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In gene mapping, it is common to test for association between the phenotype and the
genotype at a large number of loci, i.e., the same response variable is used repeatedly
to test a large number of non-independent and non-nested hypotheses. In many of these
genetic problems, the underlying model is a mixed model consistent of one or very few
major genes concurrently with a genetic background effect, usually thought as of polygenic
nature and, consequently, modeled through a random effects term with a well-defined
covariance structure dependent upon the kinship between individuals. Either because the
interest lies only on the major genes or to simplify the analysis, it is habitual to drop the
random effects term and use a simple linear regression model, sometimes complemented
with testing via resampling as an attempt to minimize the consequences of this practice.
Here, it is shown that dropping the random effects term has not only extreme negative
effects on the control of the type I error rate, but it is also unlikely to be fixed by resampling
because, whenever the mixed model is correct, this practice does not allow to meet some
basic requirements of resampling in a gene mapping context. Furthermore, simulations
show that the type I error rates when the random term is ignored can be unacceptably
high. As an alternative, this paper introduces a new bootstrap procedure to handle the
specific case of mapping by using recombinant congenic strains under a linear mixed
model. A simulation study showed that the type I error rates of the proposed procedure
are very close to the nominal ones, although they tend to be slightly inflated for larger
values of the random effects variance. Overall, this paper illustrates the extent of the
adverse consequences of ignoring random effects term due to polygenic factors while
testing for genetic linkage and warns us of potential modeling issues whenever simple
linear regression for a major gene yields multiple significant linkage peaks.
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1. INTRODUCTION
For more than four decades, linear mixed models have been
used in a wide range of applications because of their conceptual
simplicity and flexibility to accommodate correlated sources of
variation as well as fixed regressors. A generic linear mixed model
can be written as

y = Xβ + Zγ + e (1)

where X and Z are known incidence matrices, β is a vector of
unknown fixed regression coefficients, γ is a vector of random
effects, and e is the vector of errors. It is also common to assume
that γ and e are independent and both have null expectation and
finite variances. In many situations, either intentionally or unin-
tentionally, the statistical analysis is carried out ignoring the term
Zγ in the model. This practice, although recognized as inefficient,
has been thought to be harmless whenever the interest resides
solely on a subset of the regression coefficients with the remain-
ing parameters of the model deemed as nuisance. This thought
seems to be mostly based on the fact that βo = (X′X)−1X′y is

still an unbiased and consistent estimator of β. However, it is well
known that ignoring Zγ and using ordinary least squares, results
in an estimator of Var

(
βo) that is biased and inconsistent as well

as non-independent of βo (Dhymes, 1978). Of course, this will
affect the distribution properties associated with βo under nor-
mality or, otherwise, the asymptotic properties of its distribution.
It has been suggested that this problem can be mitigated if testing
is done through resampling. However, the adverse consequences
of dropping the random term from the mixed model is unlikely
to be fixed by the use of resampling methods. In this paper, a spe-
cific application to genetic mapping via recombinant congenic
strains (RCS) of experimental animals is used to illustrate this.
Briefly speaking, genetic mapping can be seen as a problem in
which the association of one dependent variable (the phenotype)
with a large number of potential explicative variables (the marker
genotypes) is tested one-by-one or by taking a very small num-
ber of markers at once. An RCS panel is a replicable mapping
population for which animals within the same strain are con-
sidered to be genetically identical and related to different degrees
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with animals from other strains. Such an inter-strain relationship
results in what is known as the genetic background effect and,
whenever this effect is understood as the result of the addition of
many components of minuscule effect, the inclusion of a random
effects term in the model would be the natural way to account
for it.

