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Life requires the maintenance of molecular function in the face of stochastic

processes that tend to adversely affect macromolecular integrity. This is par-

ticularly relevant during ageing, as many cellular functions decline with age,

including growth, mitochondrial function and energy metabolism. Protein

synthesis must deliver functional proteins at all times, implying that the

effects of protein synthesis errors like amino acid misincorporation and

stop-codon read-through must be minimized during ageing. Here we

show that loss of translational accuracy accelerates the loss of viability in

stationary phase yeast. Since reduced translational accuracy also reduces

the folding competence of at least some proteins, we hypothesize that nega-

tive interactions between translational errors and age-related protein

damage together overwhelm the cellular chaperone network. We further

show that multiple cellular signalling networks control basal error rates in

yeast cells, including a ROS signal controlled by mitochondrial activity,

and the Ras pathway. Together, our findings indicate that signalling path-

ways regulating growth, protein homeostasis and energy metabolism may

jointly safeguard accurate protein synthesis during healthy ageing.
1. Introduction
Textbook descriptions of the genetic code depict a static information transfer

system in which codons encode a single amino acid. In reality, however, the

power of the translational machinery to distinguish correct amino acids from

incorrect ones is not absolute, and errors in the decoding process can, therefore,

occur. Error levels are generally low with measured amino acid misincorpora-

tion frequencies in eukaryotes of 1023 to 1026, depending on the organism and

codon in question [1–4]. Other types of translational error, such as stop-codon

read-through or ribosomal frame-shifting, occur at similarly low levels

(typically much below 1%).

Although error levels are low, they are not negligible: studies on sequence

evolution have revealed that organisms prefer less error-prone codons at struc-

turally sensitive sites [5,6], suggesting that natural amino acid misincorporation

levels affect protein function sufficiently to allow evolutionary selection. In this

context, it is worth noting that error frequencies cited in the literature refer to

incorporation of a single non-cognate amino acid at individual codons, but

it is currently unknown how high total misincorporation levels of all

19 non-cognate amino acids are for any codon.

Translational errors are relatively well understood in terms of their bio-

physical origin. Two important mechanisms leading to amino acid

misincorporation are the catalysis of peptidyl-transfer by the ribosome even

though the anticodon of the A-site tRNA does not fully match the codon
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(codon misreading), and the charging of tRNAs with inap-

propriate amino acids (misacylation). The biochemistry of

misincorporation at both levels has been studied in detail

(e.g. [7,8]), and these data allow a limited prediction of types

and rates of errors occurring on specific codons in vivo [3,9].

Translational errors generally have negative consequences

for the cell. Random amino acid substitutions in proteins

have a wide variety of effects depending on the site and

type of substitution, but the average outcome of such substi-

tutions is a loss of function [10]. Error levels observed under

physiological conditions are generally compatible with protein

function, but at structurally particularly sensitive sites of some

proteins only the least error-prone codons appear to result in

appropriate protein activity [5,6]. Error levels that are

increased beyond the normal physiological range cause pro-

teotoxic stress [11] and induce stress responses [12], although

they can be tolerated and even adapted to in baker’s yeast.

However, such adaptation diverts energy and comes at the

cost of other evolutionary trade-offs [13].

Despite the generally negative consequences of transla-

tional errors, evolution has exploited specific types of error

and incorporated them into biological pathways. For

example, in Candida albicans, stochastic decoding of CUG as

either serine or leucine increases phenotypic diversity [14].

Despite our good understanding of the biochemical

sources of errors, we know little about their physiological

regulation. Anecdotal evidence suggests that error levels are

not static but respond to regulatory input from signalling

pathways [15,16]. This suggests that cells can actively

manage error levels depending on requirements. Here, we

ask how translational errors interact with the particular

demands on protein quality in ageing baker’s yeast. We

uncover evidence for a complex regulatory programme that

controls translational errors, thereby protecting proteome

integrity and cell viability during early ageing.
2. Results
2.1. High-level translational errors are incompatible

with healthy ageing
In order to investigate the effect of translational errors on the

rate of ageing, we initially investigated the effect of the error-

inducing drug paromomycin. In initial pilot experiments, we

selected a working concentration at which the logarithmic

growth rate is reduced by less than 5% (figure 1a), which

we reasoned would be sufficient to elicit observable pheno-

types, but would avoid approaching non-physiological

levels of errors that would simply kill the cells. Using an

established dual luciferase reporter system for measuring

stop-codon read-through and amino acid misincorporation

[2], we determined that at this concentration, stop-codon

read-through on UAGC stop codons is increased about five-

fold, whereas amino acid misincorporation is increased about

threefold (figure 1b).

