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Background—Despite evidence suggesting that early metabolic dysfunction impacts cardiovascular disease risk, current
guidelines focus on risk assessments later in life, missing early transitions in metabolic risk that may represent opportunities for
averting the development of cardiovascular disease.

Methods and Results—In 4420 young adults in the Coronary Artery Risk Development in Young Adults (CARDIA) study, we defined
a “metabolic” risk score based on components of the Third Report of the Adult Treatment Panel’s definition of metabolic syndrome.
Using latent class trajectory analysis adjusted for sex, race, and time-dependent body mass index, we identified 6 distinct
metabolic trajectories over time, specified by initial and final risk: low-stable, low-worsening, high-stable, intermediate-worsening,
intermediate-stable, and high-worsening. Overall, individuals gained weight over time in CARDIA with statistically but not clinically
different body mass index trend over time. Dysglycemia and dyslipidemia over time were highest in initially high or worsening
trajectory groups. Divergence in metabolic trajectories occurred in early adulthood (before age 40), with 2 of 3 individuals
experiencing an increase in metabolic risk over time. Membership in a higher-risk trajectory (defined as initially high or worsening
over time) was associated with greater prevalence and extent of coronary artery calcification, left ventricular mass, and decreased
left ventricular strain at year 25. Importantly, despite similar rise in body mass index across trajectories over 25 years, coronary
artery calcification and left ventricular structure and function more closely tracked risk factor trajectories.

Conclusions—Transitions in metabolic risk occur early in life. Obesity-related metabolic dysfunction is related to subclinical
cardiovascular phenotypes independent of evolution in body mass index, including coronary artery calcification and myocardial
hypertrophy and dysfunction. (/ Am Heart Assoc. 2016;5:¢003934 doi: 10.1161/JAHA.116.003934)
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M etabolic syndrome is a well-established risk factor for CVD may develop over decades before clinical CVD.*° Prior
cardiovascular disease (CVD), including coronary artery work in large, community-based populations have defined a role
disease and heart failure.' Alterations in metabolic risk linked to for early, cumulative changes in blood pressure(BP)® and
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obesity” in forecasting risk of subclinical CVD in midlife and
beyond. This “life-course” perspective on cardiometabolic risk
—and resulting recommendations to maintain an ideal body
weight, diet, physical activity, and lipid profile—is critical to
decrease incident CVD.? Although obesity has frequently been
cited as a central pathogenic factor for CVD risk, emerging
literature suggests that cardiometabolic risk may evolve
independently from body mass index (BMI).”'® Therefore,
defining how cardiometabolic risk evolves during early adult-
hood—and how these changes are related to CVD risk
independent of cumulative exposure to obesity—is critical to
differentiate healthy young adult populations from at-risk ones,
ultimately to allow for personalized CVD prevention.

We investigated individuals from the Coronary Artery Risk
Development in Young Adults (CARDIA) study to define
transitions in cardiometabolic risk over 25 years independent
of obesity. Furthermore, we sought to compare markers of
subclinical CVD—including left ventricular (LV) mass (LVM),
function, and coronary artery calcium—at 25 years after
baseline visit among different groups of participants that follow
distinct patterns of transition in metabolic risk. We hypothe-
sized that individuals who experienced worsening car-
diometabolic risk during young adulthood would exhibit a
poorer subclinical CVD profile at midlife, defined by increased
myocardial mass, decreased myocardial function, and coronary
artery calcification (CAC).

Methods

Study Population

The CARDIA trial is a longitudinal cohort designed to study
determinants of CVD among 5115 young adults (aged 18-30)
initially recruited in 1985-1986. Participants were recruited
from 4 sites across the United States, including Birmingham,
AL; Chicago, IL; Minneapolis, MN; and Oakland, CA. Recruit-
ment balanced enroliment at each site by sex, age (18—
24 years vs 25-30 years), race, and education. Serial follow-
up of participants at years 2, 5, 7, 10, 15, 20, and 25 (2010—
2011) after enrollment has been performed, with 72%
retention of surviving participants at year 20 and 25. All
participants provided written informed consent, with annual
institutional review board approval. Clinical assessments were
performed at each CARDIA visit as described.' ' From an
initial cohort of 5115 individuals, we excluded individuals with
self-reported congenital heart disease, congestive heart
failure, cardiomyopathy, myocarditis, rheumatic heart disease,
valvular heart disease (all assessed at baseline study visit),
prior myocardial infarction reported at baseline or final study
visit, bariatric surgery by final study visit, or withdrawn
consent for study participation, leaving 4941 CARDIA partic-
ipants (97% of the study cohort) for analysis.

