
microorganisms

Review

The Ubiquitination System within Bacterial
Host–Pathogen Interactions

Vera Vozandychova 1 , Pavla Stojkova 1, Kamil Hercik 1,2, Pavel Rehulka 1 and Jiri Stulik 1,*

����������
�������

Citation: Vozandychova, V.;

Stojkova, P.; Hercik, K.; Rehulka, P.;

Stulik, J. The Ubiquitination System

within Bacterial Host–Pathogen

Interactions. Microorganisms 2021, 9,

638. https://doi.org/10.3390/

microorganisms9030638

Academic Editor: Ales Macela

Received: 19 February 2021

Accepted: 16 March 2021

Published: 19 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence,
Trebesska 1575, 50001 Hradec Kralove, Czech Republic; vera.vozandychova@unob.cz (V.V.);
pavla.stojkova@gmail.com (P.S.); kamil.hercik@unob.cz (K.H.); pavel.rehulka@unob.cz (P.R.)

2 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences,
Flemingovo namesti 542/2, 16000 Prague, Czech Republic

* Correspondence: jiri.stulik@unob.cz; Tel.: +420-973-253-220

Abstract: Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory
aspect influencing numerous and various cell processes, such as immune response signaling and
autophagy. The study of ubiquitination has become essential to learning about host–pathogen
interactions, and a better understanding of the detailed mechanisms through which pathogens
affect ubiquitination processes in host cell will contribute to vaccine development and effective
treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella
flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the
host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response.
We focus here upon the host ubiquitination system as an integral unit, its interconnection with the
regulation of inflammation and autophagy, and primarily while examining pathogens manipulating
the host ubiquitination system. Many bacterial effector proteins have already been described as
being translocated into the host cell, where they directly regulate host defense processes. Due to
their importance in pathogenic bacteria progression within the host, they are regarded as virulence
factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host
ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors
are still unknown.

Keywords: ubiquitination; deubiquitinating enzymes (DUBs); effector protein; host–pathogen interaction

1. Introduction

Competition between host defense mechanisms and pathogens’ effective tools has
been observed since ancient times. The immune system of the host organism is regulated
by complex metabolic and signaling pathways, including, but not limited to, a network
of post-translational modifications. Should any of these important pathways be impaired,
such as by efficient mechanisms of pathogens, the immune balance is disrupted and
pathogens may become more successful. During their development, pathogenic organisms
have acquired several mechanisms by which they can specifically influence the immune
response of the host and thus escape their defense mechanisms and prevent themselves
from destruction. Better understanding how pathogens affect the host immune system will
facilitate the development of more effective therapeutic agents against diseases caused by
pathogenic microorganisms. This review will be devoted to one of the post-translational
modifications, ubiquitination, in connection with host–pathogen interaction. Ubiquiti-
nation is a crucial mechanism in numerous cell processes, such as protein degradation,
innate immune signaling, protein–protein interactions, and others. Many intracellular
pathogens intervene through the ubiquitination system into the host’s innate immune
response. Ubiquitination, in addition to acetylation and phosphorylation, is becoming
another massively studied modification in connection with host–pathogen interactions.
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The importance of investigating this post-translational modification in the context of the
host–pathogen interaction is constantly increasing, particularly due to the availability of
new and sensitive approaches for analyzing ubiquitination.

2. Ubiquitin System

Ubiquitination is a significant, reversible post-translational modification managing
numerous cellular processes. This modification mediates not only the degradation of pro-
teins but also ensures proper protein function, protein–protein interaction, and subcellular
localization [1].

More than 500 proteins possess the ability to recognize ubiquitin (Ub) and Ub-like
molecules. These proteins participate in connecting Ub to a specific substrate or its removal
from the target molecule. The conjugation and deconjugation of Ub are broadly diverse and
complicated processes that regulate many cellular pathways. Deubiquitinating enzymes
(DUBs) have recently been attracting greater attention because these proteins are interesting
in their function, which is involved in many cellular pathways [2].

Human Ub is a small (8 kDa) and abundant protein consisting of 76 amino acids and
comprising as much as 5% of total protein within a cell. This protein is highly conserved
among eukaryotic organisms. Monoubiquitination, which is the connection of a single
Ub molecule by its C-terminal glycine (G76) to the lysine residue of a substrate protein,
influences protein localization, DNA repair, endocytosis, virus budding, and protein–
protein interaction [3]. The Ub molecule contains seven lysine residues—K6, K11, K27,
K29, K33, K48, and K63—and each of these can be used for the creation of poly-Ub chains
by conjugation of Ub molecules in a process known as polyubiquitination. Another type,
the M1-linked Ub chain, can be formed by linkage of G76 of the connecting Ub to the
N-terminal methionine of a Ub already attached in place of one of the lysine residues.
Accordingly, this differential type of Ub connection or creation of poly-Ub chains results in
various functions of the modified proteins [4,5]. In general, the ubiquitination can have a
degradative or non-degradative purpose. Poly-Ub chains with Ub molecules bound via K48
or K11 determine substrates for proteasomal degradation [6,7]. A Ub chain attached via K63
has a regulatory function in several cell processes as a non-degradative signal, including
in DNA reparation, signalization, endocytosis, vesicle transportation, and progression
of the cell cycle [3,8]. It has also been reported that K33-linked chains are implicated in
intracellular trafficking [9], and, together with K6-linked Ub chains, they are involved
in DNA repair [10,11]. Several studies report that K6-linked Ub chains are related to
the autophagy process, mitophagy, and xenophagy [12,13]. K29-linked chains have been
observed in a proteasome regulation role [14,15] and in other epigenetic regulation in
connectivity with the deubiquitinase Trabid [16,17]. The linear M1 ubiquitination is an
essential modification in nuclear factor κB (NF-κB) activation [18]. Although the ubiquitin
system is being intensively studied, the functions of all types of ubiquitination are not fully
understood. Partly, it is because the diverse attachment alternatives give rise to a huge
number of a possible complex poly-Ub chain structure (Figure 1).

