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Abstract

Synaptonemal complex protein 3 (SCP3), a member of Cor1 family, is up-regulated in various cancer cells; however, its
oncogenic potential and clinical significance has not yet been characterized. In the present study, we investigated the
oncogenic role of SCP3 and its relationship with phosphorylated AKT (pAKT) in cervical neoplasias. The functional role of
SCP3 expression was investigated by overexpression or knockdown of SCP3 in murine cell line NIH3T3 and human cervical
cancer cell lines CUMC6, SiHa, CaSki, and HeLa both in vitro and in vivo. Furthermore, we examined SCP3 expression in
tumor specimens from 181 cervical cancer and 400 cervical intraepithelial neoplasia (CIN) patients by immunohistochem-
istry and analyzed the correlation between SCP3 expression and clinicopathologic factors or survival. Overexpression of
SCP3 promoted AKT-mediated tumorigenesis both in vitro and in vivo. Functional studies using NIH3T3 cells demonstrated
that the C-terminal region of human SCP3 is important for AKT activation and its oncogenic potential. High expression of
SCP3 was significantly associated with tumor stage (P = 0.002) and tumor grade (P,0.001), while SCP3 expression was
positively associated with pAKT protein level in cervical neoplasias. Survival times for patients with cervical cancer
overexpressing both SCP3 and pAKT (median, 134.0 months, n = 68) were significantly shorter than for patients with low
expression of either SCP3 or pAKT (161.5 months, n = 108) as determined by multivariate analysis (P = 0.020). Our findings
suggest that SCP3 plays an important role in the progression of cervical cancer through the AKT signaling pathway,
supporting the possibility that SCP3 may be a promising novel cancer target for cervical cancer therapy.
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Introduction

Tumor cells display a variety of antigens including anomalous

expression of cancer/testis-associated antigens (CTAs). CTAs are

restricted in normal tissues to germ cells of the testis, with

occasional expression in female reproductive organs, and are

expressed in histologically different types of malignant human

tumors [1–4]. The tumor restricted expression pattern of CTAs

makes them an interesting target for immunotherapeutic ap-

proaches [3,5]. The role of CTA expression in tumor cells remains

unclear, and thus is an area of active research. Likewise, our results

on the expression of CTAs and their molecular mechanism in

tumor cells may provide better insight into tumorigenesis.

Cor1 family members such as X-linked lymphocyte regulated

protein (XLR), Xlr-related meiosis regulated protein (XMR), and

synaptonemal complex protein 3 (SCP3) are typical CTAs [1].

They are involved in DNA-binding proteins and a structural

component of the synaptonemal complex, which mediates

synapsis, the pairing of homologous chromosomes during meiosis

of germ cells [6]. Notably, male mice deficient for SCP3 are sterile

as a result of massive apoptotic cell death in the testis during

meiotic prophase [6,7]. Although SCP3 is expressed strictly in the

testis and ovary in normal tissues, expression of SCP3 is frequently

observed in various human cancer cells such as acute lympho-

blastic leukemia and non-small cell lung cancer [8,9]. We

previously performed a small pilot study, and found that SCP3

is expressed in various cervical cancer cell lines and a small

number of cervical cancer tissues [10]. However, none of these

studies have provided convincing evidence of the oncogenic

potential of SCP3.

To elucidate the role of SCP3 in tumorigenesis, we examined

the role of these members as potential oncoproteins by conducting
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a series of in vitro and in vivo experiments using both a murine cell

line (NIH3T3) and human cervical cancer cell lines (CUMC6,

SiHa, CaSki, and HeLa). Here, we report that overexpression of

SCP3 induces phenotypic changes characteristic of transformation

both in vitro and in vivo. Furthermore, we analyzed patterns of

SCP3 and pAKT expression by immunohistochemistry in cervical

tissue specimens from patients with cervical intraepithelial

neoplasia (CIN) or invasive cervical carcinoma. The relationships

between protein expression and clinicopathological parameters/

survival of cervical cancer patients were also analyzed, and

demonstrated that SCP3 expression is a prognostic factor for

patients with cervical cancer.

Materials and Methods

Mice and cell lines
Six- to eight-week-old female Balb/c Nude mice were

purchased from Daehan Biolink (Chungbuk, Korea). All animal

procedures were performed under a protocol approved by the

Korea University Institutional Animal Care and Use Committee

(KUIACUC-2009-126). The murine fibroblast cell line NIH3T3

and human cervical cancer cell lines CUMC6, SiHa, CaSki, and

HeLa were purchased from American Type Culture Collection

(ATCC, Manassas, VA) and were grown in Dulbecco’s Modified

Eagle Medium (DMEM) in the presence of 10% fetal bovine

serum (FBS). All cells were cultured in 5% CO2 balanced air at

37uC. The identities of cell lines were confirmed by short tandem

repeat (STR) profiling by IDEXX Laboratories Inc. and used

within 6 months for testing.

Patients and tumor samples
Primary tumor specimens were obtained between 1996 and

2010 from 181 cases of cervical cancer, 301 cases of high grade

cervical intraepithelial neoplasia (CIN), and 99 cases of low

grade CIN undergoing primary surgery at Gangnam Sever-

ance Hospital, Yonsei University College of Medicine. All

patients gave oral and written informed consent. Paraffin

blocks for some of the patients were provided by the Korea

Gynecologic Cancer Bank through the Bio & Medical

Technology Development Program of the Ministry of Educa-

tion, Science, and Technology, Korea (http://www.kgcb.or.

kr). All tumor tissues were histologically reviewed and only

specimens with a sufficient abundance of tumor cells were

included in tissue microarray construction. Staging was

performed according to the International Federation of

Gynecology and Obstetrics (FIGO) staging system. Primary

treatment for invasive cervical cancer consisted of a type 3

radical hysterectomy with pelvic lymph node dissection.

Concurrent Platinum-based chemoradiation was given in cases

with increased risk of recurrence, such as positive resection

margins, positive lymph nodes, or parametrial invasion.

Medical records were reviewed to obtain data including age,

surgical procedure, survival time, and survival status. Response

to therapy was assessed according to the Response Evaluation

Criteria in Solid Tumors (RECIST; version 1.0), either by

computed tomography or magnetic resonance imaging [11].

Data on tumor size, cell type, tumor grade, and lymph node

metastasis were obtained by reviewing pathology reports. The

study protocol was approved by the Institutional Review

Boards (IRBs) of Gangnam Severance Hospital and the Office

of Human Subjects Research at the National Institutes of

Health (NIH).