Metabolic Risk Score for Transitions

To reflect current metrics for metabolic risk assessment in the
clinic,'® we defined a “metabolic risk score” by assigning +1
point for each of the following 5 high-risk features, based on
the Third Report of the Adult Treatment Panel (ATP IlI)
definition of metabolic syndrome'”: (1) triglyceride concen-
tration >150 mg/dL; (2) high-density lipoprotein concentra-
tion <40 mg/dL (in men) or <50 mg/dL (in women); (3) waist
circumference >102 c¢m (in mend) or >89 cm (in women); (4)
systolic BP >135 mm Hg (mean of two different readings),
self-reported history of hypertension, or current or former use
of BP medication; and (5) self-reported diabetes or fasting
glucose concentration >100 mg/dL. Self-reported diabetes
only was used for the fifth criteria in examinations at year 2
and year 5, as glucose was not measured on these visits. The
range for the metabolic risk score was therefore 0 to 5 points.
We did not include BMI in the metabolic risk score, as we
sought to measure metabolic risk development independent
of obesity status. (Cumulative BMI adjustment was performed
in logistic models; see Statistical Analysis below.) The
presence of each risk factor used to construct the score
over all CARDIA examinations is shown in Table S1.

Cardiovascular Imaging

We examined the CAC score at the most contemporary
CARDIA examination (year 25, 2010-2011), using a standard
multidetector computed tomography scanner platform as
described.'® CAC score was handled as “non-zero” and as a
continuous variable (with log-transformation) for positive CAC
scores. Speckle tracking echocardiography and M-mode
echocardiography were performed using an Artida cardiac
ultrasound scanner (Toshiba Medical Systems, Otawara,
Japan) using standardized protocols across all centers at year
25, with offline imaging interpretation (Digisonics, Inc,
Houston, TX)."” LVM was derived from the Devereux
formula?® and indexed to height. Speckle tracking echocar-
diography images for myocardial strain measurements were
analyzed for LV midwall layer, using 2D Wall Motion Tracking
software (Toshiba Medical Systems), from 3 cardiac cycles for
each view, recorded for offline analyses. Strain was calculated
as the change in segment length relative to its end-diastolic
length, and the peak systolic value from the 4-chamber
images was recorded as the longitudinal strain.

Statistical Analysis

Baseline clinical and demographic characteristics were com-
pared via analysis of variance or nonparametric (Kruskal-
Wallis) techniques, as appropriate. From the initial 4941
CARDIA participants, we excluded participants without a
measurable metabolic risk score at baseline, fewer than 3

DOI: 10.1161/JAHA.116.003934

Journal of the American Heart Association 2

HDOYVIASHY TVNIDIYO



Transitions in Metabolic Risk in Young Adulthood Murthy et al

assessments of the metabolic risk score over 8 total CARDIA
examinations, or missing BMI, sex, or race assessment at
baseline study visit, leaving 4420 CARDIA participants (89% of
the initial study cohort) for trajectory analysis.

To specify transitions in metabolic risk over time, we used
latent class models to identify groups of CARDIA participants
that share a common trajectory of metabolic risk over time.?'
Trajectories in metabolic risk score (using a censored normal
model using PROC TRAJ in SAS) were specified as a function
of participant age, with baseline adjustment by sex and race
(using the RISK option), and time-dependent adjustment for
BMI (using the TCOV option). We determined the optimal
number of underlying trajectories (starting from 8 total
trajectories modeled with second-order terms) by a composite
criteria consisting of: (1) confirming visually distinct trajecto-
ries; (2) ensuring >5% membership in any single trajectory
group; and (3) observing improvement in the Bayesian
information criterion. The average posterior probability of
group membership was 0.76 (range 0.72-0.82). Metabolic
score at year 25 was calculated in 3262 participants (74% of
the initial 4420 analytic cohort; compared to a 72% overall
retention rate in the overall CARDIA study).