In addition to Ub itself, other important molecules play vital roles in the ubiquitination
processes. These are ubiquitin-like (Ubl) molecules, such as small ubiquitin-related modifier
(SUMO), bacterial protein ThiS, and neural precursor cell expressed, developmentally
downregulated 8 (NEDD8). Similar to Ub, these are involved in various cellular processes,
such as transcriptional regulation, DNA repair, apoptosis, or protein stability [19,20].
Pathogens often target these small molecules during infection because they are involved in
critical signaling pathways within the host cell and because disruption of the ubiquitination
process could be advantageous to the pathogens [21].
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Figure 1. The ubiquitination of substrates may vary in different constructions that play a role in various cell processes: 
protein interaction and localization (A), proteasomal degradation (B), NF-κB activation (C,D), DNA repair (C,E,F), lyso-
somal targeting (C), autophagy (E), intracellular trafficking (F) and epigenetic regulation (G), and many others still un-
known functions (H). S—substrate, Ub—ubiquitin. Adapted from [5]. 
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functions (H). S—substrate, Ub—ubiquitin. Adapted from [5].

2.1. Ubiquitination Process

The ubiquitination process consists of a cascade of enzymatic reactions depending on
three key enzymes: Ub-activating enzyme (E1), Ub-conjugating enzyme (E2), and Ub-ligase
(E3). As mentioned above, ubiquitination is a reversible process, thus similar to some
other post-translational modifications, so DUBs are also essential counterparts to these
enzymes in the whole process. The initial step involves ATP-dependent Ub activation
consisting in acyl-adenylation on the Ub C-terminus. The following part of the process
includes transferring Ub to the E2 cysteine active site. The third enzyme, Ub-ligase, is able
to recognize the target protein and most typically forms an isopeptide bond between G76
of Ub and lysine of the target protein (Figure 2). The individual key enzymes involved
in the ubiquitination system will be described briefly for better understanding of the
ubiquitination process.
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ATP—adenosine triphosphate, AMP—adenosine monophosphate, PPi—pyrophosphate, Ub—ubiquitin. Adapted from 
[22]. 
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Figure 2. Scheme of ubiquitin binding to the target protein [22]. Ub is activated by ATP-assisted acyl-adenylation, bound to
the Ub-activating enzyme (E1), transferred to Ub-conjugating enzyme (E2), and attached to the target protein substrate (S)
through Ub-ligase (E3). This cycle mechanism can be repeated for the creation of a polyubiquitin chain. ATP—adenosine
triphosphate, AMP—adenosine monophosphate, PPi—pyrophosphate, Ub—ubiquitin. Adapted from [22].

2.2. Enzymes Participating in Ubiquitin System

Many different enzymes are included in the ubiquitin system. Surprisingly, the en-
zymes and components of the ubiquitination system comprise about 5% of the human
proteome [5]. These include two Ub-activating enzymes [23], more than 50 Ub-conjugating
enzymes, and several hundred Ub-ligases. The enormous number of different ubiquitina-
tion enzymes and varying complexity of Ub chains enable the formation of a subtle and
complex regulation system tunable on many regulation levels and consisting of different
products [24].

2.3. Ubiquitin Ligases

Ub-ligases comprise the biggest group of enzymes involved in the ubiquitination
process. Their variability enables their modifying a wide variety of substrates. The primary
function of Ub-ligases is transferring Ub to the target protein substrate [4,25]. The Ub
ligation enzymes are divided into three families according to the domain each contains:
Really Interesting New Gene (RING), homologous with E6-associated protein C-terminus
(HECT), and RING-Between-RING (RBR) [26]. RING-type ligases work as scaffolds be-
tween the E2 enzyme and the target protein substrate and thus allow ubiquitination of
the protein [27]. HECT-type ligases are different from RING-type ligases in the forming
of a covalent thioester bond with Ub before its transfer to the substrate [28,29]. RBR-type
ligases have both the RING and HECT domains, and their hybrid mechanism of action has
been described [30–32].

2.4. Deubiquitinating Enzymes

The other enzymes playing a vital role in the ubiquitination system are DUBs, which
are able to remove Ub from target substrates. DUBs are involved in many cellular processes
and pathways, such as gene expression, apoptosis, cell cycle, DNA repair, and cytokine
signaling [33]. DUBs were discovered in the group of metalloproteases, and mainly in
the group of cysteine proteases. More than 90 DUBs have been identified and described
in the human genome [2]. Cysteine DUBs are categorized into six subclasses according
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to the character of their ubiquitin-protease domains: Ub-specific proteases (USPs); Ub
C-terminal hydrolases (UCHs); Machado–Joseph disease protein domain proteases (MJDs);
ovarian tumor proteases (OTUs) [2]; a group of enzymes containing motif for interaction
with the Ub-containing novel DUB family, known as MINDY [34]; and the newest family,
ZUFSP (zinc finger with UFM1 specific peptidase) [35]. DUBs that were found in the
metalloprotease group contain a domain that is referred to as JAMM (JAB1/MPN/Mov34
metalloenzyme) [2].

DUBs have widespread mechanisms of action for releasing Ub from the substrate.
The Ub molecule is encoded by four genes (UBC, UBB, UBA52, and UBA80), and it is
expressed as a linear chain of multiple Ub molecules. Subsequently, it has to be cut by
DUBs. DUBs are essential for cleavage of polyubiquitin chains and complete removal
of Ub chains from ubiquitinated proteins. These mechanisms lead to the maintenance
of ubiquitin homeostasis in the cell, reverse Ub signaling, and correction of Ub-protein
conjugates [36].

