
https://doi.org/10.1177/20406223211014025 
https://doi.org/10.1177/20406223211014025

Ther Adv Chronic Dis

2021, Vol. 12: 77–90

DOI: 10.1177/ 
20406223211014025

© The Author(s), 2021.  
Article reuse guidelines:  
sagepub.com/journals-
permissions

Therapeutic Advances in Chronic Disease

journals.sagepub.com/home/taj 77

Special Collection

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License  
(https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission 
provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Alpha-1 antitrypsin deficiency:
Learning from the past and building the path for the future

Introduction
At present there is only one disease-modifying 
pharmacological intervention available specifi-
cally for the treatment of alpha-1 antitrypsin defi-
ciency (AATD): intravenous (IV) infusion of 
alpha-1 antitrypsin (AAT). There are several 
products currently available in the United States 
(US) to treat emphysema in patients with AATD 
that have been approved by the US Food and 
Drug Administration, and there are three 
approved products currently available in Europe 
(Table 1).1,2 Each product is prepared from 
pooled human plasma. However, as discussed in 
previous chapters in this series of reviews, this IV 
AAT therapy has limitations for its use, such as 

cost implications and patient burden.3,4 Therefore, 
patients with AATD have substantial unmet 
needs and several new on-going developments are 
focusing on reducing patient inconvenience, 
while providing efficacy in decreasing morbidity 
and mortality.5 Following issues raised by patients 
on the need for a global registry, further informa-
tion on comorbidities, natural history of the dis-
ease, risk factors for progression and the poor 
prognosis of lung disease, the European Alpha-1 
Research Collaboration (EARCO) was created.6 
The EARCO is a Clinical Research Collaboration 
of the European Respiratory Society, which will 
collaborate with the European Reference Network 
(ERN) for respiratory diseases (ERN-LUNG), 
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the ERN for hepatological diseases (ERN RARE-
LIVER), and the registry of the Alpha-1 Liver 
Group.6 The aim of the collaboration is to bring 
together researchers, healthcare providers, 
patients, and industries to advance our under-
standing and improve the quality of life for 
patients with AATD.6,7

The current chapter in this series of reviews on 
AATD aims to raise awareness of these current 
unmet needs and new therapy developments cur-
rently in the pipeline, including use of biomarkers 
to evaluate disease progression and treatment 
response to disease-modifying intervention. 
However, as AATD is a rare disease, it can be 
challenging to obtain conclusive data from small 
patient cohorts.8 Nevertheless, rare disease drug 
development is an area that is rapidly expanding 
and there is a trend between the increasing num-
ber of clinical trials and the increasing number  
of rare diseases being reported,9 with many 

technologies for treatment available.10 Several of 
these technologies are discussed herein with rela-
tion to their use within the field of AATD.

Current treatment and unmet needs
The only licensed treatment that has a disease-
modifying effect on AATD progression is weekly 
IV infusion of plasma-derived AAT, which aims 
to delay the progression of emphysema,19,20 
reduce exacerbation frequency,21 and improve 
patient quality of life.5,22 Further information on 
the current treatment recommendations for 
AATD can be found within the chapter of this 
review series authored by Barjaktarevic and 
Campos.4 However, not all countries have 
accepted AAT therapy. Current IV AAT therapy 
incurs significant annual healthcare costs, which 
exceed prior estimates reported in a 2003 study 
on cost effectiveness for patients with severe 
AATD.23 In the US, AAT therapy costs an 

Table 1. Approved AAT therapy preparations.

Trade name Availability Specific activity and concentration

Products available in the US

 Aralast-NPa US ⩾0.55 mg of AAT per mg of total protein; 20 mg/ml 
after reconstitution in provided diluent11

 Glassia® US, Canada, Australia, 
New Zealand

⩾0.7 mg of AAT per mg of total protein; provided in 
solution at 20 mg/ml12

 Prolastin®-Cb US, Argentina, Colombia ⩾0.7 mg of AAT per mg of total protein; provided in 
solution at 50 mg/ml13

 Zemaira®c US ⩾0.7 mg of AAT per mg of total protein; 50 mg/ml 
after reconstitution in provided diluent14