Despite the small effect of paromomycin at this concen-

tration on growth rates, we observed a strong effect on

chronological lifespan in wild-type yeast cells (figure 1c). In

these assays, we distinguished live and dead cells via the abil-

ity of live cells to exclude the stain phloxine B, which stains

dead cells bright pink [17]. With strain BY4741 grown in

2Ura dropout medium, the proportion of phloxine B
excluding cells dropped over time with an average half-life

of 8–10 days. In the presence of the drug, this was signifi-

cantly shortened to a half-life of 2–3 days. Interestingly, we

observed that paromomycin at this concentration did not

affect the cells’ ability to survive heat shock, a condition

that also leads to transient denaturation and aggregation

of proteins (figure 1d ), as survival of the cells following a

10-min incubation at 498C was not significantly affected.

Thus, an increase in translation error induced by paromomy-

cin treatment has a specific and strong effect on yeast ageing

that is separable from its effects on growth rate and the

heat-shock response.

To confirm that the faster ageing phenotype was caused

by effects of translational errors, we repeated these exper-

iments with another error-inducing drug, nourseothricin,

with similar results (data not shown). In addition, we also

repeated the experiments with genetic modifiers of error

levels. For this work, we used several SUP38 mutants,

obtained from the Yeast Genetic Resource Centre (Japan),

which in the literature had been described as allelic to

SUP44/RPS2 [18]. When we amplified the RPS2 gene of the

respective strains by PCR and sequenced the recovered

DNA, we observed that the SUP38-5 mutant encoded a

Y143C variant of the Rps2 protein, whereas the SUP38-8
and SUP38-9 mutants encoded an L148S variant. Interest-

ingly, in the structure of RPS2 these two mutations are

located on the opposite face of the site of other known

SUP44 and SUP46 (RPS9) accuracy mutants, which are all

situated near the Rps2/Rps9 interface (figure 2a).

In order to quantify the effect of these mutants on transla-

tional accuracy, we constructed plasmids containing the

wild-type and SUP38 alleles of RPS2 including the natural

RPS2 regulatory sequences, and then introduced these plas-

mids into a previously described RPS2 shuffling strain [15].

Strains containing the SUP38 mutants as the sole source of

Rps2 showed a significantly reduced growth rate (72% and

61% of the wt growth rate for SUP38-5 and SUP38-8, respect-

ively), as well as a lower final biomass and longer lag phase

(figure 2b), and strongly increased levels of stop-codon read-

through and amino acid misincorporation (figure 2c). Both

mutants also affected viability following the logarithmic

growth phase, with linear losses in viability from day 1,

whereas the strain containing wild-type Rps2 only showed

notable loss in viability from day 4 onwards (figure 2d ).

Interestingly, although the rps2 mutants affected accuracy

and growth more strongly than the paromomycin treatment,

the mutants affected ageing quantitatively less strongly.

A number of issues may have contributed to this apparent

discrepancy. For each of the 61 sense codons, there are 19

possibilities of incorporating amino acids, and the luciferase

reporter systems only allow us to evaluate two of these

more than 1000 error combinations. Paromomycin and rps2
mutations may affect particular translational errors in differ-

ent ways and the average error induced by these treatments

may differ from the error reported by the luciferase con-

structs. Moreover, the RPS2 shuffling strain was constructed

in a different strain background (W303) from the strain

used in the paromomycin experiments (BY4741). The two

strains show distinct differences in their ageing behaviour,

which may further explain why the levels of observed

errors and the effect on ageing do not correlate quantitatively.