In contrast to other proteases, DUBs are generated as active enzymes. The catalytic
activity of DUB cysteine proteases depends on two or three crucial amino acid residues
forming a dyad or triad. These essential amino acids are from the group consisting of
cysteine, histidine, aspartate, and asparagine. A variety of structures with the catalytic
activity of DUBs has been reported [36]. Regulation of DUB activity is mediated by
post-translational modifications, allosteric interactions, and subcellular localization. The
catalytic triad of some DUBs has to be converted to active conformation by binding to a
substrate, otherwise it remains inactive [2,36].

DUBs are able to recognize many ubiquitin-like molecules, isopeptides, and linear
peptides, as well as various types of Ub linkage and chain structures. All DUB catalytic
domains have a primary Ub-binding domain that encompasses interaction with the distal
Ub in a poly-Ub chain. Moreover, each lysine residue in Ub molecule has a unique sequence
that can be recognized by DUBs [36].

3. Immune Signaling Regulated by Ubiquitination

Ubiquitination is one of the crucial mechanisms of inflammation regulation (Figure 3) [37].
The pattern-recognition receptors (PRRs) mediate the recognition of pathogens in the
innate immune response. Among them are nucleotide oligomerization domain (NOD)-like
receptors, toll-like receptors (TLRs), and retinoic acid-inducible gene-I (RIG-I)-like receptors
(RLRs) [38]. All of these receptors are able to induce NF-κB and mitogen-activated protein
kinase (MAPK) signaling pathways, which activate the expression of proinflammatory
cytokines [39].

One of the major proinflammatory cytokines is tumor necrosis factor (TNF), which
induces a strong response and stimulates the recruitment of immune cells to sites of
infection or damaged tissue. TNF binds tumor necrosis factor receptor 1 (TNFR1) to trigger
a cascade of signaling reactions leading to activation of the NF-κB and MAPK pathways,
where Ub linkage is important for NF-κB functioning [40]. K11-, M1-, and K63-linked
polyubiquitinations are promoted mainly on receptor-interacting protein 1 (RIP1) but also
on TNFR-associated factor TRAF2. This process generates a binding platform for assembly
of the distal signaling components, such as cellular inhibitors of apoptosis (c-IAP) [41–43].
TNF-stimulated signaling is negatively regulated by DUBs. A DUB known as A20 removes
K63-linked poly-Ub chains from RIP1, whereas another DUB, Ub-thioesterase otulin,
removes linear chains from RIP1 and NF-κB essential modifier (NEMO), the inhibitor of
κB kinase (IKK) regulatory subunit [44,45]. These DUB activities restricting TNF-induced
NF-κB and MAPK signaling result in gene expression of proinflammatory cytokines [39].
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Figure 3. Activation of innate immune signaling pathway by lipopolysaccharide (LPS) and tumor necrosis factor (TNF). LPS
is bound by toll-like receptor 4 (TLR4), and then adaptor protein MyD88 interacts with IRAK protein kinases. Recruitment
of IRAK complex results in association with another adaptor protein, TRAF6, and this leads to IκB kinase (IKK) activation.
NF-κB is a functional transcription factor after IκBα phosphorylation and subsequent dissociation of the complex of NF-κB
and IκBα. IκBα, an inhibitor of NF-κB, can also be degraded by way of ubiquitination. Ubiquitinated IκB is degraded in
proteasome and NF-κB moves to the nucleus, where it activates the proinflammatory cytokine transcription. A different
way of activating the NF-κB pathway shown here is through binding of TNF by TNF receptor 1 (TNFR1). Adaptor protein
TRADD recruits receptor-binding protein 1 (RIP1) and TNFR-associated factor TRAF2. RIP1 activates IKK complex and
thus also NF-κB pathway. It is shown that A20 and otulin interact with Ub chains in the signaling pathway.
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K63-linked polyubiquitination of signal proteins, such as IRAK-1 or TRAF6, is neces-
sary for triggering immune response based on activation of NF-κB. Polyubiquitination of
IRAK-1 and TRAF6 is induced by stimulation of interleukin-1 receptor (IL-1R) or of TLRs
by pathogens [46]. If some pathogens are able to block or disrupt this ubiquitination, it
gives them the advantage of escaping from the host’s immune response.

NOD-like receptors work as cytoplasmatic PRRs which are able to recognize cytoplas-
matic bacterial products. These receptors detect bacterial peptidoglycans. After activation,
NODs oligomerize and recruit the kinase RIP2 and CARD9 leading to activation of NF-κB
and MAPK signalization by ubiquitination of NEMO [47]. Similar to previous signaliza-
tions, the deubiquitinases are involved in the regulation of NOD2-RIP2 activation, such
as A20 and otulin [44,48]. NOD2 may play a role in activation of inflammasomes [49].
Mutation in NOD2 can cause autoimmune and inflammatory diseases [47].

Signaling associated with ubiquitination is also observed during overgrowth of mi-
crobes that are a common part of the body, and their excessive amount or their metabolite
products can influence immune function or dysfunction. Functioning of enzymes associated
with ubiquitination is important for self-tolerance in autoimmunity [40]. Ubiquitination is
a critical step for the activation of much inflammatory signaling. For example, ubiquitin-
induced excessive activation of NF-κB could lead to inflammatory bowel diseases, such
as ulcerative colitis or Crohn’s disease, where pathogenic or commensal bacteria in the
gastrointestinal tract can be the cause of immune dysregulation [50]. NF-κB is important
for intestinal homeostasis and it is regulated by different ubiquitin ligases and deubiquiti-
nating enzymes. In this sense, the ubiquitin-proteasome system is also important, as it is
involved in ensuring the homeostasis of post-translational modifications [51]. Moreover,
commensal bacterium Bacteroides fragilis is able to produce its own eukaryotic-like ubiquitin
protein, which is used as bacterial toxin for killing other intestinal bacteria [21,52].