Products available in Europe

 Alfalastin® France 0.67 mg of AAT per mg of total protein; 33.33 mg/ml 
after reconstitution in provided diluent15

 Prolastin®d National licenses in EU 
with mutual recognition 
procedure

⩾0.35 mg of AAT per mg of total protein; 25 mg/ml 
after reconstitution in provided diluent2

 Respreeza® Countries within the EU ⩾0.7 mg of AAT per mg of total protein; 50 mg/ml 
after reconstitution in provided diluent16

aAralast-NP is a newer preparation of a previously approved product, Aralast™.17

bProlastin®-C is a newer preparation of a previously approved product, Prolastin®.18

cZemaira® is marketed as Respreeza® in Europe.
dProlastin® is licensed in the member states of European Economic Area in Austria, Ireland, Italy, Germany, Greece, 
Poland, Portugal, and The Netherlands. Prolastin® is also marketed as Prolastina® in Denmark, Finland, Norway, Spain, 
and Sweden, and marketed as Pulmolast® in Belgium.
AAT, alpha-1 antitrypsin; EU, European Union; US, United States.
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estimated US$82,000 per patient per year, 
excluding other out-of-pocket costs to the patient, 
such as visits to the physician and/or emergency 
department, inpatient hospital stays and other 
prescription drug costs.24 The mean annual out-
of-pocket cost for all patients with AATD is 
approximately US$1875, with annual costs of 
US$4601 and US$1689 for IV AAT therapy 
users and non-users, respectively.24 As AAT ther-
apy is lifelong, treatment is costly and is com-
monly used only to treat the most severe forms of 
AATD (patients with PI*ZZ and PI*Null geno-
types). This treatment has also been shown to 
change imaging characteristics of AATD based 
on evidence from the RAPID program.19,20 
However, patients with less severe forms of 
AATD (e.g., PI*MZ and PI*SZ genotypes) can 
still experience disease symptoms but are often 
left untreated. Furthermore, the prevalence of 
these intermediate forms of AATD is thought to 
be greater than initial estimates,25 suggesting that 
there are even more individuals who may possibly 
benefit from therapy that go untreated. There is a 
rationale to treat these patients once a more 
widely available therapy has shown efficacy.

At present, IV AAT therapy regimens can be 
inconvenient for patients due to the need for life-
time weekly infusions.5 Moreover, this therapy 
addresses only AATD-associated lung disease 
and does not treat extra-pulmonary manifesta-
tions such as liver disease, which is discussed in 
detail within the chapter by Patel and Teckman.26 
Therefore, new cost-effective treatments are 
being sought that would not only be more con-
venient for patients, but also address the underly-
ing genetic component of AATD, rather than 
simply slowing disease progression and reducing 
symptom severity. More cost-effective therapy 
may encourage further research, adoption of ther-
apy by more countries, and allow treatment of 
patients with less severe forms of AATD who are 
currently untreated.

Research and future treatments

Sourcing AAT
Supply of pooled human plasma-derived AAT 
can be variable in purity and activity.27 Therefore, 
new methods of obtaining AAT are required to 
improve consistency and to ensure supplies are 
able to meet future therapy demands. The human 

AAT gene, SERPINA1, has been expressed suc-
cessfully in bacteria,28 yeast,29 and mammalian 
cell lines,30,31 as well as in animal models,32,33 but 
to date no therapeutic product has been licensed 
from these alternative sources. New products 
obtained via alternative methods would need to 
meet several requirements for licensing. New 
products should be clinically efficacious, safe, 
demonstrate good plasma half-life, and be cost-
effective relative to current sources of AAT. Due 
to the potential risk of contamination with new 
and unknown pathogens from current plasma-
derived AAT, recombinant versions of AAT 
(rAAT) are also an attractive alternative that is 
being widely investigated. Modified rAAT is cur-
rently being explored in fusion protein-based 
therapy to treat patients with AATD with the aim 
of offering superior clinical activity to plasma-
derived AAT by maintaining plasma concentra-
tion with a less frequent, monthly, dosing 
regimen.34