Other explanations for the lack of correlation may include

pleiotropic effects of error-inducing drugs, which exacerbate
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Figure 1. Paromomycin-induced translational errors accelerate loss of viability during ageing. All panels show data for a laboratory yeast strain (BY4741) transformed
to Uraþ and grown in SC2Ura medium, with or without 0.5 mg ml21 paromomycin (data in grey and black, respectively). (a) At this paromomycin concentration,
the logarithmic growth rate is reduced by less than 5%. Curves shown represent typical replicates from four independently grown transformants. (b) Under par-
omomycin treatment, stop-codon read-through is increased fivefold and amino acid misincorporation threefold compared with non-treated cells. Bars indicate
average and standard deviation for eight separate transformants. (c) Survival of cells in culture was assessed by determining the percentage of cells able to exclude
phloxine B. Paromomycin-treated cells lose viability faster than non-treated cells. Shown are averaged data obtained with three separate transformants for
each condition. (d ) Paromomycin treatment does not significantly affect survival of a heat stress. Bars represent average and standard deviation from three
separate transformants. In all panels, statistical significance as determined by one-way ANOVA and post hoc testing (Tukey’s HSD) is indicated as follows: n.s.,
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the ageing effect beyond that expected purely from the

translational errors induced by them.

Recently, deletion of an rRNA cytosine methyltransferase

(NSUN5/RCM1) was shown to reduce translational accu-

racy yet increase lifespan in yeast, worms and flies [19].

Because in that work stop-codon read-through was the

only translational error assessed, we assayed amino acid

misincorporation levels in the rcm1 deletion strain with our

suite of dual luciferase reporters (electronic supplementary

material, figure S1). The results show that translational accu-

racy in the rcm1 deletion strain is generally higher than wild-

type under the conditions we used, and is moreover selec-

tive as the rcm1 strain does not show any changes in

accuracy for the AGG!Lys miscoding event. It is possible

that differences in levels and types of translational inaccur-

acy between the rcm1 deletion and our conditions cause

the differential effects on lifespan and stress responses. How-

ever, as a minimum interpretation of our results, we conclude

that significant levels of general amino acid misincorporation

interfere with healthy ageing, in multiple strain backgrounds.

These results with translational errors mirror the results

obtained by others for transcriptional errors [20].
2.2. Age-dependent defects in protein folding are
exacerbated by translational inaccuracy

The observed negative effects of reduced translational accu-

racy on ageing are consistent with our general knowledge
on the interaction between translational fidelity and protein

function. Random misincorporation of amino acids into

proteins is known to result in a net reduction of folding

competence [10]. The ageing proteome requires substantial

assistance from molecular chaperones, some of which are

upregulated in ageing cells (figure 3a). As the cellular pro-

teome adapts to stationary phase in yeast, levels of most

proteins in the cell decline as exemplified by Hsp90 and

Ydj1 in figure 3a. By contrast, chaperones like Hsp104

and Sis1 remain highly expressed, and specialized chaper-

ones like Hsp26 become substantially upregulated with

age. These changes in chaperone expression are thought

to provide a more folding-supportive environment which

is crucial for supporting the function of difficult-to-fold

proteins. This is directly illustrated in the classic luciferase

refolding assay [21], which assesses the refolding of a heat-

denatured bacterial luciferase following thermal unfolding

in the absence of protein synthesis (achieved by addition

of cycloheximide). Refolding is observed in wild-type

cells, but is fully abrogated in the absence of Hsp104, as

previously reported (figure 3b). Besides chaperone assist-

ance, physiological levels of translational fidelity are also

crucial for protein re-folding, as the application of

paromomycin at the same concentration as used for exper-

iments in figure 1 prevents luciferase refolding even in the

presence of Hsp104 (figure 3b, black solid line).

Besides interfering with the refolding of a model protein,

paromomycin also generates more general problems with pro-

teome integrity. In a strain in which Hsp104 is GFP-tagged,
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application of paromomycin produces GFP-decorated aggre-

gates consistent with the appearance of more widespread

protein aggregation (figure 3c). Together, these results

demonstrate that drug-induced translational errors impair

the folding competence of the proteome, and that this chal-

lenges the same molecular chaperone network that is also

upregulated during ageing.