4. Host Ubiquitination Machinery as a Target for Pathogens

Intracellular pathogens have developed many molecular mechanisms that are helpful
in their strategies, such as their abilities to proliferate intracellularly and to survive host
immune responses. Pathogens are able to produce effector proteins affecting the host cell
processes in favor of pathogen survival. These proteins, often referred to as virulence
factors, either interfere with important host cell structures, such as actin, microtubule,
and intermediate filament cytoskeletons, or they are involved in manipulating endocytic,
secretory, or signaling pathways in host metabolism [53,54].

Possible mechanisms have been described of bacterial intervention into the host ubiq-
uitin system through the enzyme cascade involving E1, E2, and especially E3 enzymes [55].
Nonetheless, the pathogen interaction in the Ub deconjugation process is not fully un-
derstood. In any event, DUBs are enzymes specialized in the cleavage of Ub molecules,
and in most cases they do not cleave Ub-like molecules (SUMO or NEDD8). On the other
hand, CE clan proteases serve as specific hydrolases of Ub or Ub-like modifications in
eukaryotic cells [56]. CE clan proteases are also synthesized by bacteria and work as
effector proteins with deubiquitinase, deSUMOylase, or acetyltransferase activity. These
effectors have mainly K63-linkage-specific deubiquitinase activity, and they have been
found in human pathogens, such as Salmonella, Escherichia, and Legionella [54]. Several
known effector proteins produced by bacterial pathogens are described in Table 1.
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Table 1. Bacterial effector proteins described in this review.

Effector Protein Bacteria Role Function References

YpkA
Yersinia

pseudotuberculosis,
Y. enterocolitica

Protein kinase Increasing of bacterial uptake [57]

YopJ Yersinia
pseudotuberculosis DUB, acetyltransferase Suppression of MAPK and NF-κB

pathway [58,59]

SopA Salmonella
Typhimurium E3 ligase Unknown [60]

SseL Salmonella
Typhimurium

DUB
Suppression of NF-κB pathway [61]

Inhibition of autophagy [62]

AvrA Salmonella
Typhimurium DUB, acetyltransferase Suppression of NF-κB pathway and

stabilization of β-catenin [63]

NleL Escherichia coli E3 ligase Suppression of the inflammatory response [64]

ElaD Escherichia coli DUB Suppression of NF-κB pathway [54]

SidE Legionella pneumophila E3 ligase Regulation of phosphoribosyl
ubiquitination, cytotoxicity

[65,66]
DupA, B Legionella pneumophila DUB

SdeA Legionella pneumophila DUB Inhibition of autophagy [67]

LotA Legionella pneumophila DUB Suppression of phagosome maturation [68]

RavD Legionella pneumophila DUB Suppression of phagosome maturation
and NF-κB pathway [69]

RavZ Legionella pneumophila DUB Inhibition of autophagy [70]

SpeB Streptococcus pyogenes Cysteine protease Inhibition of autophagy [71]

IcsB Shigella flexneri Virulence factor Inhibition of autophagy [72]

OspG Shigella flexneri E2 enzyme Suppression of NF-κB pathway [73]

IpaH Shigella flexneri E3 ligase Suppression of NF-κB pathway
and autophagy [74,75]

SchiCE Shigella flexneri DUB Suppression of NF-κB pathway [54,76]

ActA Listeria monocytogenes Virulence factor Increasing of intracellular motility to
avoiding autophagy [77]

InlK Listeria monocytogenes Virulence factor Inhibition of autophagy [78]

ChlaDUB1 Chlamydia trachomatis DUB, acetyltransferase Suppression of NF-κB pathway
[79]

ChlaDUB2 Chlamydia trachomatis DUB Suppression of NF-κB pathway

ChlaOTU Chlamydia pneumonia DUB Unknown [80,81]

4.1. Bacterial Influence on Host Ubiquitinating and Deubiquitinating Processes

The ability of Yersinia enterocolitica and Y. pseudotuberculosis to invade host cells depends
on the expression and catalytic activity of the human DUB otubain 1 (OTUB1). The main
function of OTUB1 is to stabilize the active form of a small GTPase RhoA that is involved in
formation of stress fibers during the bacterial attack. Yersinia spp. produces multifunctional
protein kinase A (YpkA), which interferes with several parts of host cell processes and
is regarded as a virulence factor [82]. YpkA is able to interact with post-translationally
modified OTUB1 and modulates its influence on RhoA. This effect leads to cytoskeletal
rearrangements that could be involved in bacterial uptake [57].

The relationship of the Ub system to bacterial invasion is supported by a recent study
that proved the importance of human Ub C-terminal hydrolase UCH-L1 in the entry
of Salmonella enterica and Listeria monocytogenes to the host cell. UCH-L1 is involved in
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spontaneous formation of actin stress fibers, which facilitate the capture of bacteria and
subsequent entry into the cells [83].

The DUB UCH-L5 level is increased in macrophages during S. enterica serovar Ty-
phimurium infection, and this leads to greater inflammasome activity. S. Typhimurium
upregulates the expression of UCH-L5 by an unknown mechanism and causes increased
catalytic activity of caspase-1, which limits the IL-1β level. The details of the overall mecha-
nism need to be further investigated. Insufficient production of IL-1β can lead to cell death
and the subsequent release of bacteria from macrophages during infection [84].

Pathogenesis of Helicobacter pylori is associated with gastritis, peptic ulcer, and gastric
cancer. H. pylori can affect the host ubiquitin–proteasome system by intervening into the
expression and activity of host DUB USP7. A lowering of USP7 decreases the amounts
of TRAF6 and tumor suppressor p53, which partly explains the origin of carcinogenesis
during chronic infection of H. pylori [85].