Escherichia coli is a readily available and common 
recombinant protein expression platform for a 
wide variety of proteins due to its fast growth 
kinetics, inexpensive growth media, and simplic-
ity of transformation with exogenous DNA, 
despite its inability to glycosylate recombinant 
proteins.35 Lack of protein glycosylation in the E. 
coli expression system can affect rAAT activity, 
circulating half-life after infusion, and cause 
rAAT aggregation,36 as plasma-derived human 
AAT contains three glycosylation sites important 
for protein stability and protection from proteoly-
sis and/or degradation.37 The lack of rAAT glyco-
sylation could potentially be overcome by utilizing 
genetically modified E. coli that have proven to be 
100% efficient in glycosylating rAAT.38

Plant cell suspension systems are also emerging as 
a promising alternative for bioproduction of phar-
maceutical agents, including AAT, and are able 
to express high yields of glycosylated rAAT in 
relatively short periods of time.39,40 However, 
there is currently a lack of regulatory approval for 
plant expression systems.41 Yeast systems are 
another attractive option for rAAT production 
due to their cost and time efficiency.42 Yeast sys-
tems may also be more advantageous over bacte-
ria as they do not produce endotoxins and are 
able to provide some post-translational modifica-
tions, including glycosylation. However, a mam-
malian system would be ideal in expressing a 
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rAAT more akin to human AAT. Transduction 
of mammalian cell lines with a lentiviral gene 
delivery system can be successful in producing 
large amounts of recombinant human AAT30 but, 
unfortunately, mammalian expression systems 
are complex, costly, time-consuming and associ-
ated with limitations in protein yield.43

Inhalation AAT therapy
Early studies have reported that, in addition to 
the expense and inconvenience of IV AAT ther-
apy, only 2–3% of IV AAT reaches the lungs.44 
Therefore, inhalation therapy has been studied in 
order to deliver AAT directly to the lungs; a 
method that has attracted a high level of interest 
from patients with AATD.45 A study from as far 
back as the late 1980s demonstrated that inhaled 
AAT can increase AAT levels in the lung epithe-
lial lining fluid in patients with severe AATD 
(PI*ZZ) from 0.28 µM to 5.86 µM.46 Since then, 
little has been reported on aerosolized AAT ther-
apy in patients with AATD, and IV AAT therapy 
has been the standard method of administration. 
However, as we are now looking to further 
improve the lives of patients with AATD,5 inhala-
tion therapy is gaining more momentum.

In 2001, it was shown that more AAT reaches the 
lungs via inhalation than through the IV route 
(14.6% versus 2%, respectively),47 further con-
firming that inhalation therapy may be a more 
convenient route of AAT administration. It has 
also been suggested that inhalation therapy may 
lead to improved mobility and improved quality 
of life for patients who are currently restricted by 
the need for frequent IV AAT infusions.47 The 
improved delivery of AAT via the lungs may also 
reduce healthcare costs.47 However, there are 
concerns about clinical efficacy of inhalation as a 
delivery method because in 2019 a clinical trial 
suggested there was no associated reduction in 
exacerbation frequency.48 The randomized pla-
cebo-controlled clinical trial was conducted in 
168 patients with AATD (PI*ZZ) and severe 
chronic obstructive pulmonary disease (COPD), 
who experienced frequent exacerbations. Results 
demonstrated that AAT inhalation therapy had 
no effect on the time to first exacerbation during 
50 weeks of treatment.48 The time to the first 
moderate/severe exacerbation was a median of 
112 days for patients receiving inhaled AAT and 
140 days for placebo treatment.48 Furthermore, 

patients receiving AAT reported more treatment-
related adverse events (such as dyspnea, cough, 
respiratory tract infection, and nausea) compared 
with placebo (57.5% versus 46.9%, respec-
tively).48 Following improvements in the handling 
of the AAT and nebulizer, the safety profile of the 
AAT treatment group became similar to that of 
the placebo group, resembling the results reported 
in the IV AAT study (RAPID19).48 Nevertheless, 
a prospective phase III trial is currently underway 
to determine the efficacy and safety of AAT inha-
lation therapy in patients with AATD.49 The trial 
is expected to end in 2023 and is being conducted 
in patients with AATD who have moderate air-
flow limitation [forced expiratory volume in 1 s 
(FEV1) ⩽50–80% of predicted] and an FEV1/
slow vital capacity ⩽70%.49 At least 220 patients 
are expected to be enrolled in the study. After 4 
weeks of practicing with the nebulizer, patients 
will be randomized to either 80 mg/day AAT 
inhalation or placebo for 104 weeks.49 During the 
study, inhaled AAT will be evaluated by lung 
function assessment via blood tests and computed 
tomography (CT) densitometry.49 Information 
on the utility of CT densitometry in AATD stud-
ies can be found in this series’ chapter on imaging 
in AATD by Huang et al.50