Construct of SCP3 and its deletion mutant expression
vectors

hSCP3 full and deletion mutants were created with a PCR-

based strategy from a human testis cDNA library (Clontech,

Moutain View, CA) with the following primers: hSCP3 1 forward

59-GCTCGAGATGGTGTCCTCCGGAAAAAAG-39; hSCP3

81 forward 59-CCCTCGAGACCATGATTAACAAGGCTC-

TTCTT-39; hSCP3 131 forward 59-GGCTCGAGATGGATA-

TGCAGAAAGCTGAG-39; hSCP3 80 reverse 59-CGAATTCT-

CAGTCAACTCCAACTCCTTCCA-39; hSCP3 130 reverse 59-

CGAATTCTCAGAAACTGCTGAGAATAT-39; hSCP3 236

reverse 59-CGAATTCAGTCTTATTGTACCTAACTTCTCT-

G-39. hSCP3 1-236 (full), 1-80, 1-130, 81-236, and 131-236

fragments were subcloned into the pMSCV-puro vector (Clon-

tech) at the Xho I and EcoR I restriction sites. Recombinant

pMSCVs encoding SCP3 or its deletion mutants were confirmed

by DNA sequence analysis.

Construct of shSCP3 vectors
To generate the Scp3 short hairpin RNA (shRNA) exoression

construct human Scp3-shRNA annealed forward 59 GATCCG-

GAGAAGAATCATGATAATTCAAGAGAT TATCATGATT-

CTTCTCCTTTTTTGGAAA-39 (BamHI-compatible) and reverse

59- AGCTTTTCCAAAAAAGGAGAAGAATCATGATAATC-

TCTTGAATTATCATGATTCTTCTCCG-39 (HindIII-compati-

ble) oligonucleotides were ligated to BamHI/HindIII-digested

pSilencer 3.1-H1 puro. The shRNA control employed for these

studies was a scrambled DNA sequence that does not target any

identified human coding sequence (Ambion, Austin, TX).

Western blot analysis
For each experiment, a total of 56105 cells were rinsed twice

with ice-cold PBS and added 0.2 mL of the Protein Extraction

Solution RIPA (Elpis Biotech, Daejeon, Korea) [50 mM Tris Cl,

pH 8.0, 150 mM NaCl, 1 mM phenylmethylsulphonyl fluoride

(PMSF), 0.1% sodium dodecyl sulphate (SDS), 1% Nonidet P-40

(NP-40), 0.5 mM EDTA], incubated for 30 min on ice, and then

were scraped and centrifuged. Protein concentrations were

determined by the coomassie plus protein assay (Pierce, Rockford,

USA). 50 mg of protein were solubilized in Laemmli buffer

(62.5 mM Tris/HCL pH 6.8, 10% glycerol, 2% SDS, 5%

mercaptoethanol and 0.00625% bromophenol blue), boiled for

5 min, and then separated by SDS polyacrylamide gel electro-

phoresis. Separated gel was transferred to nitrocellulose mem-

branes at 90 V for 1 hr on ice. Primary antibodies against

phospho AKT (Ser473), AKT, and phospho ERK (T202/Y204)

were purchased from Cell Signaling (Beverly, MA) and used at a

dilution of 1:1000. Likewise, primary antibodies against dual

phospho p38 MAPK (Stressgen, Victoria, Canada) and SCP3 (BD

Biosciences, San Jose, CA) were used at a dilution of 1:1000, while

antibodies against b-actin and Flag (Sigma-Aldrich, St. Louis,

MO) were used at a dilution of 1:10,000 in Tris-buffered saline

(TBS)-T containing 5% BSA (Santa Cruz Biotechnology, Santa

Cruz, CA) at 4uC overnight, followed by 3 washes in TBST, 5

minutes per wash. Goat anti-mouse IgG-HRP, anti-rabbit IgG-

HRP secondary antibodies (1:5000) (Stressgen) were incubated for

1 hr at room temperature conjugated with horseradish peroxidase.

Immunoreactive bands were visualized by enhanced chemilumi-

nescence (ECL, Elpis Biotech). Densitometry was performed using

an image analyzer Fujifilm LAS-4000 (Fuji, Tokyo, Japan) and

Multi Gauge V3.1 imaging software (Fujifilm Medical systems

USA, Inc., Edison, NJ). To quantitate the intensity profile of

protein band images, we used Image J densitometry software
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(Version 1.6, National Institutes of Health, Bethesda, MD). The

band images were scanned in grayscale at a resolution of at least

600dpi and expressed a percentage of the total size of all the

measured peaks. To calculate a relative value, the intensity of each

sample was divided by that of control. Numbers below western

blots refer to the relative values of the intensity normalized to each

control.

Cell proliferation and colony formation assays
For cell proliferation assays, the cells (n = 3) were grown in six

well plates at a density of 16104 cells per well for 3 days. The

percentages of live cells were determined using a hematocytometer

after 0.4% trypan blue staining. Measurements were made in

triplicate for each of the cell lines and the experiments were

repeated three times. For the soft-agar colony formation assay,

16104 NIH3T3 cells, CaSki cells and HeLa cells were plated in 6-

well culture plate as a suspension in 2 mL of DMEM containing

10% FBS and 0.4% agar on top of the base layer of 0.7% agar

containing 2 mL of the same medium. Plates were incubated at

37uC for 2 weeks until colonies were formed. Two weeks later, .

2 mm colonies were counted with an ocular micrometer on a

microscope. All experiments repeated at least twice.

siRNA treatment
Synthetic small interfering RNA (siRNA) specific for green

fluorescent protein (GFP) and mouse AKT were purchased from

Invitrogen (Carlsbad, CA). The following sequences were used:

GFP (non-specific target control) 59-GCAUCAAGGUGAACUU-

CAA-39 (sense), 59-UUGAAGUUCACCUUGAUGC-39 (anti-

sense); AKT, 59-GACAACCGCCAUCCAGACU-39 (sense), 59-

AGUCUGGAUGGCGGUUGUC-39 (antisense). For in vitro

delivery, NIH3T3 cells on a 6-well vessel were transfected with

300 pmol of the synthesized siRNAs using Lipofectamine 2000

(Invitrogen) according to the manufacturer’s instructions. The

siRNA-treated cells were collected 48 h after transfection for

western blot analysis, cell proliferation assay, and colony forming

assay.

Tumor formation
The transfected NIH3T3 cells (16105 cells/mouse), CaSki cells

(16106 cells/mouse), or HeLa cells (16106 cells/mouse) were

injected subcutaneously into Balb/c Nude mice. Tumor size was

measured twice a week for 24 days after tumor cell injection. Each

individual tumor size was measured with a caliper, and the tumor

volume was calculated using the following formula: tumor volume

(mm3) = [width6length2]/2 [12].

Immunofluorescent labeling of tumor tissue sections
Tumor tissue samples were fixed and embedded in Tissue-Tek

O.C.T. compound (Sakura Finetechnical, Tokyo, Japan) in molds.

For immunofluorescent analyses, 10-mm cryosections were placed

on poly-L-lysine–coated slides, fixed in 4% paraformaldehyde, and

blocked in PBS with 10% normal goat serum (NGS) (NGS/PBS).