We estimated the relationship between group membership
and subclinical CVD using logistic regression models, with
group membership entered as an independent variable.
“Subclinical CVD” was defined by (1) the presence of CAC
(modeled as CAC >0) at year 25 or a significant extent of CAC
at year 25 (>100); (2) height-adjusted LVM at year 25; and (3)
LV longitudinal strain at year 25. Each model was adjusted for
baseline age, race, sex, education, lifetime pack-years of
smoking (at year 25), and total intentional (heavy) physical
activity (at year 25). Given our central goal to separate obesity
from metabolic risk, in addition to using BMI as a time-
dependent covariate in defining metabolic groups, we further
adjusted for a “cumulative BMI exposure” (in BMI-years),
defined as the sum of each product between BMI at a given
CARDIA examination and the time between that examination
and the following examination. To calculate cumulative BMI
exposure, we required participants to have BMI measure-
ments at year 0 and year 25 and a minimum of 2 BMI
measurements at interim examinations. We calculated multi-
variable-adjusted least squares means for LVM and LV strain
across all trajectory groups. Because a large number of
participants were missing data on the 3 subclinical CVD
outcomes, we performed a sensitivity analysis using inverse
probability of treatment weighting using the propensity score,
as described in our previous work.?? The propensity score for
inclusion in the analysis of the subclinical CVD outcome was
based on a logistic regression model containing age, race,
sex, systolic BP, education, heavy physical activity, cigarette
smoking, total cholesterol, high-density lipoprotein (HDL)
cholesterol, triglycerides, BMI, diabetes status, BP

medications at baseline, fasting glucose, serum creatinine,
alcohol intake, and weighted life-events score as baseline
predictors. The inverse propensity probability of inclusion in
the analysis was used to perform a weighted regression
analysis of the outcomes, without significant change in
results. Finally, we evaluated multiplicative interaction terms
for sex and race.

Given that latent group modeling assigns individuals to
groups in a probabilistic fashion, we generated 50 separate
replicates (based on the distribution of posterior probability of
group membership). We subsequently estimated logistic
regression models for each outcome in every replicate,
yielding a composite result across the different imputed group
assignment data sets. SAS version 9.3 (SAS Institute, Cary,
NC) was used for all analyses, and a two-tailed P<0.05 was
considered statistically significant.

Results

The 6 metabolic trajectories obtained through latent class
trajectory modeling in this analysis to identify metabolic
transitions are shown in Figure 1. The baseline clinical and
demographic characteristics and outcomes of the 4420
CARDIA participants stratified by metabolic trajectory are
displayed in Table 1. Six distinct metabolic trajectories were
labeled by the metabolic score at baseline study visit and year
25 study visit: group 1 (low-stable; 17%), group 2 (low-
worsening; 21%), group 3 (intermediate-stable; 17%), group 4
(intermediate-worsening; 14%), group 5 (high-stable; 23%),
and group 6 (high-worsening; 7%). On average, the overall
CARDIA sample in this analysis (N=4420) was evenly divided

e Group

High-Worsening
— High-Stable

— Intermediate-Worsening
— Intermediate-Stable

Metabolic Score

Low-Worsening
Low-Stable

2 30 35 45 50

Figure 1. Metabolic trajectories over time in the Coronary
Artery Risk Development in Young Adults (CARDIA) trial. Each
trajectory is represented by a different color, with shaded bands
representing 95% Cls.
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by sex (54% female), with a normal BMI (24.4+4.9 kg/m?),
normal fasting glucose (82.3+13.3 mg/dL), and minimal
prevalent metabolic dysfunction (only 0.6% prevalent