Epigenetics and genetic modifiers
The variable nature of AATD and its strong influ-
ence by environmental exposures and lifestyle 
factors implicate a major role for epigenetic regu-
lation in the pathophysiology of AATD. 
Epigenetic traits are stably heritable phenotypes 
resulting from changes in chromosomes without 
alterations in DNA sequence.51 DNA methyla-
tion is an epigenetic trait usually associated with 
silencing gene expression,52 and there is evidence 
of altered methylation patterns in patients with 
AATD, particularly in smokers. In a study of 316 
patients with AATD (PI*ZZ), methylation of 16 
methylation sites demonstrated significant asso-
ciation with ever-smoking and a younger age at 
smoking initiation, highlighting the harmful effect 
of smoking for patients with AATD.53 Examples 
of epigenetic changes that are affected by smok-
ing are shown in Figure 1.

Cigarette smoke is particularly harmful in 
patients with severe AATD (e.g., PI*ZZ). 
Cigarette smoke induces oxidation of AAT and 
accelerates polymerization of mutant AAT, 
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inactivating the anti-elastase function whilst 
simultaneously creating a proinflammatory envi-
ronment that reduces pulmonary defenses and 
increases neutrophil influx into the lungs.55 
Blocking cigarette smoke-induced oxidation with 
N-acetyl cysteine, a potent antioxidant, has been 
shown to prevent oxidation-induced polymeriza-
tion of mutant AAT, potentially suggesting a 
novel anti-oxidative therapeutic strategy for 
treating AATD.55

Modifier genes have also been reported for 
AATD. Two examples of genes that have been 
shown to be associated with lung function pheno-
types in patients with AATD are cholinergic 
receptor nicotinic alpha 3 subunit (CHRNA3), 
which encodes a ligand-gated ion channel 
involved in neurotransmission, and iron respon-
sive element binding protein 2 (IREB2), an RNA-
binding protein involved in iron homeostasis. In 
the AAT Genetic Modifiers Study, single nucleo-
tide polymorphisms (SNPs) in both CHRNA3 
and IREB2 were shown to be associated with dif-
ferent lung function phenotypes in individuals 
with AATD, all of whom had the PI*ZZ AATD 
genotype.56 The AAT Genetic Modifiers Study 
also suggested a potential sex-specific effect of 
these SNPs as they were significantly associated 
with lung function phenotypes in the male 

subgroup (p=0.02 and p=0.03 for CHRNA3 and 
IREB2, respectively), but not the female 
subgroup.56

The vitamin D-binding protein (DBP) may also 
play a role in AATD. The DPG gene, group-spe-
cific complement (GC), is highly polymorphic, 
with three common variants and over 120 rare 
variants.57 One of these DBP variants, the GC2 
variant, which is less able to activate macrophages, 
has been shown to be associated with a decreased 
risk of COPD (p=0.05).58 However, the same 
variant has been associated with an increased risk 
of bronchiectasis in patients with AATD 
(p=0.04).58 Further studies will be required to 
ascertain whether vitamin D supplementation 
will be beneficial for patients with AATD.