Tissue sections were incubated with pAKT antibody (1:100; Cell

signaling) for overnight at 4uC. After washing, sections were

incubated with the secondary Alexa555-conjugated goat anti–

rabbit IgG (1:1000 in NGS/PBS; Molecular Probes, Eugene, OR)

and then mounted in Fluorescent Mounting medium (Dako,

Glostrup, Denmark) on glass microscope slides. All images were

acquired using a Zeiss LSM 5 Pascal confocal microscope (Carl

Zeiss, Jena, Germany). To quantitate the intensity profile of pAKT

fluorescence image in tumor tissue sections, we used ImageJ

densitometry software. The tumor tissues on slides were scanned in

grayscale at a resolution of at least 600dpi. Tumor areas on

scanned images were selected more than 10 times from each group

with freehand tool and measured the mean grey value. To

calculate a relative value, the intensity of each sample was divided

by that of blank slides (without primary antibody).

Tissue microarray construction
Full-face sections of all donor blocks were stained with

haematoxylin and eosin (H&E) and reviewed by a pathologist

who marked representative tumor areas. The tissue microarray

(TMA) was constructed using a Manual Tissue Arrayer MTA-1

(Beecher Instruments Inc., Silver Spring, MD). Four 1.0 mm

diameter tissue cores consisting of matched tumor specimens

and normal epithelial samples were extracted from selected

regions of each donor block. The presence of tumor tissues on

the TMA was verified with H&E staining. Multiple 5 mm thick

sections were cut with a microtome and H&E staining of TMA

slides were examined every 50th section for the presence of

tumor cells.

Immunohistochemistry and scoring
TMA sections were deparaffinized and hydrated in xylene

and descending gradient alcohol solutions. Endogenous per-

oxidase was blocked by incubation in 3% H2O2 for 10 minutes.

Antigen retrieval was performed in a steam pressure cooker

(Pascal, Dako, Carpinteria, CA) with prewarmed antigen

retrieval buffer pH 9 (Dako) at 95uC for 10 minutes. To

minimize nonspecific staining, sections were incubated with

protein block (Dako) for 20 minutes. The sections were

incubated with an anti-SCP3 antibody (clone 25/SCP3, BD

Biosciences, dilution 1:500) overnight at 4uC or an anti-pAKT

antibody (Cell Signaling; dilution 1:200) for 120 minutes at

room temperature. EnVision FLEX+ and EnVision+ Dual

Link System (Dako) were used for the detection of SCP3 and

pAKT, respectively. Staining was visualized using 3,39-

Diaminobenzidine (DAB) and the sections were counterstained

with hematoxylin. Finally, the slides were covered and

observed under a light microscope (Axioplot, Carl Zeiss, Jena,

Germany). In this study, five conventional whole section slides

were carefully selected to validate the immunohistochemical

staining performed for SCP3 and pAKT. During this process,

staining patterns were thoroughly compared, and some of the

patterns matched those of conventional slides from the same

case. Furthermore, in designing this study, stromal cells from

the whole sections of cercival cancer were selected as internal

positive control while the primary antibody was omitted from

the negative control.

SCP3 and pAKT staining results were scored based on (a)

intensity [categorized as 0 (absent), 1 (weak), 2 (moderate), or 3

(strong)] and (b) the percentage of positive stained epithelial

cells [scored as 0 (0% positive), 1 (1–25%), 2 (26–50%), 3 (51–

75%), or 4 (.75%)] (Figure S1). An overall protein expression

score was calculated by multiplying the intensity and positivity

scores (overall score range, 0–12). The IHC score was then

dichotomized into high expression (SCP3 IHC score of .7 and

pAKT score of .7, respectively), and low expression (IHC

score of #7 in both SCP3 and pAKT). Receiver operating

characteristic (ROC) analysis was used when determining the

cut-off values of the SCP3 and pAKT. The sensitivity and

specificity for discriminating death or alive was plotted at each

IHC score and cut-off value was established to be the point of

the ROC curve where the sum of sensitivity and specificity was

maximize [13]. Two independent pathologists with experience

SCP3 in Cervical Cancer
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in tissue microarray analysis examined the slides without any

knowledge of the corresponding clinical data.

Statistical analysis
All data are representative of at least 2 independent experi-

ments. Non-parametric 1-way or 2-way ANOVA was performed

with SPSS version 18.0 software (SPSS Inc., Chicago, IL).

Comparisons between individual data points were assessed with

Student’s T-test. Statistical analyses of SCP3 and pAKT

expression were performed using the Mann-Whitney test and

the Kruskal-Wallis test. The Spearman nonparametric correlation

test was used to analyze the relationship between SCP3 and

pAKT. Survival curves were estimated by Kaplan-Meier analysis.

The log-rank test was used to compare the differences of survival

distribution between groups. The multivariate analysis with Cox

proportional hazards model was performed to identify indepen-

dent predictors of disease-free survival in adjustment with relevant

clinical covariates such as age, FIGO stage, histologic type, tumor

grade, tumor size, and lymph node status. The final model was

chosen based on the result of univariable analysis as well as

consideration of the clinical or biological importance of the

variables. All statistical tests were two-sided, and P values,0.05

were considered statistically significant.

Results

Ectopic expression of hSCP3 increases proliferation and
tumorigenicity of NIH3T3 cells

A previous study reported that human SCP3 (hSCP3) is

expressed in various cancer cells and that its expression in human

specimens is associated with oncogenesis [8,10]. However, the

oncogenic potential of SCP3 has not been sufficiently character-

ized at either the molecular or cellular level. To examine whether

hSCP3 may have cellular tumorigenic potential, we first used a

non-tumorigenic murine fibroblast NIH3T3 cell line and estab-

lished the cell lines expressing hSCP3 using a retroviral

transduction system (NIH3T3/hSCP3). NIH3T3/no insert (emp-

ty vector) cells were also established as a control. The expression of

SCP3 protein in NIH3T3/hSCP3 cells was confirmed by Western

blot (Figure 1A). Cell proliferation of transduced NIH3T3 cells

was measured by counting the number of live cells after trypan

blue staining. In cell proliferation assays (Figure 1B), NIH3T3/

hSCP3 cells exhibited a significantly increased proliferation rate

compared with NIH3T3/no insert cells (P,0.005). The results of

a soft agar colony formation assay with the same cell lines were

consistent with those of the cell proliferation assay (Figure 1C).