Figure 2. Trends in body mass index (BMI) (A), waist
circumference (WC) (B), and ratio of WC/BMI (C) over
time in the Coronary Artery Risk Development in Young
Adults (CARDIA) trial, stratified by trajectory group
computed using linear mixed-effects models with discrete
time points for each CARDIA exam and exam xtrajectory
group interaction terms. Over time, all groups had similar
increases in BMI and WC. While worsening groups had
stable WC/BMI ratios (P>0.29 for exam 1 vs exam 8), the
stable groups all had declining WC/BMI ratios (P<0.0005
for exam 1 vs exam 8), suggesting greater proportionate
increases in abdominal adiposity in the metabolically
worsening groups.

diabetes). We observed very slight, clinically insignificant
heterogeneity in BMI and waist circumference across trajec-
tory groups at baseline. There was clinically and statistically
significant heterogeneity in baseline proatherogenic dyslipi-
demia (triglycerides and HDL).

On average, participants who attended the final year 25
CARDIA examination were heavier than those attending the
initial study visit (initial BMI 24.444.9 kg/m2 to final BMI
30.1+7.2 kg/m?), with greater central obesity (by waist
circumference), dysglycemia, and a more proatherogenic lipid
profile. Of 4420 participants at baseline, 1516 (34%) were
overweight or obese (by BMI>25 kg/m?). Of the 3274 CARDIA
participants in our analytic sample at year 25, 2435 (74%) were
overweight or obese. While individuals on average gained
weight over time (with statistically significant differences in
weight gain across trajectories, P<0.0001), among those
participants with BMI assessed at year 0 and year 25 in our
analytic cohort, there was an increase in BMI and central
obesity, with a similar pattern across all trajectories (Figure 2A
and 2B). In addition, we considered waist circumference to BMI
ratio (a marker of preferential visceral fat stores; Figure 2C).
We found that individuals with worsening metabolic trajecto-
ries have a stable ratio over time, while individuals with stable
trajectories have a declining ratio, suggesting that less excess
weight gained over time is visceral in these individuals. Of note,
waist circumference also appeared to have a similar associa-
tion with baseline metabolic score in lean and overweight/
obese individuals (Figure S1).

Despite similar trends in weight gain over time in CARDIA
across metabolic trajectories, there was significant hetero-
geneity in fasting glucose, triglyceride, and HDL levels.
Specifically, initially low or intermediate and stable trajecto-
ries of metabolic risk (group 1 and 3) had only modest
worsening in these metabolic parameters over 25 years, while
CARDIA participants in the most adverse trajectories (eg,
group 6: high-worsening) had the poorest metabolic indices at
year 25 (Table 1).

Logistic models for presence of coronary calcium and
extent of CAC, and linear models for LVM and strain are

DOI: 10.1161/JAHA.116.003934

Journal of the American Heart Association 6

HDOYVIASHY TVNIDIYO



Transitions in Metabolic Risk in Young Adulthood

Murthy et al

Table 2. Multivariable Models for CAC and LV Mass and Strain

Height-Indexed LV
Presence of CAC at Y25 CAC Score at Y25 Mass at Y25 LV Strain at Y25
(n=2941) >100 (n=2941) (n=2882) (n=2796)

Covariate Odds Ratio P Value Odds Ratio P Value B P Value B P Value
Age, Y25 (per year) 1.15(1.12-1.18) | <0.0001 | 1.24 (1.19-1.30) | <0.0001 | 0.12 0.02 0.03 0.007
Sex

Female Ref Ref Ref Ref Ref Ref Ref Ref

Male 3.34 (2.74-4.06) | <0.0001 | 3.48 (2.53-4.78) | <0.0001 | 1.89 <0.0001 | 0.75 <0.0001
Race

White Ref Ref Ref Ref Ref Ref Ref Ref

Black 0.80 (0.65-0.97) | 0.03 0.97 (0.72-1.31) | 0.86 2.05 <0.0001 | 0.89 <0.0001
Smoking (per pack-year) 1.03 (1.02-1.04) | <0.0001 | 1.02 (1.01-1.04) | <0.0001 | 0.06 0.002 0.004 0.36
Physical activity, Y25 (heavy intensity, per 1 SD) | 1.13 (1.04-1.24) | 0.007 1.09 (0.95-1.25) | 0.23 0.36 0.07 —0.042 | 0.35
Education, Y25, (per year) 0.97 (0.93-1.00) | 0.07 0.93 (0.88-0.98) | 0.01 —0.30 | 0.0001 —0.01 | 0.48
Cumulative BMI (per 1 SD in BMI, years) 1.41 (1.28-1.55) | <0.0001 | 1.43 (1.24-1.64) | <0.0001 | 5.47 <0.0001 | 0.37 <0.0001
Metabolic trajectory groups

