   Cardiac magnetic resonance contours for a patient with 
repaired tetralogy of Fallot and right ventricular dilation, who showed 
significant improvement in RV contours after training. End diastole 
is shown, with manual contours on the left, contours derived from 
the initial MSN algorithm in the middle, and retrained MSN + rTOF 

algorithm on the right. Note slice selection errors with both MSN and 
MSN + rTOF methods. 3D representations of the ventricular contours 
are shown below. Left ventricular endocardial contours are in red, left 
ventricular epicardial in green, and right ventricular endocardial in 
yellow
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Examination of Sources of Error

Of the six cases that were identified as the worst-performing, 
the most common issue was the algorithm drawing contours 
on inappropriate slices, i.e., the algorithms would contour a 
part of the atria as part of a ventricle. One poorly performing 
patient did not have a clear pulmonary valve after transannular 
patch repair and the MSN + rTOF algorithm included more of 
the right ventricular outflow tract, and another had rTOF as 
well as hypertrophic cardiomyopathy.

When we removed the algorithm-generated contours 
in slices where there were no manual contours, the over-
all results were generally similar, though the magnitude of 
errors were lower (Supplemental Tables 7 and 8).

Discussion

In this paper we evaluated a machine learning algorithm, a 
convolutional neural network (CNN), for ventricular con-
touring that was trained on mostly structurally normal hearts. 
We showed that this MSN algorithm did better for the LV 
than the RV in patients with rTOF across a number of differ-
ent metrics, using both spatial and volumetric assessments 
by design. We then used those cases to create an improved 
algorithm MSN + rTOF. This improved algorithm showed 
clear benefits with spatial metrics, and improvements with 
some volumetric measures as well. This suggests that the 
MSN + rTOF algorithm learned improvements that general-
ize to studies beyond the training dataset.

Most automated analysis tools are developed for struc-
turally normal hearts, and fewer are designed specifically 
for congenital heart disease, likely because training these 
algorithms initially requires a significant volume of cases. 
Our work shows that even with small numbers of cases, an 
already established algorithm can be expanded to use in 
other clinical scenarios. Also, the inclusion of rTOF cases 
to generate the MSN + rTOF algorithm did not degrade 
performance on structurally normal hearts (industry-level 
testing data not shown), thus expanding the clinical utility 
of the algorithm.

As the field of pediatric cardiology will always face the 
issue of lower numbers and clinical heterogeneity, these find-
ings are of clinical importance. This work should encourage 
further investigation of modifying solutions to adult prob-
lems to fit the needs of patients with congenital heart disease 
and to find avenues to address more niche clinical needs that 
have smaller patient or image volumes.

Comparison of MSN + rTOF Algorithm to Intra‑ 
and Interrater Contours

The performance of the MSN + rTOF algorithm was in gen-
eral worse than intra- and interrater contours for the LV and 

Fig. 2   Spatial MSN performance on the training dataset. As hypoth-
esized, the RV endocardial contours generated by the MSN algorithm 
were consistently worse than the LV contours. Representative ED 
AVD data are shown. Violin plots with LV endo contours in red; LV 
epi contours in green; and RV endo in yellow. Bars represent median 
and IQR. * represents p < 0.05; **** represents p ≤ 0.0001

Fig. 3   Volumetric MSN performance on the training dataset is worse 
for the RV. EDV is shown on the left, ESV in the middle, and EF on 
the right. LV volumes with red and RV volumes in yellow. Solid line 
represents median and dotted lines IQR. * represents p < 0.05
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in general not significantly worse than intra- and interrater 
contours for the RV. This is likely due to the higher intrarater 
differences in RV contouring. These findings are similar to 
Blalock et al. [27] who reported repeatability between two 
observers of end-diastolic ventricular volumes at 15% in 
rTOF. Mooij et al. [28] showed that in 20 rTOF CMRs, the 
RV EDV mean volume difference was 6.3% with a coef-
ficient of variability, calculated as the standard deviation 
interrater difference divided by the mean RV EDV, of 4.8%. 
The MSN + rTOF RV EDV coefficient of variability was 
9.6%, suggesting there is still optimization to be done.

Comparison to Previous Studies

There have been multiple studies examining automated con-
touring in adult CMR studies (e.g., Bai et al. [19],Suine-
siaputra et al. [20]), and even MICCAI challenges (e.g., Feng 
et al. [29],Yang et al. [30]). There are also deep learning 
approaches for combined segmentation and disease classi-
fication using CMR [31] and echocardiography [32]. How-
ever, there is limited knowledge about using neural network 
contouring methods for congenital CMR. Diller et al. [33] 
did use deep learning methods to segment and classify tran-
sthoracic echocardiograms from patients with transposition 
of the great arteries after atrial switch procedure or congeni-
tally corrected transposition of the great arteries (both of 
which have a systemic right ventricle), and Diller et al. [34] 
used deep learning to de-noise transthoracic echocardio-
grams for congenital heart disease. Pace et al. [23] proposed 
iterative methods to overcome the challenge of small num-
bers of cases. These studies, along with the current study, 
show that there is clearly a role for deep learning and other 
automated approaches to improve congenital heart disease 
cardiac imaging, despite the fact that there will be fewer 
studies than adult heart disease. We believe that given the 
limitations of clinical heterogeneity and small overall num-
bers, advanced analytical techniques for image analysis in 
congenital heart disease might even be more important than 
in adult heart disease [35, 36].

Use of Multiple Contour Performance Metrics

We purposely chose to use multiple spatial (DSC, HD, and 
AVD) and volumetric (e.g., %error of EDV, EF) measures to 
evaluate the performance of the algorithms on our datasets. 