NIH3T3/hSCP3 cells exhibited significantly higher potentials of

colony formation in soft agar as compared with NIH3T3/no insert

cells (P,0.005). We next subcutaneously injected hSCP3- or no

Figure 1. hSCP3 increases oncogenic potentials of NIH3T3 cells in vitro and in vivo. (A) Western blot analysis of expression of hSCP3 in
NIH3T3 cells retrovirally transduced with a pMSCV vector encoding hSCP3 (NIH3T3/hSCP3). NIH3T3/No insert cells were used as a control. Numbers
below western blots refer to the relative values of the intensity normalized to no insert control. (B) In vitro growth curves of NIH3T3/hSCP3 cells. Cells
were counted after trypan blue staining to exclude dead cells. (C) Colony-forming capacity of NIH3T3/hSPC3 cells in soft agar; (left) Representative
images of average colony size in each group; (right) Bar graph representing the number of colonies with diameters greater than 2 mm in soft agar
(scale bar: 1 mm). (D) Tumorigenicity of NIH3T3/hSCP3 cells. Balb/c Nude mice (n = 5) were inoculated subcutaneously with 16105 cells/mouse of
NIH3T3/no insert or NIH3T3/hSCP3 cells. Error bars represent the mean 6 SD.
doi:10.1371/journal.pone.0098712.g001
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insert-expressing NIH3T3 cell in the left flank of athymic Balb/c

Nude mice (Figure 1D). Consistent with our in vitro data, the

tumor-forming ability of NIH3T3 cells was drastically increased by

ectopically-expressing hSCP3 (no insert vs. hSCP3, P,0.001). We

next explored whether other genes from the murine Cor1 family

such mXLR, mXMR and mSCP3, which share more than 60%

homology with hSCP3, could have similar tumorigenic potential

in the NIH3T3 model [10]. As shown in Figure S2, ectopic

expression of Cor1 family members substantially promoted in vitro

cell proliferation and soft agar colony formation as well as in vivo

tumor formation in NIH3T3 cell line model, which was consistent

with that of the hSCP3. Taken together, these data clearly

demonstrate the oncogenic potentials of SCP3 and other Cor1

members in NIH3T3 model.

hSCP3 promotes tumorigenesis through AKT pathway in
NIH3T3 cells

We previously reported that pAKT level is increased in hSCP3-

expressing cervical cell lines [10]. To evaluate changes in various

signaling molecules that may play a role in the global control of

cell proliferation, we performed Western blot analysis to measure

the levels of Ser 473 phosphorylated AKT, Thr 202/Tyr 204

phosphorylated ERK, and Thr 180/Tyr 182 phosphorylated p38

MAP kinase in NIH3T3 cells expressing hSCP3 or no insert

(empty vector). We observed that the expression of pAKT was

significantly increased in cells transduced with hSCP3 compared

to control cells (Figure 2A). Next, to explore the relationship

between hSCP3-mediated tumorigenic potential and the AKT

signaling, we compared both cell proliferation and soft agar colony

forming capability of NIH3T3/hSCP3 cells in the presence of

control (DMSO), 10 mM API2 (an inhibitor of AKT), 50 mM

PD98059 (an inhibitor of MEK/ERK) or 10 mM SB203580 (an

inhibitor of p38-MAPK) (Figure 2B and 2C). Treatment with PD

98059 and SB203580 did not significantly affect the proliferation

and the colony formation capacity of NIH3T3/hSCP3 cells

compared with that of DMSO. On the contrary, API2 treated

NIH3T3/hSCP3 cells exhibited a significantly decreased prolifer-

ation rate compared with DMSO-treated control (P,0.001).

Consistently, API2-treated NIH3T3/hSCP3 cells also formed

smaller colonies, the number of which was almost 5-times less than

colonies formed by DMSO-treated NIH3T3/hSCP3 cells. Thus,

it is obvious that both proliferation and colony formation in these

cells are dependent on the AKT signaling. To exclude potential

off-target effects of API2, we performed in vitro cell proliferation

and soft agar colony formation experiments using siRNA-targeting

Figure 2. hSCP3 increases tumorigenesis through AKT pathway. (A) Western blot analysis of levels of pAKT, pERK, and pp38 in NIH3T3 cells
ectopically expressing hSCP3 or no insert. Numbers below western blots refer to the relative values of the intensity normalized to no insert control.
(B) In vitro growth curves of NIH3T3/hSCP3 cells treated with DMSO or API2 (Akt inhibitor), PD98059 (Erk inhibitor), or SB203580 (p38 inhibitor). (C)
Soft agar colony-forming capacity of NIH3T3/hSPC3 cells in the presence of API2, PD98059, or SB203580; (C, Right) Representative images of average
colony size in each group; (C, Left) bar graph showing the number of colonies with diameters greater than 2 mm in soft agar (scale bar: 1 mm). (D)
Western blot analysis of levels of pAKT in NIH3T3/hSCP3 cells transfected with a siRNA targeting GFP or AKT (siGFP or siAKT) to confirm the reduction
of AKT protein level. Numbers below western blots refer to the relative values of the intensity normalized to no insert control. (E) In vitro growth
curves of NIH3T3/hSCP3 cells transfected with siGFP or siAKT. (F) Soft agar colony-forming capacity of NIH3T3/hSPC3 cells treated with siGFP or siAKT;
(Left) Representative images of average colony size in each group; (Right) Bar graph representing the number of colonies with diameters greater than
2 mm in soft agar (scale bar: 1 mm). Error bars represent the mean 6 SD.
doi:10.1371/journal.pone.0098712.g002
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AKT (siAKT) to block the AKT pathway. siRNA targeting to

irrelevant GFP (GFP siRNA) was used as a negative control.

Consistent with API2 data, siAKT-treated NIH3T3/hSCP3 cells

exhibited a decreased rate of cell proliferation (Figure 2D and 2E)

and colony number compared with control siGFP-treated

NIH3T3/hSCP3 cells (Figure 2F). Similar AKT dependency

was also observed in NIH3T3 cells expressing mXLR, which

displayed the most potent tumorigenic potential among members

of the murine Cor1 family (Figure S3). Thus, our data demonstrate

that SCP3 and the other Cor1 members could confer tumorigenic

potentials upon NIH3T3 cell through AKT pathway.

The C-terminal region of hSCP3 is sufficient to increase
pAKT levels and enhance tumorigenesis

As schematized in Figure 3A, hSCP3 contains a nuclear

localization signal (NLS, residues 88–91), Gln-rich (residues

106–139) and coiled-coil (residues 131–236) motifs. To identify

key motifs involved in hSCP3-mediated oncogenesis, we con-

structed four deletion mutants of hSCP3 containing different

motifs (Figure 3A). The N-termini of full hSCP3 and the deletion

mutants were tagged with a Flag epitope for visualization by

Western blot. We then characterized the expression and the

function of hSCP3 and its mutants in retrovirus-transduced

NIH3T3 cells. Notably, mutants lacking the coiled-coil motif

(hSCP31-80 and hSCP31-130) failed to increase phosphorylation of

Figure 3. The C-terminal region of hSCP3 is important for its oncogenic capability. (A) Schematic of the domains in hSCP3. Boxes
represent the NLS, Gln-rich, and coiled-coil motifs, respectively. (B) Western blot analysis of levels of hSCP3 and its deletion mutants, the N-termini of
which were tagged with a Flag epitope for visualization. Numbers below western blots refer to the relative values of the intensity normalized to no
insert control. (C) Soft agar colony-forming capacity of NIH3T3 expressing wild type or deletion mutants of hSCP3. (D) In vitro growth curves of
NIH3T3 cells expressing wild type or deletion mutants of hSCP3. Cells were counted after trypan blue staining to exclude dead cells. (E) In vivo
tumorigenicity of the NIH3T3 cells. Balb/c Nude mice (n = 5) were inoculated subcutaneously with 16105 cells/mouse of the NIH3T3 cells expressing
full length or mutant hSPC3. Error bars represent the mean 6 SD. (F) Representative images of skin tumors (scale bar: 60 mm). (G) Bar graph
representing intensity of pAKT fluorescence image on tumor tissue sections, ImageJ densitometry software was used to quantitate the intensity of
image as described in Materials and Methods. Error bars represent the mean 6 SD.
doi:10.1371/journal.pone.0098712.g003