To provide direct proof for an interaction between transla-

tional errors and the chaperone system during ageing, we

assessed yeast ageing under the combined treatment of

chaperone deletion and application of paromomycin

(figure 3d). In an hsp104 deletion strain, we did indeed observe

that the viability 4 days post inoculation is reduced compared

to the effect of paromomycin on a wild-type strain. Moreover,

we observed similar interactions with Hsp70 family members

and these were surprisingly isoform-specific, with deletion of

the SSA4 gene, but not of the SSA1 gene, producing a

highly significant interaction with paromomycin treatment

( p ¼ 0.96 for ssa1, p ¼ 0.005 for ssa4).

In summary, we demonstrate that chaperone levels are

upregulated during cellular ageing, that translational inaccur-

acy interferes with chaperone-dependent protein folding and

that impairment of chaperones and reduced translational

accuracy interact genetically to reduce fitness during

ageing. Both ageing and translational inaccuracy appear to

reduce the folding competence of the proteome, and require

increased reliance on specialized chaperone networks to pro-

tect proteome integrity. The combined effect of translational
errors and age-related problems with protein folding poten-

tially may overwhelm the chaperone machinery, which

provides a rationale for the reduced viability under high

error conditions during ageing.
2.3. The effect of ageing-dependent physiological
parameters on translational accuracy

A substantial number of physiological parameters are known

to change during ageing; however, all data available to date

indicate that translational accuracy itself remains relatively

constant with age in all investigated systems [22–25]. The

available data are limited by the fact that all previous inves-

tigations into ageing and translational accuracy focused on

the chronological mode of cell ageing. Since gene deletions

affecting chronological and replicative ageing show little

overlap [26], we reasoned that accuracy effects might also

differ between these two modes of ageing, and therefore

measured accuracy for the first time in replicatively ageing

cells. To do this, we separated cells transformed with the

dual luciferase reporters of different replicative ages via cen-

trifugal elutriation [27], and then conducted luciferase assays

on the different fractions. Consistent with all previous studies

on chronological ageing, we did not observe significant

changes in translational accuracy in cells of different replica-

tive age (figure 4). These findings are intriguing because

many individual processes known to be affected by ageing
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have been linked to altered translational accuracy. How accu-

racy is maintained in the face of widespread changes to

cellular physiology is thus not understood.

One particularly intriguing question concerns the inter-

play between translational accuracy and translational speed.

About half of the demand on the translational machinery in

yeast growing exponentially in rich medium is required to

produce protein for growth [28]. Ageing cells in stationary

phase do not have this requirement, and together with the

generally reduced protein content of such cells, the demand

on the translational machinery should be a fraction of that

required during logarithmic growth.

An intuitive assumption found in several places in the lit-

erature is that slower ribosomes translate more accurately, and

one study produced experimental evidence for this hypothesis

[29]. However, older experimental studies based on the incor-

poration of leucine during translation of poly(U) RNA in vitro
found the opposite relationship, i.e. the translational machin-

ery is more accurate the more active it is (summarized in [30]).

In order to investigate the relationship between growth

rates, translational activity and translational speed, we

initially used a competitive inhibitor of glycolysis.
Glucosamine can be used to control logarithmic growth

rates of yeast over a wide range [31] (figure 5a). When we

applied the luciferase reporter measurements to cells grown

with varying concentrations of glucosamine, we observed

that stop-codon read-through on UAGC stop codons dis-

played a strong negative correlation with growth rates

(figure 5b), increasing about twofold at the lowest growth

rates measured (which are approximately 10-fold slower

than growth rates in standard medium). By contrast, amino

acid misincorporation as measured using two distinct repor-

ters remained constant over a wide range of growth rates

(figure 5c,d). At the very lowest growth rates, we observed a

decrease in misincorporation rates with both reporters,

consistent with increased accuracy at such low growth speeds.

Next, we directly manipulated translational speed by either

altering the levels of translation elongation factors, or by

applying drugs that interfere with efficient translation

elongation. In a Dtef1/TEF2 yeast strain where one of the two

identical genes encoding elongation factor 1A has been

deleted, and where Tef1 levels are reduced by 40% (data not

shown), we observe lower levels of amino acid misincorpora-

tion (figure 6). By contrast, in an EFT1/Deft2 strain where
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levels of elongation factor 2 are lower and the speed of trans-

location is therefore reduced, we observed a significant

decrease in the accuracy of translation and higher levels

of misincorporation. Application of cycloheximide at a concen-

tration that leads to a 20% reduction in growth, and which

mimics eEF2 depletion as cycloheximide is also a translocation

inhibitor, had a similar effect as reductions in eEF2 content.