A mouse panel of RCS is obtained by mating mice from two
genetically distinct inbred strains (a donor strain and a recipient
strain) followed by two or more rounds of backcrossing to the
recipient strain and subsequent sister × brother mating without
selection for particular markers or phenotypes for a minimum
of 20 generations. The genetic resolution of the panel is con-
trolled by the number of backcrossing rounds. Because of this
construction, each strain of an RCS panel can be thought of as
an inbred strain in which segments of random length from the
genome of a recipient strain have been replaced with the corre-
sponding segments from a donor strain. The main consequence
of this breeding scheme is that non-linked genes controlling the
same trait are separated and fixed in haplotypes of different
strains, allowing the possibility of studying them individually. The
standard RCS panel uses two backcross generations and, conse-
quently, the total length of the segments from recipient strain
constitute on average the 87.5% of the genome of each strain;
the remaining 12.5% represents the total expected length of the
replaced genome segments. Without loss of generality, this is the
type of RCS considered in this paper. For a more comprehensive
description of the RCS and their use in gene mapping see Démant
and Hart (1986), Moen et al. (1992), and Fortin et al. (2001b,
2007). Once the RCS panel have been established, the whole panel
is genotyped to obtain full characterization of the genome of each
strain. Each genotype data set can then be used for the anal-
ysis of all individuals of the same strain; this is an important
money-saving feature of the design since it does not require of re-
genotyping each individual because, except for de novo mutations,
all pups from the same strain are genetically identical.

Although most mouse geneticists agree that RCS are a power-
ful resource to map loci associated with complex traits, there is
some disagreement on how to do the analysis. Originally, when
the use of RCS for genetic mapping was proposed, the core idea
was to look into the stain distribution pattern with respect to a
phenotype of interest and identify the strain that exhibited the
largest deviation from the other strains in the RCS panel and sub-
sequently cross it with the recipient strain to obtain F1 and F2

progenies to be analyzed by standard methods (Démant and Hart,
1986; Fortin et al., 2001b). Two examples of the application of
this approach are reported in Fortin et al. (2001a) and Müllerová
and Hozák (2004). The problem is that contrasting phenotypes
from F1 mice versus the ones from the recipient strain will only
be effective for dominant traits, while the power for additive traits
will be diminished and lost completely for recessive traits. On the
other hand, the analysis of the F2 mice requires new genotyp-
ing, which not only defeats the economic advantages of having
developed RCS, but more importantly, because every F2 individ-
ual has different genotype, this approach is not suited for complex
quantitative traits when a single measurement may not be reli-
able enough to determine the phenotype (Moen et al., 1992).
Alternatively, there is a designs consisting of taking a sample of

mice from each strain and analyzing the whole panel together.
Although this approach does not require additional genotyping
and has the potential for making more efficient use of the pheno-
typic variation, also opens more room for analysis pitfalls if the
proper model is not used. For example, Joober et al. (2002) uses
a QTL mapping procedure equivalent to simple linear regression
at the markers ignoring genetic background which, as pointed by
Palmer and Airey (2003), it may result in false positive rates far
in excess of the nominal value, even when Bonferroni corrections
are used. Another common way to address the problem is to use
strain averages as the phenotype and treat the panel of means as
a backcross dataset for analysis purposes. This is essentially the
“interval mapping” procedure proposed by Shao et al. (2010) and
equivalent to the one used by Thifault et al. (2008). This approach
may substantially reduce the power for RCS panels with reduced
number of strains and it does not deal with the fact that the
strains, related because their background, may not have the same
kinship degree at genomic level and consequently the phenotype
means may be not only non-independent but heteroscedastic, as
well. Lee et al. (2006) and Camateros et al. (2010) extend the
simple linear regression to account for the genetic background
by adding a fixed factor (“background proportion” in the first
paper; “background indicator” in the second). Although better
than ignoring the background, from the genetics standpoint, it is
difficult to justify the plausibility of a fixed effects model under
the assumption that the background effect is the result of the
additive action of many genes of minuscule effect. In fact, I argue
that the natural way to model such a background effect consis-
tent with the principles outlined by Fisher (1919) is through the
inclusion of a random effects term in the model as implemented
in Di Pietrantonio et al. (2010). In this paper, I describe in detail
a procedure for the analysis of a quantitative trait locus (QTL)
that models the genetic background (assumed to be of polygenic
nature) as a random effect term and use this to show how the
omission of such a term in the model leads to conclusions that
are wrong and inconsistent with the data.