SCP3 in Cervical Cancer

PLOS ONE | www.plosone.org 6 June 2014 | Volume 9 | Issue 6 | e98712



AKT (Figure 3B). Conversely, hSCP381-236 and hSCP3131-236

mutants containing the coiled-coil motif successfully increased

levels of pAKT (Figure 3B). Consistent with these observations,

NIH3T cells expressing hSCP381-236 or hSCP3131-236 exhibited an

increased rate of cell proliferation and number of colony

compared with those expressing hSCP31-80 and hSCP31-130 as

well as no insert (Figure 3C and 3D). More importantly, as shown

in Figure 3E-3G, similar phenomena were also observed in vivo

with tumor xenograft experiments. The tumor-forming ability of

NIH3T3 cells was drastically increased after ectopic expression of

hSCP381-236 and hSCP3131-236 [no insert vs. hSCP381-236 (P,0.01)

or hSCP3131-236 (P,0.003)]. Similarly, immunofluorescence

staining for pAKT was increased substantially in histological

sections of tumors ectopically expressing hSCP381-236 or

hSCP3131-236 [no insert vs. hSCP381-236 (P,0.05) or hSCP3131-

236 (P,0.003)] (Figure 3G). Taken together, our data indicate that

the coiled-coil motif containing the C-terminal region is the

primary contributor to the AKT-dependent oncogenic potential of

hSCP3.

SCP3 has a key role in proliferation and tumorigenicity of
cervical cancer cells

We further investigated the oncogenic role of SCP3 and its

relationship with phosphorylated AKT (pAKT) in human cervical

cancer cell lines. For this, the expression of SCP3 was measured in

human cervical cancer cell lines CUMC6, SiHa, CaSki, and HeLa

using western blot analysis. As shown in Figure 4A, expression of

SCP3 was observed in all of cervical cancer cells although that of

SCP3 was most profound in HeLa cells. In contrast, CaSki cells

exhibited lowest expression of SCP3 protein. Next, to evaluate the

effects of SCP3 on cell proliferation and tumorigenicity in cervical

cancer cells, we established the CaSki cell lines expressing hSCP3

or no insert (empty vector) using a retroviral transduction system

CaSki/hSCP3 or CaSki/no insert, respectively. Conversely, we

Figure 4. hSCP3 increases oncogenic potentials of human cervical cancer cells in vitro and in vivo. (A) Western blot analysis of levels of
SCP3 in human cervical cancer cell lines CUMC6, SiHa, CaSki, and HeLa cells. Numbers below western blots refer to the relative values of the intensity
normalized to CUMC6 control. (B) Western blot analysis of expression of SCP3, pAKT, and AKT in CaSki cells retrovirally transduced with a pMSCV
vector encoding hSCP3 (CaSki/hSCP3). CaSki/no insert cells were used as a control. Numbers below western blots refer to the relative values of the
intensity normalized to no insert control. (C) In vitro growth curves of CaSki/hSCP3 cells. Cells were counted after trypan blue staining to exclude dead
cells. (D) Colony-forming capacity of CaSki/hSCP3 cells in soft agar; (Top) Representative colony images of each group; (Bottom) Bar graph
representing the number of colonies with diameters greater than 2 mm in soft agar (scale bar: 1 mm). (E) Tumorigenicity of CaSki/hSCP3 cells. Balb/c
Nude mice (n = 5) were inoculated with CaSki/no insert or CaSki/hSCP3 cells (16106 cells/mouse) subcutaneously. (F) Western blot analysis of
expression of SCP3, pAKT, AKT in HeLa/shSCP3 cells. HeLa/shGFP were used as a control. Numbers below western blots refer to the relative values of
the intensity normalized to shGFP control. (G) In vitro growth curves of HeLa/shSCP3 cells. (H) Colony-forming capacity of HeLa/hSCP3 cells in soft
agar (scale bar: 1 mm). (I) Tumorigenicity of HeLa/shSCP3 cells. Balb/c Nude mice (n = 5) were inoculated subcutaneously with 16106 cells/mouse of
HeLa/shGFP or HeLa/shSCP3 cells. Error bars represent the mean 6 SD.
doi:10.1371/journal.pone.0098712.g004
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established the HeLa cell lines expressing shRNA targeting SCP3

(shSCP3) or GFP (irrelevant negative control, shGFP) using a

shRNA expressing vector (pSilencer 3.1-H1 puro), HeLa/shSCP3

or HeLa/shGFP, respectively, after puromycin selection. First of

all, SCP3, pAKT, AKT protein levels in the CaSki cells were

measured by western blotting. As shown in Figure 4B, the

expression of pAKT was significantly increased in CaSki/SCP3

cells compared with control CaSki/no insert cells. The cell growth

assay revealed that cell growth rate in the SCP3-transduced cells

was significantly higher than control cells (Figure 4C). Similar

increase was also observed in colony formation assay (Figure 4D).

Consistent with in vitro data, the tumor-forming ability of CaSki

cells was significantly increased after introducing SCP3 (Figure 4E).

In contrast, knock-down of SCP3 in HeLa cells significantly

decreased pAKT level, in vitro cell growth rate and colony

formation efficacies and in vivo tumor growth rate compared with

shGFP control group (Figure 4F–4I). These data demonstrate that

SCP3 has a key role in cell proliferation and tumorigenicity of

cervical cancer cells.

SCP3 and pAKT are overexpressed in tumor samples from
patients with cervical cancer

Having elucidated the molecular mechanism by which SCP3

activation promotes tumor growth via the AKT pathway, we next

examined SCP3 and pAKT protein expression levels by immu-

nohistochemistry in cervical tissue specimens from patients with

CIN or invasive cervical cancer. Table S1 summarizes patient’s

clinicopathological characteristics. In 181 patients with cervical

cancer, 118 patients of stage I, 54 of stage II and 9 of stage IV

were included. The ages of the patients ranged from 19 to 83 years

(mean, 42.4 years). The tumor sizes ranged from 0.2 to 12 cm

(mean, 2.9 cm).

Representative immunohistochemical staining of SCP3 and

pAKT are shown in Figure 5A. Immunohistochemical staining of

SCP3 was observed in the cytoplasm of tumor cells as previously

reported in non-small cell lung cancer [8]. The TMA constructed

in this study consisted of 181 cases of cervical cancer, however due

to the complexity of sectioning, staining, as well as heterogeneity of

the samples, 176 (97.2%, SCP3) and 178 (98.3%, pAKT) of which

were suitable for IHC evaluation. Detailed IHC scoring patterns

are shown in Table S2. A total of 108 of 176 cancers (61.4%) had

high expression (cut-off value: 7) of SCP3 whereas 100 of 178

cancers (56.2%) had elevated expression (cut-off value: 7) of

pAKT. The level of SCP3 and pAKT expression increased as

tumor state progressed from low-grade CIN to high-grade CIN to

cancer (Figure 5A and 5B; Table S2). Moreover, SCP3 expression

was significantly correlated with FIGO stage (P = 0.002), differen-

tiation (P,0.001) and chemoradiation response (P = 0.005).