Overall, our experiments paint a varied picture of the con-

nection between translational speed and translational

accuracy, but they do not reveal a clear correlation between

the two. Very low growth rates appear to reduce amino

acid misincorporation, although the effect was overall of bor-

derline significance with p ¼ 0.20 for His misincorporation on

CGC codons and p ¼ 0.02 for Lys misincorporation on AGG.

This could indicate that at such low or zero growth rates, cel-

lular signals operate that reduce translational errors, and that

such signals trigger modifications in ribosomal function that

can counteract the reduced efficiency one might expect to

find in an ageing translational machinery.
2.4. Signalling pathways that impinge on translational
accuracy

Because one of the hallmarks of ageing is a reduced efficiency

in mitochondrial function, we assessed translational accuracy

under conditions of impaired mitochondrial function. Our

initial model for mitochondrial dysfunction was a deletion

of the COX4 gene, which encodes a central subunit of the

mitochondrial complex IV. Upon cox4 deletion, we observed

a small but significant increase in the levels of amino acid
misincoporation as measured using two different reporter

constructs, as well as a small but significant decrease in the

levels of read-through on a UAGC stop codon (figure 7a).

By contrast, read-through of a UGAC stop codon was not sig-

nificantly affected (data not shown). We tested other

mitochondrial defects to see whether they would reproduce

the observed decrease in amino acid misincorporation levels

(figure 7b), and found that this is a general phenomenon

which occurs in many (though not all) mutants with defects

in the mitochondrial electron transport chain.

One of the effects of a reduction in mitochondrial effi-

ciency is the production of ROS, via a signalling pathway

that involves the ER-localized Yno1 NADPH oxidase. We

previously showed that deletion of yno1 abrogates the pro-

duction of ROS upon deletion of cox4 [32]. In a cox4 yno1
double deletion strain, we observed no significant changes

in either stop-codon read-through or amino acid misincor-

poration (figure 7a), which indicates that the changes in

translational accuracy are dependent on the altered ROS

levels in cox4 strains. Consistent with this notion, the direct

application of low levels of ROS, or raising intracellular

ROS levels by deleting genes involved in the removal

of ROS from the cell, produced identical patterns of increased

amino acid misincoporation and decreased UAGC

read-through as deletion of the COX4 gene (figure 7c).

Since reduced mitochondrial activity signals to decrease

translational accuracy, but ageing cells seem able to maintain

levels of protein synthesis accuracy despite reduced mitochon-

drial function, we reasoned that cells might use other

signalling pathways to counteract the mitochondrial signal.

We therefore surveyed the main signalling pathways for
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their effects on translational accuracy. We observed that a del-

etion of the RAS2 gene led to a distinctive phenotype in which

a subset of colonies showed substantially (threefold to four-

fold) increased levels of expression of all our error reporters,

whereas other colonies showed only slightly increased levels.

This pattern was highly reproducible in three independent

experiments conducted with independently transformed

samples of ras2 deletions in different strain backgrounds. In

terms of the experimental average, this effect appears as a

two to threefold increase in the average reporter activity as

well as a high standard deviation (figure 8). We assessed

significance of these results using the non-parametric

Kruskal–Wallis rank sum test (for the experiment shown in

figure 8a, ANOVA p ¼ 3.6 � 1025, Kruskal–Wallis p ¼ 1.0 �
1026). Post hoc analyses following the Kruskal–Wallis test

indicate significant differences in the ras2 deletion mutant for

all three error reporters (figure 8a).