Francisella tularensis is an intracellular pathogen of humans and small mammals
causing the zoonotic disease tularemia [86,87]. F. tularensis is able to subvert innate im-
mune signaling pathways by influencing K63 polyubiquitination of TRAF3 and TRAF6
(Figure 4) [88]. This process is dependent on a functional type VI secretion system (T6SS).
Francisella T6SS is encoded by genes located at Francisella pathogenicity island (FPI), and
T6SS is very important for bacterial virulence. Many critical effector proteins are secreted by
T6SS for support of intracellular growth [89], and the whole area of proteins secreted by F. tu-
larensis that affect host ubiquitination machinery needs to be explored further. Li et al. [90]
observed the function of host E3 ligase HECTD3 during bacterial infection of Francisella
novicida, Mycobacterium bovis, and Listeria monocytogenes. The HECTD3 regulates TRAF3 K63
polyubiquitination in innate immune signaling response. Increased host defense against
infection upon silencing of HECTD3 ligase has been determined [90]. Another host protein
with DUB activity, USP22, is required for the proliferation of F. tularensis in the cytosol, and
the ubiquitin ligase CDC27 is important for intervention into phagosomal maturation [91].
Guo et al. studied the host defense mechanism of inflammasome activation in F. novicida
infection. They identified ubiquitin ligase HUWE1 as an AIM2-interacting protein. HUWE1
mediates K27 polyubiquitination of AIM2, and other inflammasomes proteins as NLRP4
and NLRC4, which promotes ASC (Apoptosis-associated Speck-like Protein) speck forma-
tion and cleaves caspase-1. Altogether, HUWE1 helps with eliminating bacterial burden,
activation of caspase-1, and production of IL-1β [92]. Further, F. tularensis disturbs the
adaptive immune response by inducing macrophage prostaglandin E2 (PGE2) production,
which directly operates on CD4 T cells by restriction of interferon-γ production [93]. The
other effect is in the downregulation of ubiquitin-dependent major histocompatibility
complex (MHC) class II expression in macrophages [94]. Francisella-induced PGE2 drives
the production of soluble macrophage factor FTMΦSN inducing ubiquitination of MHC
class II by up-regulation of ubiquitin ligase MARCH1 in macrophages (Figure 4) [95].

Bacterial deubiquitination enzymes or ubiquitin-like proteins may not always be
direct effector proteins but may be an essential part of the mechanisms that serve to secrete
other effector proteins and virulence factors. As in the case of Staphylococcus aureus, where
ubiquitin-like protein EsaB has been detected, which is a part of the type VII secretion
system and is essential for the secretion activity [96,97].

Oxidative stress is observed during many pathological conditions such as cancer,
inflammation, and infection. The ubiquitin proteasome system regulates the nuclear ery-
throid 2-related factor NRF2 antioxidant response [98] that is part of the KEAP1-NRF2
pathway during the protective response to oxidative stress. The heme oxygenase-1 (HO-1)
stabilizes NRF2 during oxidative stress, thus NRF2 is accumulated and the preferential
genes for detoxification enzymes are translated [99]. HO-1 has beneficial effects for protec-
tion against oxidative injury, apoptosis regulation, or modulation of inflammation. HO-1 as
a cytoprotective enzyme with an anti-inflammatory and antioxidant role is very interesting
for bacterial and viral pathogens [100–102].
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4.2. Bacterial Modulation of Ubiquitin-Mediated Autophagy during Infection

Autophagy is a lysosome-based degradation process, highly conserved from yeast
to human, first termed by Christian de Duve at a conference in 1963 and later in his
publication regarding lysosome function [103,104]. Autophagy is activated upon various
cellular stresses, such as starvation, organelle damage, or the presence of intracellular
bacteria. The main functions of autophagy consist in removing harmful substances (such
as protein aggregates, damaged organelles, and intracellular pathogens). Dysfunction
of the autophagy process has been associated with numerous diseases in humans, in-
cluding infectious diseases, cancer, neurodegeneration, cardiovascular disorders, and
aging [105–107]. The process of autophagy includes the initiation and formation of au-
tophagosomes (double membrane vesicles), subsequent fusion of an autophagosome with
the lysosome, and final autolysosome formation that is responsible for the degradation of
target molecules [108,109]. Several types of autophagy have been explored, and macroau-
tophagy is the type best described. Macroautophagy is regulated by autophagy-related
(ATG) proteins, and other regulators are initiated by formation of the phagophore, where
ATG proteins play a critical role. In addition to Ub-independent selective autophagy, where
autophagy receptors directly bind to intracellular cargo, Ub-dependent selective autophagy
has been described [110]. Target subjects are conjugated with Ub chains and undergo
subsequent degradation. Depending upon the target macromolecules, there are different
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types of autophagy, which include cargos like protein aggregates (aggrephagy), damaged
mitochondria (mitophagy), lysosome (lysophagy), and bacteria (xenophagy) [111].

Not surprisingly, Ub is involved in many processes of autophagy [110,112]. Aggre-
gated proteins, bacteria, and damaged mitochondria are labeled with Ub chains and then
are recognized by receptors on the autophagosomal membrane [113]. The initiation of
autophagy is dependent on many key regulators, such as ULK1 complex, containing ULK,
Atg13, FIP200, and Atg101 proteins. The maturation of autophagosome is dependent on
Ub-like conjugation systems, such as microtubule-associated protein 1 light chain 3 (LC3)
and the Atg12 systems [111,114]. The ubiquitination of cytosolic bacteria in mammalian
cells seems to be necessary for recognition and subsequent degradation by the antimicro-
bial autophagy process. This interaction is mediated through the LC3-interacting region
(LIR) and Ub; subsequently, phagophore and autophagosome are formed, and bacteria are
degraded in autolysosome (Figure 5) [110,113].
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Many bacteria are able to manipulate ubiquitination during autophagy or even prevent
maturation of autophagosome and thus escape from autophagy-dependent degradation.
Similar to other intracellular bacteria, L. monocytogenes can escape from the phagosome
in this way, and it then replicates in the host cell’s cytosol. This step is achieved by
quickly expressing virulence factors upon entry to the host cell [115]. L. monocytogenes
synthetizes ActA protein on its surface, which acts as a shield against autophagy. A
mutant strain lacking functioning ActA protein is meanwhile labeled by Ub and unable to
escape autophagy-dependent degradation. ActA figures as one of the key virulence factors
involved in intracellular motility and is implicated in autophagy evasion. ActA is capable
of recruiting actin-related proteins complex, vasodilator-stimulated phosphoproteins, or
actin to avoid autophagic recognition by bacterial ubiquitination [77]. Another virulence
factor of L. monocytogenes, InlK, supports camouflaging the bacterium’s surface by binding
host cytoplasmic major vault protein (MVP), thereby blocking ubiquitination of the bacteria
such that xenophagy does not occur [78]. Together with another two phospholipases, PlcA
and PlcB, L. monocytogenes can inhibit autophagosome maturation [116].