Group 1: low-stable 1.00 (Ref) — Ref — Ref — Ref —

Group 2: low-worsening 1.50 (1.10-2.04) | 0.01 1.67 (0.99-2.83) | 0.057 1.85 0.002 0.51 0.0002

Group 3: intermediate-stable 1.24 (0.89-1.77) | 0.20 1.69 (0.94-3.04) | 0.08 1.28 0.04 0.25 0.08

Group 4: intermediate-worsening 2.47 (1.78-3.42) | <0.0001 | 2.57 (1.50-4.39) | 0.0006 1.67 0.01 0.80 <0.0001

Group 5: high-stable 1.95 (1.43-2.67) | <0.0001 | 1.80 (1.05-3.10) | 0.03 1.56 0.009 0.58 <0.0001

Group 6: high-worsening 3.61 (2.41-5.41) | <0.0001 | 3.66 (2.00-6.69) | <0.0001 | 4.34 <0.0001 | 1.36 <0.0001

P values for groups are for comparisons with referent (ref; group 1, low-stable). BMI indicates body mass index; CAC, coronary artery calcification; LV, left ventricular; Y25, year 25.

shown in Table 2. After accounting for age, sex, race,
education, smoking, physical activity, and obesity exposure
(defined in Methods), all groups (except group 3: intermedi-
ate-stable) had a higher risk of subclinical coronary artery
disease, as reflected by prevalent CAC and CAC score greater
than 100 at year 25, compared with the low-stable group.
Similarly, after accounting for cumulative BMI and other risk
factors, compared with the low-stable population (group 1), all
other trajectory groups were associated with significantly
greater height-indexed LVM, and all but group 3 were
associated with poorer longitudinal strain (Table 2). These
results were robust in sensitivity analyses using 50-fold
replication over posterior group probabilities and to inverse
probability weighting. Relationships between trajectory
groups and CAC were similar excluding individuals with prior
revascularization. In a sensitivity analysis, we considered the
form of the trajectory (stable versus worsening) as an
outcome to address whether baseline characteristics would
identify metabolic progression over time; baseline character-
istics had only a moderate discrimination for worsening
versus stable trajectories (C statistic 0.72; 95% Cl, 0.70—
0.74). In addition, worsening trajectories were associated with
greater subclinical CVD.

In examining the sex- and race-based heterogeneity in
metabolic risk and CVD, we first observed that men were
much more likely to be in metabolically worsening trajectories
compared with women. We identified a significant race
interaction for LVM (P<0.0001) and LV strain (P=0.01), and
a significant sex interaction for presence of CAC (P=0.001).
Figure 3 shows the patterns of group differences by race for
LVM (Figure 3A) and LV strain (Figure 3B) and by sex for CAC
(Figure 3C). We found that the black patients consistently had
higher LVM and worse LV strain than white patients in each
group (Figure 3). Furthermore, the worsening metabolic
trajectory had a greater impact on blacks than whites, most
notably in the high-worsening group (group 6). We also found
that while women generally had lower rates of coronary
calcification at year 25 than men, this difference was
attenuated in worse metabolic trajectories (Figure 3C).

Discussion

In a large cohort of young adults followed over 25 years, we
defined specific trajectories of metabolic risk associated with
prognostic markers of subclinical CVD, including myocardial
mass, function, and CAC in midlife. Importantly, metabolic risk
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Figure 3. Effect modification by race and sex. Left ventricular (LV) mass index (A) and longitudinal strain (B) across metabolic trajectories by
race. The points represent the adjusted least squares means with 95% Cls. C, Rate of coronary artery calcification (CAC) score >0 by metabolic
trajectory and sex. Differences by sex are significant (P<0.0001) in each group except high-worsening (P=0.06), with evidence of effect

modification of metabolic trajectory by sex (interaction P=0.001).