2. MODELS
2.1. THE NAIVE QTL MODEL FOR AN RCS PANEL
In its simplest form, at each marker position m, m = 1, 2, . . . , M,
the RCS/QTL model for the ith individual, i = 1, 2, . . . , n, can be
written as

yi = μ + qim ξm + ei (2)

where yi denotes the phenotype for the ith individual, ξm denotes
the major locus effect associated with the mth marker, qim is the
indicator of the BB genotype at the mth position which is deter-
mined by the RCS data, and the eis are a set of independent
random variables with distribution N (

0, σ 2
)

(AA and BB are
the genotypes of the donor and recipient parental strain, respec-
tively). Of course, under an oligogenic model, at most, a handful
of ξms should be different from zero. In fact, it is common prac-
tice that at the first screening, the estimation is carried out by
regression at each marker under the assumption of only one
major gene. When the presumption of a dense enough genotyp-
ing marker panel is not correct, procedures like modified interval
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mapping can be used instead. Variations of the problem include
conditioning on a given set of markers. The salient feature of this
design is that, at the mth marker position, one looks across the
RCS panel and classifies each strain as either AA or BB, since
under the model (Equation 2), this is the only source of genetic
variation when estimating ξm. However, this model ignores the
fact that individuals from the same strain are genetically iden-
tical (assuming no new mutation at the locus under scrutiny),
and strains with the same ancestral background share large por-
tions of their genome so that even without the involvement of a
major gene, there is more likely to be reduced variation within
strains. In a nutshell, regression mapping works by testing the
association of the phenotype with the observed genotype at each
marker location so that finding significant linkage at any position
implies testing the M null hypotheses, ξm = 0. Clearly, most of
these hypotheses as well as their test statistics are not indepen-
dent. This may lead to problems in the control of the type I error
rate if multiple testing is not addressed properly. Another irregu-
larity results from the fact that with a dense genotyping panel the
number of tested hypotheses can by far exceed the sample size.
Because of these considerations, p-value estimation by resampling
of residuals has been seen as a plausible alternative. For this paper,
the problem is addressed through bootstrap.

2.1.1. Computation of p-values
The estimation of genome-wide corrected p-values by resam-
pling requires that under the null hypothesis: (i) each resample
is taken from an exchangeable distribution, (ii) the variation of
the original sample is preserved through all resamples, and (iii)
the genome-wide baseline for the test statistics at each position
is the same. The first two requirements are standard for resam-
pling in regression (Davison and Hinkley, 1997; Anderson and
Ter Braak, 2003). The last requirement is imposed to ensure that
the uncorrected p-values across the genome are comparable (this
is particularly important when there are missing genotype data).
One way to estimate corrected p-values is to select an ensemble
of test statistics whose marginal distribution is the same when the
model does not contain any major locus.

Since under model (Equation 2) and the hypothesis of no
major gene, the distribution of y = (y1, y2, . . . , yn)

′ is exchange-
able, resampling from the raw observations will also preserve the
variation through the pseudo-observations. This means that in
the absence of non-genetic regressors or other non-oligogenic
factors, resampling the raw phenotypes either by permutation
or through bootstrap will produce similar results. Furthermore,
under these premises, basic sampling and hypothesis testing prin-
ciples indicate that a permutation based procedure will be more
efficient and powerful. However, this is not necessarily the case
when the premises are removed. Should the model also con-
tain fixed non-genetic regressors, resampling from the leverage-
adjusted residuals under the null hypothesis would be a procedure
that approximates exchangeability while preserving the original
variation of the data. However, under this situation, resam-
pling from leverage-adjusted residuals results in a procedure
with acceptable properties only in the bootstrap case (Davison
and Hinkley, 1997), while this is not longer guaranteed when
resampling via permutation. The main issue is that sampling