Fig. 4   MSN vs. MSN + rTOF algorithm spatial performance on the 
testing dataset. Example data are shown for RV endo contours, with 
DSC (top), HD (center), and AVD (bottom). Violin plots are shown 
with MSN on the left (orange) and MSN + rTOF on the right (pur-
ple), and changes for individual cases are shown in the middle. Solid 
line represents median and dotted lines IQR. * represents p < 0.05; 
** represents p < 0.01; *** represents p < 0.001; **** represents 
p ≤ 0.0001

▸
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DSC focuses solely on spatial overlap and thus is susceptible 
to overestimating performance if the central volume of the 
contours is correct despite the edges being less accurate. 
Because the shape of the ventricles is important for ven-
tricular contouring as well as the volume, spatial distance-
based metrics, namely, HD and AVD, were also used [26]. 
Ventricular volumetrics (including ejection fraction) were 

used because these are clinically relevant metrics, but sub-
ject to the limitation that contours with different shapes can 
still yield similar volumes. Combining both types of metrics 
revealed insights into errors generated by the algorithms, 
which may not have been obvious with only one type of 
metric. We suggest this more comprehensive methodology 
be used going forward when evaluating the performance of 
contouring algorithms.

Improving Sources of Error

The most common error made by the algorithms, and likely 
the source of the largest volumetric discrepancies compared 
to gold standard contours, was when they generated ven-
tricular contours in slices that were beyond the base or apex 
of the ventricles. This is likely because the UKBB data, on 
which the algorithms were primarily trained, are generally 
limited to and rarely extend beyond the ventricles. Given the 
RV dilation often found in patients with rTOF, and the desire 
to evaluate atrial performance, our practice is to extend the 
short-axis slices past the LV apex and into the atria, to avoid 
missing parts of the dilated RV apex and RV “shoulder” that 
extend basally past the tricuspid annulus (Fig. 6). Potential 
solutions include forcing ventricular contours to be in con-
tiguous slices; use 3D datasets that may have clearer deline-
ations of ventricular shape; or train with more datasets with 
slices that extend into the atria. We are actively working to 
solve this problem. Whereas this study was a head-to-head 
comparison, in clinical practice, this type of error would 
not occur as rapid manual correction would significantly 
improve the resultant volumetric measures. The results of 
this are shown in Supplemental Tables 7 and 8, where we 
manually removed the contours in excess slices, yielding 
improved %errors but overall similar results when compar-
ing performance of MSN to MSN + rTOF. Some discrepancy 
between the results shown by spatial metrics and volumetric 
results can be related to the fact that the spatial metrics are 
less affected by having a single slice contoured as ventricu-
lar despite their being past the apex or base; the volume 
calculations are increased significantly by this because the 
volume is calculated by interpolating between slices (Fig. 6). 
Because the ventricular volume interpolates between distant 
slices, this causes significant increase in calculated ventricu-
lar volumes despite only modest changes to spatial metrics. 
This also reinforces the idea that when training a CNN, care 
should be given to maintaining data diversity because CNNs 
function best on the same kinds of data on which they were 
trained [37, 38].

Limitations

The data used were clinical data and thus were not subjected 
to extra data cleaning and revisions. We specifically chose 

Fig. 5   Volumetric comparisons of MSN and MSN + rTOF algo-
rithms. The top panel shows correlation of algorithmic RV EDV 
and manual RV EDV. The line of identity, best-fit lines, and best-fit 
line errors are shown. MSN + rTOF showed significantly improved 
correlation with manual volumes compared to MSN (p = 0.0459). 
The middle panel shows the Bland–Altman analysis of MSN and 
MSN + rTOF RV EDV compared to the manual contours. The bottom 
panel shows a violin plot with MSN on the left and MSN + rTOF on 
the right, and changes for individual cases shown in the middle. Solid 
line represents median and dotted lines represent IQR. ** represents 
p < 0.01
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clinical data because our goal was to use real-world datasets 
instead of curated ones.

In the current form, this algorithm was limited to CMR 
studies where ES and ED were in the same cardiac phase 
for both the RV and LV. Given that this is not always the 
case (especially in rTOF where there can be right bundle 
branch block and other causes of phase misalignment), this 
represents a limitation of the current algorithm for use in 
clinical practice.

We performed this study on rTOF cases as this is the 
most common indication for congenital CMR. However, 

in the spectrum of congenital heart disease, the cardiac 
structure in rTOF is likely more similar to structurally 
normal hearts than other types of pathology, e.g., single 
ventricle disease or L-transposition of the great arteries, 
other common indications for congenital CMR. Thus, it 
is possible that a similar retraining strategy may not be as 
successful in those cases of more complex disease.

Fig. 6   Shown here are the MSN + rTOF contours at ED. This patient 
has a significantly dilated RV, with the “shoulder” extending more 
basally past the tricuspid valve plane (yellow arrows), necessitating 
extension of the short-axis slices basally past the mitral and tricuspid 
valve plane. The MSN + rTOF contours extend into the right atrium 

and into subcutaneous fat past the apex. The LV contour is drawn in 
the left atrium on the most basal slice and at least one slice past the 
apex. The volumetric calculations are done using all contours, inter-
polating for missing slices
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Conclusions

We showed that a CNN, developed for structurally normal 
hearts, was able to be adapted to use in rTOF with a rela-
tively small number of training cases, with acceptable but 
not ideal spatial and volumetric performance compared 
to manually drawn contours. rTOF is the most common 
indication for congenital CMR, so these findings support 
the development of contouring tools to increase efficiency 
of the clinical and research workflows for rTOF CMR. 
This work should be extended to other forms of congenital 
heart disease where the structural abnormalities are more 
extreme compared to structurally normal hearts. Aspects 
of this work were also rapidly translated into clinical use.
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