Shigella flexneri also inhibits the autophagy process. S. flexneri produces important
proteins that play a role in autophagosomal escape during infection. S. flexneri is able to
inhibit autophagy by way of VirG and IcsB proteins. During normal conditions, IcsB blocks
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the binding between bacterial VirG and the host Atg5 (part of a complex that acts as an
E3 ligase, through which ubiquitin-like proteins are conjugated to the autophagosomal
membrane), thereby leading to reduced efficacy of autophagy. When IcsB is inactivated
in a mutant strain lacking IcsB, however, the interaction between VirG and Atg5 occurs,
leading to autophagy’s activation [117]. A second role of IscB in inhibiting host immune
response against Shigella infection by inhibiting a manner of LC3-associated phagocytosis
was described later [72]. Additionally, another effector protein, VirA, inactivates Rab1 that
is required for the early formation of phagosome [118].

The p62 protein was the first selected autophagy adaptor to be described in mam-
malian cells [119,120]. It is involved in proteasomal degradation of ubiquitinated pro-
teins [121] and also is involved in autophagy of S. Typhimurium. Many substrates are
generated by Salmonella during infection that are targets for ubiquitination and are rec-
ognized by p62, which leads to autophagy of bacteria. S. Typhimurium produces SseL,
a deubiquitinating enzyme that ensures removal of Ub from bacterial protein products
and prevents recruitment of the autophagy markers p62 and LC3 [62]. Other Salmonella
effectors SseF and SseG are able to impair autophagy initiation via disrupting the Rab1
signaling pathway [122].

Legionella pneumophila eliminates host autophagy processes by the production of
effector protein RavZ, which hydrolyzes a bond between Ub-like protein Atg8 and phos-
phatidylethanolamine (PE) [123]. Atg8 (LC3 in mammalian cells) is required for autophago-
somal membrane formation, and its conjugation to PE is a critical step in autophagy [124].
Not only does RavZ contain a catalytic domain related to the Ub-like enzymes, it also
possesses a phosphatidylinositol-3-phosphate (PI3P) binding domain through which it has
the ability to interact with PI3P that is present on the autophagosome surface and is impor-
tant for RavZ localization to the autophagosomes [125]. A later study proved that RavZ
first extracts the LC3-PE complex from the membrane and then acts as a deconjugation
enzyme [126]. RavZ deconjugation activity includes not only PE release from LC3-PE but
also Ub hydrolysis from substrate [70].

An effector protein important in the bacteria’s evading Ub-mediated autophagy also
has been described in the case of Streptococcus pyogenes. In contrast to other serotypes, the
globally disseminated clone M1T1 of S. pyogenes group A is able to replicate in host cells.
The M1T1 strain produces SpeB protein, a cysteine protease that is able to degrade the
ubiquitin-LC3 adaptor proteins NDP52, p62, and NDR1 [71].

Induction of selective autophagy also occurs in the case of the human pathogen
Staphylococcus aureus. S. aureus was considered to be an extracellular bacterium, but its
ability to invade a host cell and replicate inside was observed [127]. S. aureus is subject to
selective autophagy through labeling by ubiquitination and subsequently it is recognized
by receptor proteins SQSTM1, OPTN and CALCOCO2 [128].

Francisella tularensis is recognized by autophagic machinery mediated by the ubiquitin-
SQSTM1-LC3 pathway after phagosomal escape [129]. F. tularensis uses surface polysac-
charide O-antigen as masking before autophagy recognition, whereupon bacteria can
successfully survive and proliferate in the host cytosol (Figure 4) [130].

The Ub molecule is also essential for the virulence of Mycobacterium tuberculosis. As
mentioned above, the host immune defense mechanisms use Ub for labeling pathogens
to ensure Ub-mediated selective autophagy. Two of the surface proteins of M. tuberculo-
sis that directly undergo ubiquitination are Rv1468c [131] and Rv0222 [132]. Deliberate
ubiquitination of mycobacterial surfaces and autophagy induction may be a strategy to
prevent excessive inflammatory response, allowing bacteria to survive long-term intracel-
lularly [131]. M. tuberculosis secretes tyrosine phosphatase PtpA that binds host Ub leading
to subsequent activation and works as a dephosphorylating enzyme targeting JNK and
MAPK p38 resulting in suppressing innate immunity [133].

Many bacteria modulate host immune response through disruption of autophagy
and thus successfully survive and multiplicate inside the host cell. De/ubiquitination,
during autophagosome formation, is a critical process, and therefore all effector proteins
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secreted by bacteria and interfering with autophagy machinery can be potentially relevant
for host–pathogen interaction. Below, we focus on effectors directly related to Ub processes.

4.3. Bacterial Effectors Intervene with Ubiquitination
4.3.1. The Effect of Yersinia on the Host Immune Response

Yersinia pestis is the causative agent of plague, while Y. enterocolitica and Y. pseudotuber-
culosis cause gastrointestinal diseases. Each of these utilizes the type three secretion system
(T3SS) for translocation of virulence proteins into the host cells in order to subvert host
response. These effector proteins are classified as Yersinia outer proteins (Yops) [134].