In contrast with the ras2 deletion, a constitutively active

Val19 mutant maintained error levels that were indistinguish-

able from wild-type levels. Together, these results indicate

that in wild-type cells Ras2 signals to increase protein syn-

thesis accuracy. Other signalling pathways have much less

effect on translational accuracy, as deletions of TOR1, SNF1
and TPK1/2 did not consistently or strongly affect the

measured errors. Only deletion of the casein kinase II subunit
CKA1 led to small but significant increases in the measured

accuracy parameters, indicating that casein kinase signalling

may contribute to increased errors. In summary, we conclude

that accuracy levels in ageing cells are maintained by net-

works of opposing signals that originate from mitochondria

as well as Ras2 and other kinases.
3. Discussion
The relationship between ageing and translational accuracy

has been discussed in the past in a number of different con-

texts. An early suggestion that an ‘error catastrophe’ might

underlie much of the deterioration of performance in

ageing cells [33] was later qualified [34], and the ensuing dis-

cussion of this issue continued for several decades after the

original hypothesis [35]. One of the cornerstones of this dis-

cussion was a repeated finding, in different systems and

using different methods, that ageing cells and tissues do

not display significantly different error levels from young

ones [22,25,36–39]. The data in these studies were derived

from chronologically aged cell lines as well as tissue samples

from ageing animals, and together with the replicative ageing

data presented here present strong evidence that protein
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synthesis accuracy does not change significantly with age in

most organisms.

While the stability of error rates during ageing is now

generally accepted, the underlying reasons for this stability

have not been fully elucidated, as many cellular processes

suffer from a decline of performance in aged cells. A possible

answer was proposed based on the observed reduction in the

overall volume of translation in old cells and tissues and the

ensuing lower elongation speed [29]. In mammalian cells,

treatment with rapamycin has been reported to reduce both

the speed of translation and translational errors [29], and a

causal connection between the two was suggested. However,

mechanistically, it is not at all clear why slower translation

would necessarily mean more accurate translation. The

reason why amino acid misincorporation and stop-codon

read-through occur is at least in part because the ribosome

must distinguish competing decoding elements, and can do

so only with finite accuracy [3,40]. The more important par-

ameter for accuracy should, therefore, be the ratio of the

competing elements, and not the speed with which they are

processed, especially as slower translation probably does

not entail a change in the fundamental rate constants of the

biochemical reactions underlying tRNA sampling by the

ribosome. Our experiments where we slow down translation

by various means, including control of cell division rates,

depletion of translation factors and application of drugs

that reduce the speed of translation, confirm that there is no

uniform response of error rates to reduced translational

speed, but rather that this response depends on the exact

context of the experiment.

A separate question from whether error rates are affected

by ageing is whether ageing is affected by altered error rates.

A number of published observations indicate that this is

generally the case in eukaryotic organisms, including the

observation that increased transcriptional errors accelerate

loss of viability during ageing [20], and that cell lines derived
from species which are unusually long-lived compared with

their close relatives, such as the naked mole rat, have reduced

basal error rates [4]. A recent study looking at the effect of

reduced accuracy resulting from impaired ribosomal methyl-

ation [19] found the opposite effect, that reduced accuracy

resulted in longer lifespans. The particular response of

these mutants may be a result of moderately upregulated

stress response pathways [19] paired with smaller increases

in errors (electronic supplementary material, figure S1), as

increased activity in stress response pathways can extend life-

span in its own right [41]. By contrast, our data show that

larger increases in errors without upregulated stress response

pathways (figure 1) clearly shorten lifespan. We trace the

molecular reasons for the interaction between translational

accuracy and lifespan to an over-taxed chaperone system

(figure 3), which under high error rates has to cope with
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the reduced folding competence arising from inaccurate

translation as well as chemical damage and other age-related

effects. Together, these observations may explain why it is

important for ageing cells to keep error rates under tight

control.

Lastly, our data show that multiple signals in the cell

regulate translational accuracy in opposite ways. One of

these signals consists of ROS generated in response to

reduced mitochondrial function (figure 7), and this signals

to increase translational errors. We do not know at the

moment why cells would generate signals to decrease trans-

lational accuracy. A possible scenario is that this is an

unintended by-product of the regulation of other processes,

such as tRNA biogenesis. According to a recent report, ROS

activate the tRNAse activity of RNY1 [42], and altered com-

position of the tRNA pool could be one explanation that

connects ROS and altered error levels. ROS appear to be a

generally beneficial signal for healthy ageing in yeast, but

the reduction in accuracy resulting from their presence

must clearly be balanced by other signals to prevent negative

effects on lifespan. Although we do not know the actual effec-

tors that mediate this balance in ageing cells, our experiments

reveal candidate kinase pathways (figure 8). The most promi-

nent of these is Ras, as deletion of the RAS2 gene has a strong
negative effect on accuracy, indicating that Ras signals