Whole exome sequencing (WES), a technique for 
sequencing all protein-coding regions of genes 
within the genome, has now enabled further iden-
tification of genes that may be involved in the 
development or suppression of AATD. In a study 
of four families with severe AATD (PI*ZZ or 
PI*Z/Q0Brescia), WES identified 14 genes in a 
recessive model (PI*Z homozygosity) and 21 
genes in a dominant model (PI*Z heterozygosity) 
of AATD that influence the risk of AATD devel-
opment or avoidance.59 Among these genes, of 
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related pulmonary biological activity mostly occur through DNA methylation, histone modification, and 
microRNAs.
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Source: Adapted with permission from Hu and Ren.54
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particular interest was the rs3747517 variant of 
interferon-induced with helicase C domain 1 
(IFIH1),59 a gene strongly associated with suscep-
tibility to autoimmune diseases, such as type I 
diabetes and multiple sclerosis.60,61 However, a 
genome-wide association study (GWAS) of lung 
function has yet to be performed in patients with 
AATD. Such a study could potentially determine 
whether genetic factors of lung function in the 
general population overlap with those in AATD.62 
As the heterogeneity of lung function in AATD is 
partially attributable to genetics (which is further 
discussed in an earlier chapter of this review 
series),63 further discovery of genetic modifiers of 
lung disease via GWAS could provide a greater 
understanding of AATD’s variable clinical 
presentation.62

Emerging treatments
Gene repair strategies. Gene repair technology, 
such as CRISPR-Cas9 [clustered regularly inter-
spersed short palindromic repeats (CRISPR) 

associated nuclease 9] is revolutionizing many 
areas of medical research, such as human immu-
nodeficiency virus and hepatitis B virus infection, 
as well as monogenic diseases such as Duchenne 
muscular dystrophy.64 CRISPR, therefore, repre-
sents an exciting approach that could be key to 
solving both lung and liver consequences of 
AATD (Figure 2).65 In AATD mouse models, 
PI*ZZ mice show evidence of liver disease rever-
sal upon successful gene editing via CRISPR, in 
addition to reduced mutant Z protein aggregation 
and restoration of modest levels of normal AAT 
expression.32,33

Besides CRISPR-Cas9, another method of gene 
therapy is the use of recombinant adeno-associ-
ated viral (rAAV) vectors to deliver the normal 
AAT gene (SERPINA1) to patients with PI*ZZ 
AATD. In a phase I clinical trial, rAAV vectors 
expressing normal AAT protein were injected 
intra-muscularly into nine patients with the PI*ZZ 
genotype.66 The approach was associated with a 
positive safety profile and prolonged duration of 
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Figure 2. CRISPR-Cas9 to insert normal SERPINA1 into the genome of patients with the PI*ZZ gene mutation. 
The CRISPR-Cas9 method could be used to insert the gene for normal human AAT (SERPINA1) into the 
genomic DNA of patients with the PI*ZZ genotype. A guide RNA would target the insertion site, allowing the 
Cas9 endonuclease enzyme to cut host genomic DNA at specific PAM sequences. The repair sequence, in this 
case the normal SERPINA1, can then be inserted into genomic DNA of patients with PI*ZZ, allowing translation 
of normal PI*MM AAT.32,65

AAT, alpha-1 antitrypsin; Cas9, CRISPR-associated protein 9; CRISPR, clustered regularly interspaced short palindromic 
repeats; PAM, protospacer adjacent motif; PI, protease inhibitor.
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normal AAT protein expression; however, serum 
AAT levels were more than 200-fold below the 
putative therapeutic target of 11 µM.66 A phase II 
trial using a rAAV designed to generate a substan-
tial increase in normal AAT expression still pro-
duced normal AAT levels below the therapeutic 
target.67 Together, these studies show that rAAV-
AAT vectors require further improvements to 
achieve target AAT concentrations required for 
therapeutic success.

An alternative to vector-based delivery of 
SERPINA1 is to use cell transplantation. In a 
PI*ZZ mouse model, engrafted wild-type hepato-
cytes spontaneously proliferated preferentially 
over host hepatocytes, replacing them by 20–
98%, and this repopulation was accelerated by 
injection of an adenovector-expressing hepato-
cyte growth factor.68 This method of hepatocyte 
transplantation could potentially be an effective 
therapy for patients with and without severe liver 
disease.68