Figure 5. SCP3 overexpression is associated with tumor progression in human cervical neoplasia specimens. (A) Representative
immunohistochemical staining images of SCP3 and pAKT in cervical tissue from patients with low-grade CIN, High-grade CIN, and cervical carcinoma.
Boxed regions are displayed at high magnification in insets (scale bar: 300 mm). (B) Box plot depiction of IHC staining scores. There was an increasing
amount of SCP3 and pAKT expression as tumor stage progressed from low-grade CIN to high-grade CIN to cancer. Symbols indicate individual
samples. Numbers associated with symbols indicate case numbers.
doi:10.1371/journal.pone.0098712.g005
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However, there was no statistically significant difference between

pAKT expression and clinicopathologic factors.

We next examined the association between SCP3 and pAKT

expression. Of the 400 CIN specimens, 344 (86.0%) were available

to confirm co-expression between SCP3 and pAKT, whereas 173

tumor samples (95.6%) were available to confirm co-expression

between SCP3 and pAKT in cervical cancer. Notably, expression

of SCP3 showed a positive linear correlation with that of pAKT

both in CIN (Spearman’s rho = 0.322, P,0.001) and cervical

cancer (Spearman’s rho = 0.221, P = 0.010) (Table 1, Figure

S4).Taken together, these results suggest that SCP3 expression

may be involved in the development of cervical cancer develop-

ment and linked with the AKT signaling pathway.

SCP3 overexpression is correlated with poor prognosis of
patients with cervical cancer

To investigate the clinical relevance of SCP3, we examined the

effect of SCP3 expression on patient outcomes. Five-year disease-

free survival and overall survival were analyzed through Kaplan-

Meier plots as shown in Figure 6A and B. In survival analysis of

SCP3, there were 33 cases of recurrences, 2 cases of persistent

disease, and 18 deaths in the 108 patients with high expression of

SCP3, whereas low expression of SCP3 (68 patients) was

associated with 4 cases of recurrence and 2 deaths over a mean

follow-up period of 56.32 months. Patients with high SCP3

expression displayed shorter disease-free survival (mean of 122.4

versus 153.5 months, P = 0.001) and overall survival (mean of

144.8 versus 159.6 months, P = 0.024) compared with that of

patients with low expression of SCP3 (Figure 6A and 6B).

Furthermore, patients with combined high SCP3 and high pAKT

exhibited significantly worse disease-free survival (mean of 106.7

versus 160.3 months, P,0.001) and overall survival (P = 0.009)

compared with the combined low SCP3 and low pAKT group.

Interestingly, there were no deaths in combined low SCP3 and low

pAKT patients (n = 37). We next examined the independent

prognostic significance of SCP3 alone and high SCP3 combined

with high pAKT, as well as other clinicopathological parameters,

using the Cox proportional hazards model. According to

multivariate analysis, FIGO stage was a significant risk factor for

overall survival (P = 0.013), whereas lymph node metastasis

remained a significant risk factor for disease-free survival

(P = 0.024) (Table 2). High SCP3 expression was a risk factor for

recurrence [hazard ratio = 5.52 (95% CI, 1.78–17.11), P = 0.003],

whereas high pAKT expression was a risk factor for disease-free

survival [hazard ratio = 3.62 (95% CI, 1.19–11.05), P = 0.023] and

overall survival [hazard ratio = 3.60 (95% CI, 1.04–12.42),

P = 0.043]. Notably, the combination of high SCP3 and high

pAKT expression was a significant risk factor for both disease free

survival [hazard ratio = 4.98 (95% CI, 1.90–13.01), P = 0.001] and

overall survival [hazard ratio = 3.38 (95% CI, 1.21–9.43),

P = 0.020].

Discussion

There is increasing evidence that hSPC3 may play a role in

oncogenesis; however, the evidence has not been addressed at a

cellular or molecular level. In this report, we provide the first

compelling data that hSCP3 can play a key role in human

tumorigenesis. We demonstrate that ectopic expression of hSCP3

in conventional non-tumorigenic murine NIH3T3 cells and a

human cervical cancer cell line CaSki cells leads to increased cell

proliferation and colony formation in vitro as well as increased

tumor growth in vivo using a mouse model system. Furthermore,

we observed activation of the AKT pathway in hSCP3-overex-

pressing cells. Interestingly, AKT activation appeared to be

associated with hSCP3-mediated oncogenic potential, which was

confirmed using an API-2 chemical inhibitor, siAKT treatment,

and deletion mutant analysis.

The AKT pathway plays a pivotal role in transformation by

inducing cell survival, growth, migration, and angiogenesis [13–

17]._ENREF_13 Recently, we reported that increased activation

of AKT is associated with multiple resistance of tumor cells to

various cancer drugs, radiation, as well as cytotoxic T lymphocyte

(CTL)-mediated cell death [18–21]. In this paper, we demonstrat-

ed that hSCP3-mediated oncogenic potentials were primarily

mediated by an AKT-dependent pathway. Likewise, it was not

surprising that similar AKT dependency was present for murine

Cor1 members as demonstrated in Figure S1 and S2, because they

share more than 60% homology with hSCP3 [10]. However, we

don’t exclude the possibility of AKT-independent mechanism in

SCP3-mediated oncogenesis since its hSCP31-80 deletion mutant

exhibited a significant increase of colony number, proliferation,

and tumor volume despite the lack of increased Akt phosphory-

lation in a NIH 3T3 tumor cell model as shown in Figure 3.

Further studies are needed to demonstrate the direct relationship

between SCP3 expression and activation of AKT in cervical

cancer.

SCP3 is well known as a nuclear protein in meiotic germ cells

[22], whereas altered subcellular localization of SCP3 has been

reported in various cancer cells as well as human lung cancer tissue

specimens [8]. Furthermore, in a previous pilot study using a

limited number of cervical cancer specimens, we observed

Table 1. Association between SCP3 and pAKT expression in CIN and cervical cancer.

SCP3 expression

Low % High % Total No. Correlation coefficient (r) p value

pAKT expression

CIN 0.322 ,0.001

Low 233 90.7 24 9.3 257

High 62 71.3 25 28.7 87

Cervical cancer 0.221 0.010

Low 38 50.0 38 50.0 76

High 29 29.9 68 70.1 97

CIN, cervical intraepithelial neoplasia.
doi:10.1371/journal.pone.0098712.t001
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cytoplasmic localization of SCP3 by IHC [10]. The ectopic

expression of tumor suppressor proteins can disrupt normal cell

differentiation programs and accelerate cancer progression.