The first discovered effector protein with DUB activity was Yersinia outer protein
J (YopJ) in Y. pseudotuberculosis [135]. Its dual functions consist of acetyltransferase and
deubiquitinase activity. The acetyltransferase activity leads to inhibition of MAPK and
NF-κB signaling pathways, which block the activation of proinflammatory response [58].
The deubiquitinating function of YopJ is used in negative regulation of the signaling
pathway by removing Ub from TRAF2, TRAF6, and IκBα. YopJ has shown specificity to
K63-linked poly-Ub chains that activate IKK, but it also cleaves K48-linked poly-Ub chains
to inhibit proteasomal degradation of IκBα [59]. YopJ is an important virulence factor
that is able to directly influence the immune response through deubiquitination activity in
Yersinia spp. infection.

4.3.2. Salmonella Produces Various Effectors

The Salmonella genome encodes T3SS to establish itself inside the host cell and translo-
cate numerous effectors to the host cell [136]. Upon entry to the host cell, Salmonella is
enclosed in a vacuolar compartment termed the Salmonella-containing vacuole (SCV) [137].

HECT-like E3 ubiquitin ligase SopA is an effector protein with a regulatory role in host
inflammatory response. SopA ligase activity seems to play a crucial role in the induction of
enteritis, but the biochemical mechanism and its substrate remain unknown [60].

S. enterica serovar Typhimurium produces DUB enzymes SseL and AvrA, which
influence virulence and survival of bacteria in host cells [138,139]. AvrA, a homolog of
YopJ, has shown a similar function by means of acetyltransferase activity [140]. AvrA
removes ubiquitin moieties from IκBα and β-catenin, which regulate the NF-κB and β-
catenin signaling pathways. Stabilization of IκBα leads to inhibition of the signaling and
thus inhibition of inflammatory response. The stabilized β-catenin increases transcriptional
activity, activation of cell proliferation, and inhibition of cell apoptosis [63].

Cysteine protease SseL was found to be secreted through T3SS into the host cell and
detected on the vacuolar membrane 6 h after infection. SseL has shown preferences for
K63-linked Ub chains on both mono- and polyubiquitin substrates, thus suggesting its
involvement in signaling pathways rather than protein degradation [138]. Pruneda et al.
studied the cleavage specificity of recombinant SseL, finding that this enzyme is active
mainly against K63-linked chains and less so against K48- and K11-linked chains [54].
SseL appears to be necessary for the modulation of host inflammatory response during
infection. The deubiquitinase activity of this enzyme leads to suppression of IκBα ubiquiti-
nation, which prevents NF-κB activation [61]. A study by Geng et al. showed significantly
increased virulence activity of SseL effector-expressing strains in inhibiting the NF-κB path-
way during S. enterica serovar Pullorum infection in a chicken model [141]. Furthermore,
SseL works together with SseJ effector protein and alters the localization of lipid transporter
oxysterol binding protein 1 (OSBP1) in S. enterica serovar Typhimurium. Deletion of both
effectors increases the release of bacteria into the cytoplasm, which proves their important
influence on vacuolar stability [142].

4.3.3. Escherichia Effectors

Enterohemorrhagic E. coli produces E3 ubiquitin ligase effector NleL that is transported
to the host cell through outer membrane vesicles (OMVs), where it can ubiquitinylate c-Jun
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N-terminal kinase (JNK) and thus could have a suppressing effect on the proinflammatory
signaling pathway [64].

Intestinal pathogenic E. coli produces deubiquitinating enzyme ElaD, which is an
ortholog of S. enterica serovar Typhimurium SseL effector. ElaD enzyme can interact as
deubiquitinase with linear and unanchored K63-linked polyUb chains rather than K48-
and K11-linked polyUb chains [54,76]. Thus, the enzymatic activity and biological role of
ElaD might be similar to those of Salmonella SseL [143].

4.3.4. Miscellaneous Protein Effectors of Legionella

The intracellular pathogen L. pneumophila also produces effector proteins with deu-
biquitinating activities that are secreted into the host cell. This pathogen uses a type IV
secretion system to translocate effectors into host cells [144].

L. pneumophila uses not only canonical but also noncanonical ubiquitination for its
infectivity promotion. For this effect, L. pneumophila uses SidE family effectors, some of
which work as Ub-ligase in a special type of ubiquitination [65,145]. The noncanonical
type of ubiquitination connects Ub to serine residues of host substrates via a phosphori-
bosyl (PR) moiety. It has been shown that PR-ubiquitinated proteins are associated with
endoplasmic reticulum remodeling [145]. Moreover, there were two Legionella’s effectors
(DupA and DupB) acting as deubiquitinase for PR-linked Ub (DUPs) identified. These
enzymes counteract the effector SidE with ligase activity and remove PR-Ub from sub-
strates. This process was essential for recruiting fragmented endoplasmic reticulum to
Legionella-containing vacuoles (LCVs) upon L. pneumophila infection [66].

A recent study revealed the structure and mechanism of SdeA-mediated Ub mod-
ification [146]. SdeA, a member of the SidE effector family, plays an essential role in
bacterial intracellular replication.Its DUB activity was also observed. SdeA has more than
one domain and is able to recognize both Ub and NEDD8 Ubl. The N-terminal domain
is a key component in the deubiquitination of three different poly-Ub chains: K11, K48,
and K63. SdeA also removes K63-linked chains from LCVs, whereby Legionella directly
and negatively affects the process of autophagy [67]. Downstream domains catalyze the
mentioned PR-ubiquitination of substrates [146,147].

Another Legionella effector protein is LotA deubiquitinase, a member of the OTU
family. LotA consists of two distinctive cysteine protease domains. The first cleavage
domain is specific toward K6-linked Ub dimers. The second cysteine catalytic domain
mainly contributes to removing chains of K48- and K63-linked Ub. The main function of
LotA is to remove Ub from LCVs, and thus it protects bacteria from host immune processes.
Not surprisingly, this protein is important for Legionella’s optimal intracellular growth [68].