Human induced pluripotent stem cells (hiPSCs) 
derived from dermal fibroblasts from individuals 
with AATD are also being studied to advance the 
development of therapy for AATD. These cells 
have been used to generate patient-specific stem 
cell lines that have been differentiated into hepat-
ocytes, enabling recapitulation of hepatic AAT 
protein folding to aid modeling of AATD’s path-
ological dysregulation of protein misfolding and 
therapeutic responses/toxicities to new pharma-
cological agents.69,70 hiPSCs have also been used 
in a proof-of-concept study on genetic correction, 
demonstrating that zinc finger nucleases in com-
bination with the piggyBac gene editing technique 
can restore the normal structure, function, and 
secretion of AAT in subsequently derived hepato-
cytes, both in vitro and in vivo.71

Chaperones and synthetics. As an alternative to 
gene therapy, use of chemical chaperones to 
improve proper folding of mutant AAT protein is 
being investigated. 4-phenyl butyrate (4PBA) was 
the most effective chemical chaperone in one 
study designed to increase the secretion of func-
tionally active PI*ZZ AAT in a human cell culture 
model.72 The chemical chaperone was also well 
tolerated in PI*ZZ mice, consistently increasing 
serum AAT levels up to 50% of those in normal 
humans and mice.72 Furthermore, 4PBA is well 
tolerated in humans and therefore satisfies many 

of the criteria required for a potential chemopro-
phylactic tool for lung and liver injury in AATD.72 
On this basis, a pilot in-human trial was con-
ducted, but no effect on AAT secretion was 
detected, likely due to an inability to safely achieve 
the therapeutic levels of 4PBA described in the 
PI*ZZ mouse model.73 A major limitation of the 
chemical chaperone approach is the sheer mass of 
chemical chaperone required to be delivered to 
the hepatocyte endoplasmic reticulum.74

In November 2019 a phase II trial was initiated to 
determine the efficacy and safety of facilitating 
proper folding of the PI*ZZ variant of AAT via 
oral delivery of an experimental protein chaper-
one (VX-814).75 The oral delivery route has the 
benefit of being a less invasive drug delivery 
method than IV administration and is also associ-
ated with good patient compliance.76 However, 
the VX-814 trial was terminated in October 2020 
at the sponsor’s discretion as it was not feasible to 
safely reach targeted VX-814 exposure levels to 
provide a meaningful increase in levels of AAT.77

Synthetic peptides are also being investigated for 
the treatment of AATD. A 6-mer peptide corre-
sponding to the P7-2 sequence of the AAT reactive 
loop has been demonstrated to completely inhibit 
polymerization of the Z forms of AAT, without 
any inhibitory effect on the normal form of 
AAT.78 This molecule therefore has potential to 
prevent the intracellular accumulation of Z AAT 
within hepatocytes and therefore treat AATD-
associated liver disease.78 However, this approach 
may result in the release of Z AAT proteins into 
the circulation and so would not address the need 
to increase levels of functional serum AAT; AAT 
replacement therapy would still be required.

Monoclonal antibodies have been developed to 
detect mutant conformations of AAT to help 
quantify levels of mutant AAT in biological sam-
ples and aid the development of small molecules 
to block polymerization.79,80 Intracellularly 
expressed antibody fragments (intrabodies) are 
emerging as one approach to modulate the  
function of targets in different intracellular  
compartments.81 One such intrabody is scFv4B12, 
a single-chain variable fragment of the 4B12 
monoclonal antibody that has been shown to pre-
vent intracellular polymerization of PI*ZZ AAT 
and increase its hepatic secretion, while retaining 
neutrophil elastase inhibitory function.82 Another 
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intrabody has been developed that can not only 
inhibit the intracellular polymerization of Z AAT 
but also, when bound to Z AAT, allows the pro-
tein to retain almost two-thirds of its inhibitory 
activity against neutrophil elastase (NE).82 The 
results with scFv4B12KDEL have been demon-
strated only in vitro so-far but provide another 
step forward in the use of intrabodies for AATD 
treatment.