towards increased translational accuracy. Other pathways

may further modulate the balance between pro- and anti-

accuracy signals, including the Tor pathway, which was

previously implicated in signalling towards reduced trans-

lation as rapamycin caused a reduction in observed error

levels in mammalian cell lines. Ribosomes are targets for

extensive phosphorylation [43], and it has been previously

shown that such phosphorylation can affect translational

accuracy [15]. Thus, we anticipate that many of the effects

on translational accuracy observed upon manipulation of

kinase pathways are mediated by alterations in ribosomal

protein modifications, although the exact nature of the targets

mediating the effects we observe remain to be elucidated.

In summary, our study reveals translational accuracy as

an important parameter in ageing yeast cells, and indicates

that this parameter is under active control by the cell. The

ultimate aim of this control is to support functioning of the

proteome under the suboptimal conditions of the ageing cell.
4. Material and methods
4.1. Strains and plasmids
All yeast strains are from the systematic genome-wide

deletion collection, except for strains listed in table 1. To

generate strains containing mutant alleles of the RPS2
gene, DNA comprising this gene plus 500 nt upstream

and 266 nt downstream of the gene was amplified by

PCR, using primers GCGCGCGGATCCTGGCTTATTCAC

TAAGGATTCTTAAGGTTTTC (forward) and GCGCGCCT

GCAGTAAAATTTTGATCTATTGTAGTCGCCTAATCTTGC

(reverse). Genomic DNA from strain BY4741 was used as

template to amplify wild-type RPS2, which was then

cloned into pRS315 [48]. To amplify mutant alleles of RPS2,

we obtained four strains described as SUP38 from the

National BioResource Project (NBRP) of the MEXT, Japan

(http://yeast.lab.nig.ac.jp/nig/index_en.html; accession

numbers BY21049, BY21050, BY21052 and BY21053). Yeast

SUP38 is known to be allelic with SUP44/RPS2 [49]. Genomic

DNA from these strains served as template for PCRs using

the same primers as for the wild-type allele, and the PCR pro-

ducts were again cloned into pRS315. Sequencing of the

cloned genes revealed that these alleles contained a Y143C

mutation (SUP38-5) or L148S mutations (SUP38-8 and

SUP38-9). The fourth strain, described as SUP38-4, did not

yield any PCR products with the RPS2 primers. Microscopic

examination of this strain showed that the cells are much

smaller than typical Saccharomyces cerevisiae cells and we

assume that this strain was mis-annotated as baker’s yeast.

The wild-type and mutant plasmids were shuffled into a

previously described RPS2 shuffling strain [15] using a

standard plasmid shuffling strategy [50].

Dual luciferase reporter plasmids for measuring stop-

codon read-through and histidine misincorporation on CGC

codons were as described [2]. The reporter for measuring

lysine misincorporation on AGG codons was from Kramer

et al. [3]. Luciferase refolding assays were conducted as

described [21]. Western blots were conducted as described

[51]. Storage carbohydrates were assessed using an iodine

vapour assay as previously described [52].

http://yeast.lab.nig.ac.jp/nig/index_en.html
http://yeast.lab.nig.ac.jp/nig/index_en.html


Table 1. Yeast strains used in this study.

name genotype reference

BY4741 Mata his3D0 leu2D0 met15D0 ura3D0 [44]

BY4741 Dhsp104 Mata his3D0 leu2D0 met15D0 ura3D0 hsp104::KanMX4 [45]

BY4741 Dssa1 Mata his3D0 leu2D0 met15D0 ura3D0 ssa1::KanMX4 [45]

BY4741 Dssa4 Mata his3D0 leu2D0 met15D0 ura3D0 ssa4::KanMX4 [45]

BY4741 Dcox4 Mata his3D0 leu2D0 met15D0 ura3D0 cox4::HIS3 [32]

CGY769a Mata his3D200 ura3-52 leu2-3,112 tub2-201 can1-1 ACT1::HIS3 [46]

CGY339 Mata his3D200 ura3-52 leu2-3,112 tub2-201 ade4 act1-159::HIS3 [46]

CGY371 MATa ura3-52 leu2 his4-539 ras2::LEU2 [47]

CGY372 MATa ura3-52 leu2 his4-539 RAS2ala18val19::LEU2 [47]