without replacement magnifies the effects of modest departures
from exchangeability. Then, permuting leverage-adjusted residu-
als may not be good enough (even worst, it may not be valid)
and we would require of a much more elaborate and computer
intensive procedure to obtain residuals guaranteed to be at least
weakly exchangeable so that permutation works properly (see,
for example, Kherad-Pajouh and Renaud, 2010). To complete
the requirements listed above regarding the possibility of miss-
ing genotypes, we propose to use the test statistic defined by the
expression

zm = tm

(
1 − 1

4νm

)(
1 + t2

m

2νm

)− 1
2

where tm = |ξ̂m|
σ̂

ξ̂m

(3)

and ξ̂m is the ordinary least squares estimate of ξm, m =
1, 2, . . . , M, i.e., zm is just tm, our familiar t-statistic with νm

degrees of freedom, transformed into a z-score (νm may vary
slightly from marker to marker due to missing data). Another
option would be a modified t-statistic t′m in which the mth esti-
mate of variance s2

m used to compute σ̂ 2
ξ̂m

is replaced by s2
0, the

estimate under the null hypothesis. With no missing genotypes
the use of any of zm, t′m, and tm would yield approximately the
same p-value estimates.

2.1.2. Bootstrap procedure for simple linear regression at the
markers

The following bootstrap procedure computes the genome-wide
corrected p-values for model (Equation 2) with the test statistic
(Equation 3):

STEP 1. At each marker position, m, fit the simple linear regres-
sion at the markers model (Equation 2), use (Equation 3)
to compute the test statistic zm, and obtain the genome-
wide set of statistics ZM = {zm, m = 1, 2, . . . , M}. Also,
set the genome-wide acceptance count vector to zero.

STEP 2. Sample with replacement from the raw vector of phe-
notypes, y ∈ R

n, to obtain y∗ ∈ R
n, a bootstrapped full

replica of y, and use this vector to compute z∗
max =

max {z∗
m}, where z∗

m, m = 1, 2, . . . , M, is the test statis-
tic at the mth locus, computed by using y∗, the vector of
the pseudo-observations, instead of the original vector of
phenotypes.

STEP 3. For each zm in ZM , if zm ≤ z∗
max, add a unit to the mth

entry of the acceptance count vector.
STEP 4. Repeat steps 1 and 2 R times and then compute the esti-

mate of the vector of p-values by dividing the acceptance
count vector by R.

This resampling scheme can be seen as an adaptation of a reg-
ular regression residuals bootstrapping procedure (Davison and
Hinkley, 1997), coupled with Roy’s union-intersection principle
(Roy, 1953) to control for the genome-wide type I error rate.
When applied to the analysis of the RCS panel, this procedure is
valid when there is only one observation per strain or when the
within-strain variation is negligible. Otherwise, a random term
in the model has been neglected and, regardless of ξ̂m being an
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unbiased estimator of ξm, the exchangeability requirement can-
not be met and the most likely consequence would be an inflated
type I error rate. In fact, as per arguments given by Churchill
and Doerge (1994) and Churchill and Doerge (2008), this state-
ment is correct not only for the bootstrap and RCS, but also for
permutation test procedures applied to any study design involv-
ing replicable mapping populations because, as for bootstrap, the
Fisher (1935) principle of permutation also relies on exchange-
ability. For simple experimental designs such as an intercross or a
backcross mating, the individual units can safely be assumed to be
exchangeable. However, it would be wrong to assume exchange-
ability for more complicated designs, like advanced intercross,
heterogeneous stocks and RCS.