Finding a molecule that can bind to Z AAT, pre-
vent polymerization, and restore NE inhibitory 
function both in vitro and in vivo is challenging, 
but the use of structure-based drug design is being 
employed to identify molecules that can bind to Z 
AAT in such a way to achieve this desired func-
tion. In silico ligand screening of 1.2 million small 
molecules has identified six compounds that 
reduced Z AAT polymer formation in vitro and 10 
compounds that completely blocked PI*ZZ 
polymerization.83 The lead compound identified 
in this study, CG, was also found to be highly 
selective and non-promiscuous, and therefore less 
likely to have unwanted off-target effects.83

Interference strategies. Further strategies for 
future AATD therapy include several methods 
that interfere with AATD pathogenesis. RNA 
interference (RNAi) strategies include small 
interfering RNA molecules that can disrupt 
mutant AAT polymerization/degradation and 
manipulate autophagy for the treatment of liver 
disease in patients with AATD. Several applica-
tions of RNAi technology are currently underway 
with the aim of preventing synthesis of the Z form 
of AAT to prevent toxic hepatic accumulation and 
subsequent liver injury. Phase I/II and phase II/III 
clinical trials utilizing RNA silencing to prevent Z 
AAT protein synthesis as a therapy for AATD are 
now underway in Europe,84 and the US.85 These 
trials are expected to end in 2022 and 2023, 
respectively.

As discussed within the first chapter of this review 
series by Tejwani and Stoller,3 the main damage 
inflicted on the AATD patient’s lung is through a 
proinflammatory imbalance of proteases, NE in 
particular. NE is one of the major proteases 
involved in a range of conditions, such as com-
munity-acquired and ventilator-associated pneu-
monia, acute lung injury and acute respiratory 
distress syndrome, exacerbated COPD, cystic 
fibrosis, and bronchiectasis.86 In AATD, the 
involvement of NE and other proteases is rather 

complex, and the inability of IV AAT therapy to 
completely block emphysema progression in 
AATD suggests that alternative processes play a 
role in disease progression.87 Nevertheless, NE 
inhibitors are being investigated for treatment of 
AATD. As a proof-of-concept study to investi-
gate the mechanistic effect and the safety of an 
orally administered NE inhibitor, PI*ZZ/PI*SZ/
PI*Null patients in the US are being treated over 
a period of 12 weeks, with an additional aim of 
investigating whether the treatment can reduce 
lung damage and slow disease progression.88 The 
study is expected to be completed in August 
2021. However, the role that other enzymes play 
in AATD-specific inflammatory processes war-
rants further investigation.

Biomarkers
Along with research into new treatments for 
AATD, there is also extensive research into new 
ways of testing AATD treatment efficacy, which is 
currently measured in the clinic using spirometry 
and CT-based lung density assessment.89 In addi-
tion, biomarkers can also be reliable measures of 
treatment efficacy. Serum gamma glutamyl trans-
ferase (GGT) is frequently used as a biomarker of 
liver disease but may be particularly useful as a 
biomarker in AATD as it has been shown to be 
widely elevated in patients with the PI*ZZ  
genotype.90 The relationship between serum 
GGT, lung disease, liver disease, and mortality in 
patients with AATD is independently associated 
with airflow obstruction and mortality.90 Although 
not specific to AATD, in patients with COPD, 
several markers such as chemokine (C-C motif) 
ligand 18 (CCL-18), C-reactive protein, fibrino-
gen, interleukin (IL)-6, IL-8, surfactant protein 
D, and white blood cell counts are all elevated in 
non-survivors compared with survivors, and are 
specifically associated with patient mortality over 3 
years.91 In addition, elevated levels of plasma 
fibrinogen, another glycoprotein synthesized in 
hepatocytes, is associated with a risk of COPD and 
other inflammatory diseases.92,93 In AATD specifi-
cally, a fibrinogen degradation product (Aα-Val360) 
has been found to be increased in patients  
with AATD, and positively correlated with spiro-
metric severity of AATD lung disease, as well as  
sputum elastase activity in acute exacerbations.94 
Furthermore, Aα-Val360 levels are decreased  
in patients receiving IV AAT therapy and it is, 
therefore, a potential biomarker of treatment 
response.94
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Levels of desmosine and isodesmosine (DES/
IDES; markers of elastin degradation) are also 
elevated in AATD and non-AATD COPD and, 
like Aα-Val360, can be utilized as biomarkers of 
AAT therapy response. DES/IDES plasma levels 
have been shown to be significantly reduced in 
patients receiving AAT therapy (p<0.001)95 and 
in bronchoalveolar lavage fluid from patients 
receiving double dose AAT therapy (p=0.050).96 
Levels of proteinase 3 (PR3) could be another 
potential biomarker for AATD. PR3, like AAT, is 
a serine proteinase and is released by neutrophil 
azurophilic granules along with NE following 
neutrophil activation.97 Cleavage of fibrinogen 
with PR3 produces several fragments, one of 
which, Aα-Val541, can be detected in plasma from 
patients with AATD.98 An enzyme-linked immu-
nosorbent assay (ELISA) for Aα-Val541 per-
formed in sera from patients with AATD (PI*ZZ 
and PI*SZ) has shown that levels of Aα-Val541 are 
much higher (~17 times higher) than those of Aα-
Val360,98 and therefore it may be a more sensitive 
biomarker than Aα-Val360. The Aα-Val541 ELISA 
was also sensitive to augmentation therapy and 
therefore also represents a potential biomarker for 
AAT dose-ranging studies.98