YTH222 leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 rps2::HIS3 [URA3 RPS2] [15]

BY21050 Mata his5-2 leu2-1 lys1-1 met8-1 trp5-48 ura4-1 can1-100 SUP38-5 NBRP, Japan

BY21052 Mata his5-2 leu2-1 lys1-1 met8-1 trp5-48 ura4-1 can1-100 SUP38-8 NBRP, Japan
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4.2. Media
Yeast cells were grown either in complex medium (YPD; 1%

yeast extract, 1% peptone, 2% glucose) or in synthetic com-

plete medium (SC; 0.67% yeast nitrogen base without

amino acids, 2% glucose and Kaiser dropout mixture as

directed by the manufacturer (Formedium, UK)). Paromomy-

cin was supplemented to SC to a final concentration of

0.5 g l21. Glucosamine was supplemented to final concentrations

from 0.2 to 6% as indicated.
4.3. Differential counterflow elutriation
Yeast cells were transformed with appropriate luciferase

reporter constructs and grown to mid-log phase before

being subjected to separation by elutriation as previously

described [27]. Isolated fractions were assessed for cell size

using a Casy TT cell counter (Scharfe Systems) and stained

for bud scar number using FITC labelled wheat germ

agglutinin (Molecular Probes).
4.4. Dual luciferase assays
Dual luciferase assays were conducted in 96-well microtitre

plate format, using reagents from the Dual Glo luciferase

assay system (Promega, UK) as described previously [53].

Growth plates used to conduct the assays were visually

inspected for contaminated wells or wells with abnormal

growth, and respective data were disregarded for data

anlyses. For the glucosamine experiment in figure 5 only, out-

liers were in addition determined based on Cook’s distance

(more than threefold average distance) and outlier data

were disregarded for data anlayses.
4.5. Luciferase refolding assays
Luciferase refolding assays were performed as described [21],

except that heat shock was applied for 12 min, followed by

addition of cyclohexmimide and further heat shock for

another 12 min.
4.6. Ageing assays
Cultures were inoculated to starting ODs of 0.1–0.2 in 5 ml

medium in sterile 50 ml plastic tubes, and incubated in a

shaker at 308C. To assess the proportion of live cells, 100 ml

of cells were mixed with 10 ml of 20 mM phloxine B (Sigma-

Aldrich, UK) and water in 1 ml final volume, and left for

30 min at room temperature. Stained and unstained cells

were then counted manually in a haemocytometer.

4.7. Heat shock survival assays
Yeast cultures were inoculated from overnight cultures into

YPD or minimal medium to a starting OD600 of 0.1, and

grown to a final OD600 of 1–2. Cell density was determined

using a haemocytometer, and cells were diluted into 1 ml of

fresh medium to a density of 5000 cells ml21. Three 100 ml por-

tions of this diluted culture were plated onto three YPD plates

to determine pre-heat shock CFU densities. The remaining

700 ml of culture were incubated in a 498C water bath for

10 min, followed by transfer to a 208C water bath for 5 min.

Three further 100 ml portions were then plated onto YPD

plates to determine post-heat-shock CFU densities. Plates

were incubated for 48 h and colonies counted.

4.8 Fluoresence microscopy
Cells were viewed with an Olympus IX-81 fluorescence

microscope with a 150 W xenon/mercury lamp and an

Olympus 150� Plan NeoFluor oil-immersion objective.

Images were captured using a Hammamatsu ORCA AG digi-

tal camera using Olympus Cell R software. Bud scars were

visualized after incubation with 5 mg ml21 FITC-Wheat

Germ agglutinin in PBS for 10 min.

4.9. Statistical analyses
All statistical analyses were conducted in R v. 3.2.3 [54].

Except for figure 8a, data were analysed using one- or two-

way analyses of variance as appropriate, with Tukey’s HSD

as a post hoc test. Data in figure 8a were analysed using the

Kruskal–Wallis test, with Nemenyi’s test as implemented in
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the PMCMR package as post hoc test. Statistical significance is

indicated in all figures with the following symbols: no

symbol or n.s., p . 0.05; *, 0.05 . p . 0.01; **, 0.01 . p .

0.001; ***, 0.001 . p.
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