2.2. THE QTL MIXED MODEL FOR AN RCS PANEL
The previous simple linear model (Equation 2) generalizes to a
model of the form:

y = Xβ + Zγ + qmξm + e (4)

where y represents the phenotype vector, qm is a vector with
each entry being an indicator variable of the genotype BB at the
marker position m with ξm being its associated effect (major gene
effect), γ is a random effects vector associated with the genetic
background with E(γ ) = 0 and Var(γ ) = σ 2

γ �1, with σ 2
γ > 0

and �1, a positive-definite matrix, both assumed to be constant,
although unknown, X is a matrix of fixed covariates and its corre-
sponding parameter vector β, e is a vector of independent and
identically distributed random variables representing the error
term with E(e) = 0 and Var(e) = σ 2 I. Up to a multiplicative con-
stant, �1 is a function of the length of the segments identical
by descent shared amongst strains. For an established RCS panel
there are only two possible identity states between pairs of strains
at a given locus: either (i) all four alleles are identical by descent
(�1 is the matrix holding the pairwise probabilities for this state),
or (ii) the strains have different allelic forms and thus identical by
descent only amongst themselves. So an estimator of �1 with “a
high degree of precision” can be reached. Such an estimator uses
only genomic information and does not involve y, so when esti-
mating the parameters, one can assume that �1 is given. Another
option is to take the entries of �1 as the expected value of the
proportion of the genome shared identical by descent between
the respective strains under the RCS panel construction described
above, i.e.,

δ1ij =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = j

15
16 if i and j have the same background

1
16 if i and j have different backgrounds.

(5)

This option, although not the most efficient, does capture the
main features of the design and yields a variance structure for the
random effects vector that can be exploited in the implementa-
tion of the resampling algorithm. For example, if all the strains
in the panel under scrutiny have the same background and the
simplified expectation-based �1 is used, then the distribution of
the vector of random effects is exchangeable. Nonetheless, replac-
ing a genomic-based �1 estimate by its theoretical expectation

(Equation 5) implies ignoring important information regarding
the correlation of the additive polygenic effects associated to the
genetic background.

2.2.1. Estimation
The estimation for the mixed linear model has been extensively
discussed in the literature (Harville, 1977; Henderson, 1986).
Here we develop an application of these standard methods to the
RCS design. Without loss of generality, let us consider the linear
mixed model (Equation 1) with Var(γ ) = σ 2

γ �1 and Var(e) =
σ 2I. Thus

E
(

y
) = Xβ and Var

(
y
) = σ 2 (

ZGZ′ + I
) = σ 2 �

where G = λ�1 and λ = σ 2
γ

σ 2 , i.e., λ represents the signal-to-noise
ratio. Under the assumption of no major gene and only polygenic
background, λ is related to the heritability coefficient. When G is
known, the best linear unbiased estimator of β and the best linear
unbiased predictor of γ (also known as a shrinkage estimator) can
be written as

β̃ = (W′W)−W′v and γ̂ = GZ′�− 1
2 (v − Wβ̃),

respectively, where W = �− 1
2 X and v = �− 1

2 y. Also

σ̂ 2 = 1

N − rank(W)
(v − Wβ̃)′(v − Wβ̃)

σ̂ 2
γ = 1

rank(G)

(
γ̂ ′G−1γ̂ + σ̂ 2tr(G−1C)

)

with

C = (Z′MZ + G−1)−1 and M = I − X(X′X)−1X′.

Notice that the previous expressions cannot be computed unless
the signal-to-noise ratio, λ, is known. A situation of a more prac-
tical interest is an iterative procedure on which λ is replaced by
its estimate and, once that the estimates of σ 2 and σ 2

γ have been
updated, a refinement of the estimate of λ is obtained and so on.
This iterative procedure will result in a β̃ and γ̂ that are no longer
linear, nonetheless, they preserve most of the desirable properties
present in their linear counterpart (Jiang, 1998).

2.2.2. Mixed model resampling scheme
Let us now focus our attention toward a resampling scheme
appropriate for RCS data under a mixed model. By now, it is
obvious that the bootstrap procedure described in the previous
section will not work for the mixed model (Equation 4). A crude
extension to this procedure would consist of computing

ê = y − Xβ̃ − Zγ̂

and resampling from γ̂ and ê to obtain γ ∗ and e∗ so that the
pseudo-observation y∗ could be recovered as

y∗ = Xβ̃ + Zγ ∗ + e∗.
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However, it is straightforward to see that these residuals are not
exchangeable and they are biased toward zero. Thus, they may
not adequately represent the hypothesis tested nor reflect the true
variation of the model.