The tumor necrosis factor-alpha (TNF-α) gene 
represents a potential genetic biomarker for AATD. 
TNF-α is a pro-inflammatory cytokine that has 
been implicated in the pathophysiology of several 
pulmonary diseases, such as asthma, chronic bron-
chitis, and COPD.99 Levels of inflammation have 
been demonstrated to be higher in patients with 
AATD compared with non-AATD-related 
COPD,100 and AAT has also been shown to down-
regulate TNF-α gene expression.101 Wood and col-
leagues hypothesized that TNF-α may play a role 
in AATD; however, they found no association 
between TNF-α levels and disease severity as 
measured by lung function assessment or high- 
resolution CT in 424 individuals with PI*ZZ 
AATD genotype.102 Instead, Wood et al., demon-
strated that a single nucleotide polymorphism in the 
TNF-α gene (rs361525) was significantly associ-
ated with patients with AATD and chronic bronchi-
tis (p=0.01).102 SNPs in SERPINA1 may therefore 
not be the only genetic variants associated with 
AATD. An overview of the SNPs in SERPINA1 
variants associated with AATD is further described 
by Foil63 in a separate chapter of this review series.

Circulating free light chains (FLCs) of antibodies 
produced during an immune response are markers 

of adaptive immune activation and are clinically 
relevant biomarkers of several autoimmune  
diseases.103 Increased FLC levels have also been 
reported in asthma and COPD.104,105 In AATD, 
patients that have chronically colonized sputum 
cultures have significantly higher FLC levels com-
pared with patients with no positive cultures 
(p=0.008).106 Furthermore, in severe AATD, 
increased FLC levels were significantly associated 
with mortality (p=0.001), indicating that FLCs 
could play a role in the risk-stratification of 
patients requiring more intensive monitoring and 
disease management.106

MicroRNAs (miRNAs) primarily act as regula-
tory molecules for gene expression in normal 
physiology, but also play important roles in path-
ological processes in a wide variety of diseases, 
such as cancer,107 cardiovascular disease,108 
rheumatic diseases,109 and age-related diseases, 
such as osteoarthritis.110 In a preliminary study, 
nine miRNAs were found to be significantly 
down-regulated in patients with AATD, which 
may provide the opportunity for miRNA-based 
monitoring of lung and liver disease associated 
with AATD.111

Conclusions
Alternatives to IV AAT therapy with different 
modes of action are being investigated. In the 
short-term, use of chaperones could be a promis-
ing new treatment, providing that researchers can 
overcome the current requirement for large quan-
tities of chaperones for an effective outcome. Use 
of in silico ligand screening may also prove to be a 
valuable tool in designing new molecules that 
interfere with AATD pathogenesis. In the long- 
term, hepatocyte replacement and CRISPR strat-
egies would be greatly beneficial, as these methods 
would allow simultaneous treatment of both lung 
and liver disease associated with AATD. There 
are also new biomarkers being identified that may 
indicate levels of disease progression and response 
to therapy. However, it may be several years 
before any new therapies enter the market. At 
present, IV AAT therapy remains the only avail-
able disease-modifying and well tolerated phar-
macological intervention for AATD.
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