Therefore, our findings suggest that the cytoplasmic expression

of SCP3 may be a cancer-specific phenomenon linked to cancer

progression by an unknown mechanism. In the current study, we

Figure 6. Kaplan-Meier plots for disease-free survival (A) and overall survival (B) according to SCP3 expression, combined SCP3
and pAKT expression, and pAKT expression alone. For patients with high SCP3 expression, the mean disease-free survival and overall survival
were 122.4 months and 144.8 months (n = 108), respectively. For patients with low SCP3 expression, mean disease-free survival and overall survival
were 153.5 months and 159.6 months (n = 68), respectively.
doi:10.1371/journal.pone.0098712.g006

Table 2. Univariate and multivariate analyses of the associations between prognostic variables and disease-free survival or overall
survival in cervical cancer.

Disease-free Survival hazard ratio [95% CI], P value Overall Survival hazard ratio [95% CI], P value

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

Age 0.99 [0.97–1.02], 0.923 NA 0.98 [0.94–1.03], 0.583 NA

FIGO stage 5.32 [2.76–10.24], ,0.001 1.88 [0.79–4.46], 0.153 3.27 [1.32–8.07], 0.010 3.26 [1.28–8.31], 0.013

Cell type (non-SCC) 1.15 [0.50–2.63], 0.732 NA 2.68 [1.06–6.76], 0.035 2.72 [1.06–6.98], 0.037

Tumor grade (poor) 1.98 [1.03–3.81], 0.040 1.64 [0.76–3.53], 0.207 2.40 [0.96–5.97], 0.060 NA

Tumor size (.4 cm) 2.43 [1.27–4.65], 0.007 1.93 [0.84–4.40], 0.117 1.83 [0.74–4.54], 0.188 NA

LN metastasis 4.97 [2.38–10.38], ,0.001 2.57 [1.13–5.87], 0.024 2.23 [0.76–6.47], 0.141 NA

SCC Ag+ 1.45 [0.71–2.96], 0.307 NA 1.80 [0.69–4.68], 0.225 NA

SCP3+ 5.14 [1.82–14.52], 0.002 5.52 [1.78–17.11], 0.003 4.63 [1.07–20.01], 0.040 3.50 [0.79–15.44], 0.097

pAKT+ 4.89 [1.90–12.58], 0.001 3.62 [1.19–11.05], 0.023 4.34 [1.27–14.86], 0.019 3.60 [1.04–12.42], 0.043

SCP3+/pAKT+ 4.97 [2.34–10.53], ,0.001 4.98 [1.90–13.01], 0.001 4.16 [1.51–11.46], 0.006 3.38 [1.21–9.43], 0.020

CI, confidence interval; FIGO, International Federation of Gynecology and Obstetrics; SCC, squamous cell carcinoma; LN, lymph node; NA, not applicable.
doi:10.1371/journal.pone.0098712.t002

SCP3 in Cervical Cancer

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e98712



confirmed that the percentage of patients expressing SCP3 in

cervical cancer was relatively high (61.4% of all cases), and was

significantly associated with the progression of cervical carcino-

genesis from low-grade CIN to high-grade CIN to cancer (Table

S1, P,0.001). To the best of our knowledge, this is the first report

to show that SCP3 protein expression increases according to

severity of cervical lesions. Moreover, we observed that SCP3

protein expression was significantly associated with advanced

tumor stage (P = 0.002), poor tumor grade (P,0.001), and poor

response to chemoradiation therapy (P = 0.005), and exhibited the

highest levels of expression in metastatic tissue specimens (Table

S1). Notably, consistent with our previous report in non-small cell

lung cancer [8], high SCP3 expression in cervical cancer conferred

a significantly shorter survival time, suggesting that it may be a

potential prognostic predictor for cervical cancer. Based on Cox

multivariate analysis, SCP3+, pAKT+, SCP3+/pAKT+, and

lymph node metastasis was associated with increased risk of

recurrence of cervical cancer. Moreover, SCP3+/pAKT+ was the

only independent prognostic factor for both disease-free and

overall survival according to multivariate analysis (Table 2). Taken

together, these results strongly implicate SCP3 as an important

aspect in the pathogenesis of cervical cancer. Likewise, evaluation

of SCP3 expression in cervical cancer may be useful for prediction

of chemoradiation response, stratified prognosis, and determining

follow-up strategies.

Lastly, we examined the correlation of SCP3 expression with

pAKT expression in CIN and invasive cervical cancer tissues.

Consistent with our in vitro data, SCP3 expression was positively

associated with pAKT expression in both CIN (P,0.001) and

cervical cancer (P = 0.010) (Table 1). Even when SCP3 expression

was compared with levels of pAKT using Spearman nonpara-

metric correlation test, SCP3 expression was significantly associ-

ated with pAKT expression in both CIN (Spearman’s rho = 0.322,

P,0.001) and cancer specimens (Spearman’s rho = 0.197,

P = 0.010). Together, these data indicated that SCP3 mediates

an oncogenic phenotype of cervical cancer cells through an AKT-

dependent pathway. Collectively, the results of this study provide

the first molecular and cellular evidence of AKT-dependent

oncogenic properties of hSCP3, which may serve as a novel

therapeutic target for cervical cancer therapy.

Supporting Information

Figure S1 Evaluation of SCP3 and pAKT IHC staining.

Representative immunohistochemical staining images of the

staining intensity (A) weak staining, 1; (B) moderate staining, 2;

or (C) strong positive staining in most cells, 3 and the percentage of

positive stained epithelial cells (D) 1–25% cells staining positive, 1;

(E) 26–50% cells staining positive, 2; (F) 51–75% cells staining

positive, 3; or (G) more than 75% cells staining positive, 4. Scale

bar: 30 mm (A–C), 100 mm (D–G).

(TIF)

Figure S2 Members of the Cor1 family have oncogenic

potential. (A) NIH3T3 cells retrovirally transduced with pMSCV

vector encoding either no insert (NIH3T3/no insert), mSCP3

(NIH3T3/mSCP3), mXMR (NIH3T3/mXMR), or mXLR

(NIH3T3/mXLR) were analyzed for cellular expression of Cor1

members tagged with Flag by Western blot. (B) In vitro growth

curves of NIH3T3 cells expressing each of the Cor1 members.

NIH3T3/no insert cells were used as a control. The cells were

counted after trypan blue staining to exclude dead cells. (C) Bar

graph representing the number of colonies with a diameter greater

than 2 mm in soft agar. (D) Representative colony images of each

group (scale bar: 1 mm). (E) Tumorigenicity of NIH3T3 cells

expressing each of the Cor1 members. Balb/c Nude (n = 5) mice

were inoculated subcutaneously with 16105 cells/mouse using

NIH3T3/no insert, NIH3T3/mSCP3, NIH3T3/mXMR, or

NIH3T3/mXLR cells. Tumor volumes were measured beginning

28 days after tumor inoculation. (F) Representative tumor images

of each group.