Alternatively, note that when β and λ are known, it follows
from the model under the null hypothesis that E(v) = Wβ and
Var(v) = σ 2 I which implies that the distribution of the vec-
tor of residuals, ε = v − Wβ, is exchangeable. This suggests the
following residuals resampling scheme:

(1) given λ̃ and β̃ obtained under the mixed model without a
major gene, i.e., under the null hypothesis, compute �̃, W̃ by
replacing λ with λ̃ and �1 with its genomic-based estimate;
then, obtain the leverage-adjusted residuals

ε̃ = D(�̃− 1
2 y − W̃β̃)

where D is a diagonal matrix with each of the non-zero
elements given by (1 − hii)

−1 and hii is the ith leverage
coefficient;

(2) with replacement, resample from ε̃ ∈ R
n to obtain ε∗ ∈ R

n,
its bootstrapped replica, and construct the vector of pseudo-
observations as

v∗ = W̃β̃ + ε∗.

If instead of a bootstrap procedure based on leverage-adjusted
residuals we want to use a residuals-based permutation proce-
dure, then we need to extend the method of Kherad-Pajouh and
Renaud (2010) to get weak exchangeability of residuals. However,
when λ is estimated from the data, such an extension is not possi-
ble and we would have to rely on approximations. More research
is needed to explore this direction.

Outside of a genetics context, there is a number of permuta-
tion and bootstrap procedures for mixed models whose objective
is testing the components of variance (for example, Fitzmaurice
et al., 2007; Sinha, 2009; Lee and Braun, 2012; Samuh et al.,
2012). However, they cannot be applied in our case because we
are interested in the regression coefficients (or a subset of them)
and the variance of the random effects is just nuisance parameter.
Incidentally, when testing the components of variance, bootstrap
has the edge over most permutation procedures (Samuh et al.,
2012).

2.2.3. Bootstrap procedure for the mixed linear model
According to the foregoing argument, generalization to the previ-
ous bootstrap procedure to compute the genome-wide corrected
p-values for the mixed model (Equation 4) goes as follows:

STEP 0. Compute �1 from the genotype data of the RCS panel,
and under the null hypothesis, obtain λ̃, β̃, �̃, W̃ and ε̃

as described in (i) above.
STEP 1. At each marker position, m, fit the model

ṽ =
(

W̃ �̃
− 1

2 qm

)(
β

ξm

)
+ ε. (6)

Of course, this model is equivalent to model
(Equation 4), the RCS/QTL mixed model, with λ

replaced by λ̃. Compute the model parameter estimates
with the outlined mixed model procedure as well as the
test statistic set Z = {zm, m = 1, 2, . . . , M} by using
Equations (6) and (3); set the acceptance count vector to
zero.

STEP 2. Draw a pseudo-observation v∗ by using the proposed
resampling scheme in (ii) above and fit the major gene
model in model (Equation 6) with ṽ replaced by v∗ to
obtain the set of bootstrapped test statistics {z∗

m} and its
associated critical value z∗

max = max {z∗
m}.

STEP 3. For each zm in Z , if zm ≤ z∗
max, add a unit to the mth

entry of the acceptance count vector.
STEP 4. Repeat steps 2 and 3 R times and compute the p-value

estimates by dividing the acceptance count vector by R.

To my knowledge, this bootstrap procedure for the analyzing a
panel of RCS has not been proposed before Di Pietrantonio et al.
(2010) and this paper contains the first detailed derivation and
study of its properties. In fact, the resampling methods (mostly
conditional permutation) applied to analyze RCS have not used
mixed models, but consider the strain effect as fixed which is
inconsistent with the hypothesis of a genetic background of poly-
genic nature or discard information by using only the estimated
strain means (for example, Gill and Boyle, 2005; Thifault et al.,
2008; Camateros et al., 2010).