RavD is an L. pneumophila effector protein with specific hydrolase activity against
linear Ub chains. RavD limits the accumulation of linear Ub chains on LCVs in host
cells to inhibit the NF-κB pathway during infection [69]. Surprisingly, RavD also has
a phosphatidylinositol-binding domain, which is used to suppress the endolysosomal
maturation of LCVs [148].

4.3.5. Insidious Shigella Effectors

Shigella flexneri is a causative agent of bacterial dysentery, mainly occurring in devel-
oping countries. It is able to permeate the epithelial cell wall and subsequently to escape
the host’s immune response. After being taken up by macrophages, it is able to induce their
apoptosis and escape into the cytoplasm [149]. The bacterium produces an effector protein
that can purposefully influence the E2-enzyme level in host ubiquitin machinery. Shigella
OspG protein is secreted by the T3SS, which can delay the NF-κB signaling pathway, and
thus it also decelerates the transcription of NF-κB genes [73].

Proteins from the IpaH family are E3 ligases secreted and translocated into the host
cells [150]. The IpaH Ub ligases antagonize activity of the linear Ub chain assembly
complex (LUBAC), which acts as a Ub-ligase complex. The LUBAC enzymes generate
M1 poly-Ub chains that play a role in the antimicrobial and proinflammatory signaling
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pathways [151]. IpaH ligases inhibit NF-κB signaling [75,152,153]; they participate in the
recruitment of autophagy receptors OPTN, NDP52, and p62; and this helps Shigella to
escape from xenophagy [74,154].

A DUB similar to E. coli’s ElaD and Salmonella’s SseL known as SchiCE, is produced by
S. flexneri. It has the same enzymatic properties and selectively cleaves K63 chains involved
in many different cell processes (e.g., innate immune signaling) [54,76].

4.3.6. Chlamydia DUB Effectors

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes various
human diseases. Chlamydiae are able to avoid alarming the host immune system. One
mechanism that C. trachomatis uses involves the expression of two enzymes, ChlaDub1 and
dedicated ChlaDub2, with deubiquitinating and deneddylating activities [155]. Pruneda
et al. observed that ChlaDub1 has a dual function, both K63-deubiquitinase and K-
acetyltransferase activities, and, together with ChlaDub2, it intervenes in fragmentation of
the host Golgi apparatus [156]. Like other intracellular pathogens, C. trachomatis suppresses
NF-κB signaling activation by inhibiting IκBα ubiquitination and degradation, the actor
in this case being ChlaDub1 [79]. The ChlaDUB proteins prevent Chlamydia-containing
vacuoles’ ubiquitination and stabilize the antiapoptotic protein MCL-1 [157]. Another
bacterial DUB, ChlaOTU, is a member of the OTU family, but its enzymatic specificity
toward Ub linkage remains unresolved [80,81].

5. Ubiquitination and DUBs in Therapy

Due to importance of ubiquitination and DUBs in the host immune response during
infection, these processes could be potential targets in therapies and effective treatments.
Therapeutic substances could be helpful for the modulation of inflammatory conditions, an-
timicrobial and antiviral responses, and so in anticancer therapy. The examples of successful
therapy in clinical use are specific inhibitors of proteasomal activity Bortezomib [158,159] or
Carfilzomib [160]. They are applied in treatment of multiple myeloma cancer. Furthermore,
several potential inhibitors of ubiquitin proteasome system in anticancer therapy are in
clinical trials, for example the Nedd8-E1 enzyme inhibitor MLN4924 [161,162] or ubiquitin
activating enzyme 1 inhibitor TAK-243 [163]. Nevertheless, no DUB targets have been
found for clinical therapeutic use and they are needed to be further elucidated. One of them
could be a deubiquitinase inhibitor WP1130, which has anti-infective effect against L. mono-
cytogenes or noroviruses [164] and is also used as a treatment of malignancies [165]. The
ubiquitin-proteasome system is important for virus replication. Many viruses encode their
own DUBs; for example, severe acute respiratory syndrome coronavirus (SARS-CoV) en-
codes papain-like proteases [166]. Proteasome and DUBs inhibitors could be also helpful in
the case of SARS-CoV-2 [167], where they could play an important role in antiviral therapy.

6. Conclusions

Ubiquitin and enzymes associated with ubiquitination machinery constitute an impor-
tant component of signaling pathways in the immune host response to pathogen infection.
While, for decades, attention has been devoted to acetylation and phosphorylation, other
important post-translational modifications, such as ubiquitination, are now coming into
the foreground. Transmitting a signal across the cell is a very intricate and complex process,
and all events are more or less interconnected with one another. Effector molecules pro-
duced by dangerous pathogens are at the forefront of host immune response modulation.
Among these, we find proteins with enzymatic activities that interfere with the ubiquitina-
tion process. Through this mechanism, pathogens can be provided with better conditions
for survival and their spread within the host organism. When discussing the importance of
ubiquitination on the host side, we must also emphasize the ability to deubiquitinate host
target proteins on the pathogen side. The pathogen strategy for surviving when interfering
with the ubiquitination system may substantially differ for every such pathogen. In some
cases, however, bacteria effector proteins function similarly as results from the type of
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effector enzymatic activity. For instance, SseL, ElaD, and ShiCE effectors produced by
S. Typhimurium, E. coli, and S. flexneri, respectively, are all primarily targeted toward
K63-linked polyUb and suppress the NF-κB pathway in the innate immune response.

The ability of pathogens to control host immune response to their benefit by means
of their effector molecules needs to be further explored. A better understanding of these
molecular processes and possible identification of new effectors could be a good source of
information for developing new therapeutic agents and vaccines against infections.
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