(TIF)

Figure S3 Oncogenesis by Cor1 family is AKT-dependent. (A)

Western blot analysis of levels of pAKT in NIH3T3/no insert,

NIH3T3/mSCP3, NIH3T3/mXMR, or NIH3T3/mXLR cells.

(B) Soft agar colony-forming capacity of NIH3T3/mXLR cells in

the presence of API2 (Akt inhibitor), PD98059 (Erk inhibitor) or

SB203580 (p38 inhibitor); (Left) Representative colony images of

each group; (Right) Bar graph representing the number of colonies

with a diameter greater than 2 mm in soft agar (scale bar: 1 mm).

(C) Western blot analysis of levels of pAKT in NIH3T3/hSCP3

cells transfected with siRNA targeting GFP or AKT (siGFP or

siAKT) to confirm the reduction of protein levels of AKT. (D) In

vitro growth curves and (E) in vitro soft agar colony formation of

siGFP or siAKT-transfected NIH3T3/mXLR cells. Error bars

represent the mean 6 SD.

(TIF)

Figure S4 Relationship between the SCP3 and pAKT expres-

sion in CIN (left panel) and cancer (right panel) samples. The

values of pAKT IHC expressions were plotted on the y-axis

against the IHC scores of SCP3 on the x-axis.

(TIF)

Table S1 Characteristics of Patients.

(DOCX)

Table S2 Expression of SCP3 and pAKT in relation to

clinicopathological characteristics in IHC analysis.

(DOCX)

Acknowledgments

We thank Kris Ylaya for technical assistance.

Author Contributions

Conceived and designed the experiments: HC KHN JYC SMH TWK

JHK. Performed the experiments: HC KHN JYC MT EJC BWK TWK.

Analyzed the data: HC KHN JYC MT EJC BWK SMH TWK JHK.

Contributed reagents/materials/analysis tools: HC KHN JYC EJC SMH

TWK JHK. Wrote the paper: HC KHN JYC EJC SMH TWK JHK.

References

1. Parmigiani RB, Bettoni F, Vibranovski MD, Lopes MH, Martins WK, et al.

(2006) Characterization of a cancer/testis (CT) antigen gene family capable of

eliciting humoral response in cancer patients. Proc Natl Acad Sci U S A 103:

18066–18071.

2. Bai S, He B, Wilson EM (2005) Melanoma antigen gene protein MAGE-11

regulates androgen receptor function by modulating the interdomain interac-

tion. Mol Cell Biol 25: 1238–1257.

3. Imai K, Hirata S, Irie A, Senju S, Ikuta Y, et al. (2011) Identification of HLA-

A2-restricted CTL epitopes of a novel tumour-associated antigen, KIF20A,

overexpressed in pancreatic cancer. Br J Cancer 104: 300–307.

4. Lim SH, Austin S, Owen-Jones E, Robinson L (1999) Expression of testicular

genes in haematological malignancies. Br J Cancer 81: 1162–1164.

5. Smith HA, Cronk RJ, Lang JM, McNeel DG (2011) Expression and

immunotherapeutic targeting of the SSX family of cancer-testis antigens in

prostate cancer. Cancer Res 71: 6785–6795.

SCP3 in Cervical Cancer

PLOS ONE | www.plosone.org 11 June 2014 | Volume 9 | Issue 6 | e98712



6. Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B, et al. (2000) The murine SCP3

gene is required for synaptonemal complex assembly, chromosome synapsis, and
male fertility. Mol Cell 5: 73–83.

7. Yuan L, Liu JG, Hoja MR, Wilbertz J, Nordqvist K, et al. (2002) Female germ

cell aneuploidy and embryo death in mice lacking the meiosis-specific protein
SCP3. Science 296: 1115–1118.

8. Chung JY, Kitano H, Takikita M, Cho H, Noh KH, et al. (2013) Synaptonemal
complex protein 3 as a novel prognostic marker in early stage non-small cell lung

cancer. Hum Pathol 44: 472–479.

9. Niemeyer P, Tureci O, Eberle T, Graf N, Pfreundschuh M, et al. (2003)
Expression of serologically identified tumor antigens in acute leukemias. Leuk

Res 27: 655–660.
10. Kang TH, Noh KH, Kim JH, Bae HC, Lin KY, et al. (2010) Ectopic expression

of X-linked lymphocyte-regulated protein pM1 renders tumor cells resistant to
antitumor immunity. Cancer Res 70: 3062–3070.

11. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, et al. (2000)

New guidelines to evaluate the response to treatment in solid tumors. European
Organization for Research and Treatment of Cancer, National Cancer Institute

of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:
205–216.

12. Goodwin SC, Bonilla SC, Sacks D, Reed RA, Spies JB, et al. (2003) Reporting

standards for uterine artery embolization for the treatment of uterine
leiomyomata. J Vasc Interv Radiol 14: S467–476.

13. Bansal N, Marchion DC, Bicaku E, Xiong Y, Chen N, et al. (2012) BCL2
antagonist of cell death kinases, phosphatases, and ovarian cancer sensitivity to

cisplatin. J Gynecol Oncol 23: 35–42.

14. Shukla S, Maclennan GT, Hartman DJ, Fu P, Resnick MI, et al. (2007)

Activation of PI3K-Akt signaling pathway promotes prostate cancer cell

invasion. Int J Cancer 121: 1424–1432.

15. Gliki G, Wheeler-Jones C, Zachary I (2002) Vascular endothelial growth factor

induces protein kinase C (PKC)-dependent Akt/PKB activation and phospha-

tidylinositol 3’-kinase-mediates PKC delta phosphorylation: role of PKC in

angiogenesis. Cell Biol Int 26: 751–759.

16. Kim D, Dan HC, Park S, Yang L, Liu Q, et al. (2005) AKT/PKB signaling

mechanisms in cancer and chemoresistance. Front Biosci 10: 975–987.

17. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway

and cell survival. J Cell Mol Med 9: 59–71.

18. Noh KH, Kang TH, Kim JH, Pai SI, Lin KY, et al. (2009) Activation of Akt as a

mechanism for tumor immune evasion. Mol Ther 17: 439–447.

19. Brognard J, Clark AS, Ni Y, Dennis PA (2001) Akt/protein kinase B is

constitutively active in non-small cell lung cancer cells and promotes cellular

survival and resistance to chemotherapy and radiation. Cancer Res 61: 3986–

3997.

20. West KA, Castillo SS, Dennis PA (2002) Activation of the PI3K/Akt pathway

and chemotherapeutic resistance. Drug Resist Updat 5: 234–248.

21. Huang WC, Hung MC (2009) Induction of Akt activity by chemotherapy

confers acquired resistance. J Formos Med Assoc 108: 180–194.

22. Botelho RJ, DiNicolo L, Tsao N, Karaiskakis A, Tarsounas M, et al. (2001) The

genomic structure of SYCP3, a meiosis-specific gene encoding a protein of the

chromosome core. Biochim Biophys Acta 1518: 294–299.

SCP3 in Cervical Cancer

PLOS ONE | www.plosone.org 12 June 2014 | Volume 9 | Issue 6 | e98712