3. RESULTS
One straightforward way to show the effect of ignoring the ran-
dom effects term in a mixed model is by simulation. The idea
is to generate a dataset from a model that includes a random
term for genetic background and noise, but is free of any major
locus. Then compare the p-value profiles (actually, − log10 p pro-
files) obtained by the use of the naive model (Equation 2) as well
as the mixed model (Equation 4). For this simulation study, the
genotypes of an RCS panel of 36 strains that were described in
Fortin et al. (2001b) were used. The panel originally had 37 lines
and 625 microsatellite markers; since then, one line has died out
and six markers were removed for reliability reasons. Although a
much larger set of single nucleotide polymorphism markers for
this RCS panel is also available, I think that this set of 619 mark-
ers is enough to show the harmful effects of fitting the wrong
model on the inference. Of course, more markers will only exac-
erbate the problem. For this simulation experiment, six different
values for the signal-to-noise ratio parameter λ were chosen (0,
1
8 , 1

4 , 1
2 , 1, and 2). Under a standard additive polygenic model,

i.e., a model without major genes, the signal-to-noise parameter
is a function of the heritability coefficient (the chosen values cor-
respond to the heritability proportions of 0, 1

9 , 1
5 , 1

3 , 1
2 , and 2

3 ,
respectively). In every simulation run, a sample of seven individ-
uals from each strain was simulated under the assumption of no
major gene, i.e., under model (Equation 4) with ξm = 0 for all
markers, m = 1, 2, . . . , M. The value of σ 2 was fixed for all sim-
ulations to 1.175, while Xβ was fixed as a vector with 7 in all its
entries. Simulations for each value of λ were run 1000 times and
both methodologies, the mixed model as well as the bootstrapped
naive regression at the markers were applied to the simulated
datasets with 10, 000 as the number of resamples for every dataset.
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In gene mapping studies, a significant peak is defined as the most
extreme point of a region beyond the p-value threshold according
to some pre-specified genome-wide type I error rate (Churchill
and Doerge, 1994). For this study, we use a value of 0.01 or equiv-
alently, a threshold value of 2 on a − log10 p-scale. Tables 1–3
summarize the results of these simulations. As expected, when-
ever there is not a polygenic term in the model (i.e., λ = 0), both
methodologies produce identical results. However, the picture
changes when λ > 0. In this case, it is quite obvious that ignor-
ing the random effects term has pernicious consequences even for
modest levels of λ, the signal-to-noise ratio, while the proposed
mixed model method keeps the genome-wide type I error rate
relatively close to the nominal value. However, the empirical type
I error rates obtained by the proposed procedure seem to increase
slightly with λ (Table 3). This phenomenon may be due to the fact
that the makers used for mapping purposes are also used to esti-
mate the probability of identity by descent between strains and, to
a lesser extent, the fact that the the bootstrap procedure is based
on residuals computed with λ and β estimated from the same
data. Nonetheless, the moral of this exercise is that whenever sim-
ple regression of a major gene model produces many significant
peaks, a warning flag about the model validity should be raised.

Table 1 | Percentage of declared significant peaks with a bootstrap

genome-wide adjusted significance level of 0.01 when the proposed

mixed model methodology is used.

% Signal-to-noise ratio (λ)

0 1
8

1
4

1
2

1 2

N
um
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r
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si

gn
ifi

ca
nt

pe
ak

s 0 99.2 98.7 98.9 98.3 98.5 98.4

1 0.8 0.5 0.5 0.7 0.7 0.4

2 0 0.2 0.1 0.2 0.5 0.3

3 0 0.1 0 0.4 0.1 0.3

4 0 0 0.3 0.1 0.1 0.1

5 0 0.1 0.1 0.1 0 0.1

6+ 0 0.2 0.1 0.3 0.1 0.4

Estimates based on 1000 simulated datasets for each λ.

Table 2 | Percentage of declared significant peaks with a bootstrap

genome-wide adjusted significance level of 0.01 when a naive

regression at the markers is used.

% Signal-to-noise ratio (λ)

0 1
8

1
4

1
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1 2

N
um
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si

gn
ifi

ca
nt

pe
ak

s 0 99.2 61.1 47.3 38.8 23.9 17.2

1 0.8 3.9 5.1 5.2 8.1 7.1

2 0 3.7 4.1 5.1 4.9 6.0

3 0 1.5 3.5 3.1 3.0 5.3

4 0 2.5 4.6 3.3 2.1 4.1

5 0 2.1 5.3 3.2 2.9 2.4

6+ 0 25.2 30.1 41.3 55.1 57.9

Estimates based on 1000 simulated datasets for each λ.

The histogram of a typical dataset obtained by simulation from
a model with polygenic effects only would look like the one shown
in Figure 1. Nonetheless, for this histogram I chose a dataset
for which simple linear regression produces a very large num-
ber of significant peaks. If a major locus were at play, one would
expect to have a well-defined bimodal distribution, so this his-
togram seems consistent with the generating model of no major
gene. However, when we look into the p-value profiles obtained
through the model that ignores the genetic background term,
instead of profiles consistent with the model we will have some-
thing extreme as shown by dashed lines in Figure 2. According to
the profiles on this figure, one might conclude that all chromo-
somes have at least one significant peak, fact that does not appear
to be supported by the histogram of the data, and more conclu-
sively, this is in conflict with the generating model. If anything, it
can be argued that the data distribution may seem a bit skewed,
but one may expect that estimation of p-values via bootstrapping
of residuals should not be too sensitive to this. Of course, as for
bi-modality, skewness may also be caused by a mixture of distri-
butions. However, a very strong peak, as any of the ones spotted
on every chromosome, is difficult to conceive without a conspic-
uous bimodal distribution. Even with the use of robust regression
estimates instead of the obtained by regular least squares to min-
imize the potential impact of outliers on the estimation, these
profiles change very little (data not shown). When the missing
random effects term is introduced into the model (solid blue

Table 3 | Empirical genome-wide type I error rates obtained via

bootstrap in the simulation study (0.01 is the nominal value and the

number of simulated datasets for each λ is 1000).

Signal-to-noise ratio (λ)

0 1
8

1
4

1
2

1 2

Naive regression 0.008 0.389 0.527 0.612 0.761 0.808

Mixed model 0.008 0.013 0.011 0.017 0.015 0.016

FIGURE 1 | Typical histogram of simulated data. The p-value profiles of
the data on this histogram were computed and plotted in Figure 2.
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FIGURE 2 | Bootstrap genome-wide corrected p-value profiles. Dashed line for naive model (Equation 2) and solid line (sometimes hardly distinguishable
from the x-axis line) for the mixed model (Equation 6). Note that both profiles have been corrected for multiple testing.

lines in Figure 2), p-value profiles become consistent with the
generating model. Repetition of this exercise on any other simu-
lated datasets yields similar results, although the specific resulting
profiles most likely are not be the same.

4. DISCUSSION
This paper proposes a bootstrapping procedure to estimate the p-
values under a mixed model applied to gene mapping when RCS
are used. The method can be easily adapted for other replicable
mapping population/designs. This procedure is a generalization
of the linear regression bootstrap of residuals coupled with the
union-intersection principle aimed to control the genome-wide
type I error rate. A simulation study with different values of the
signal-to-noise ratio unequivocally shows that when a panel of

RCS is used for mapping, ignoring one random effects term in a
mixed linear model can have pernicious consequences, resulting
in inflated type I error rates and leading to the declaration of sig-
nificant linkage peaks were no such peaks should be found. The
simulation study also shows that the proposed bootstrap proce-
dure seems to produce slightly inflated type I error rates as the
signal-to-noise ratio increases. This problem is likely due to the
fact that the markers used for mapping are also used to estimate
the length of the segments shared identical by descent but also
it can be associated with a stronger departure from exchange-
ability as the ratio increases. In any case, the problem deserves
further scrutiny. The proposed bootstrap procedure for mixed
models is quite general and can easily be adapted to non-genetic
problems.
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