diverged early, at age 20 to 30 years, before most young
adults would be eligible for modern lipid prevention guide-
lines.?® We demonstrated that the evolution of metabolic risk
during early adulthood may occur independently of changes in
BMI. Despite an overall rise in BMI by year 25 in CARDIA (to
overweight or obese on average), parameters of car-
diometabolic risk (eg, dysglycemia, diabetes risk,

dyslipidemia, waist circumference) had distinct patterns of
change over time in each trajectory. Moreover, we could not
in general identify a trajectory to which a given individual
belonged based on baseline BMI or cardiometabolic charac-
teristics, given their similarity at baseline. While we did
observe that adverse trajectories (defined by initially high or
worsening metabolic risk trajectories) were associated with
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worse cardiovascular structure and function at late follow-up,
lower-risk, stable trajectories (groups 1 and 3) had a similar
risk of coronary calcification and subclinical LV dysfunction.
The critical finding of our work is that these associations were
observed in the face of a similar pattern of increase in BMI
across trajectories, suggesting that BMI may not fully explain
metabolic deterioration in young adulthood through midlife.
Collectively, despite a “healthy” profile in young adulthood
(including normal BMI on average), adverse trajectories in
cardiometabolic risk may evolve early in adulthood (before
age 40) and are associated with subclinical CVD by midlife.

Metabolic syndrome, defined by abdominal obesity,
proatherogenic dyslipidemia, hypertension, and insulin resis-
tance, is a risk factor for incident CVD."” Most clinical
prevention has focused on BMI as a central arbiter of
cardiometabolic risk, with screening beginning in childhood to
mitigate chronic consequences of obesity.?* Indeed, trajec-
tories of obesity in childhood are strongly associated with
CVD and diabetes in adulthood.?® Nevertheless, the US
Preventive Services Task Force guidelines do not recommend
any additional screening for dysglycemia or dyslipidemia prior
to middle age (35 years for men, 45 years for women) in
individuals not at “significant risk” for CVD or diabetes
(defined as obesity, hypertension, smoking, diabetes, or
personal or family history).?® While prior work in CARDIA
has defined the importance of cumulative exposure to
obesity’?” on cardiovascular structure, the divergence
between metabolic risk and obesity (eg, “metabolically
healthy obese” and “metabolically unwell lean” subtypes) is
increasingly recognized. Previous work by our group?® and
others?* % has indicated that differences in metabolic
susceptibility defined by visceral adiposity or inflammation
may refine obesity-related cardiometabolic risk. In addition,
studies involving cardiac magnetic resonance suggest that
even tissue-level myocardial phenotypes may be affected in
adolescent obesity, in proportion to systemic inflammation
and dysglycemia.®* These findings suggest that early detec-
tion of and focus on obesity-associated metabolic risk may
provide a more nuanced conception of cardiometabolic
disease early in adulthood that may directly impact heart
disease and may help to understand heterogeneity in clinical
risk in individuals across the spectrum of obesity.?’

In this context, using well-defined, clinically accessible risk
factors, we found that individuals who were at low metabolic
risk at baseline had already diverged in terms of metabolic
risk in early adulthood (eg, between age 20—40 years), before
standard prevention guidelines urge routine screening (eg, for
dyslipidemia). Importantly, there were no clinically important
differences in these groups in terms of baseline BMI, lipid
panel, fasting glucose, or other important cardiometabolic
indices to facilitate their distinction. In addition, despite a
similar pattern of weight gain across all metabolic risk

trajectories over time in CARDIA, we observed distinct
associations between metabolic trajectories and subclinical
CVD. Importantly, we observed significant race- and sex-
based heterogeneity in the relationship between adverse
metabolic risk over 25 years and subclinical CVD: African
Americans exhibited a higher LVM and poorer systolic
function compared with Caucasians, potentially explaining
well-described race-related differences in heart failure risk.>®
Moreover, the well-described protection from CVD in pre-
menopausal women (compared with men) was attenuated
with worsening metabolic trajectory. Along with general
cardiometabolic prevention, these results suggest that
focused efforts in select populations to limit the evolution
of cardiometabolic risk from young adulthood may curb later
CVD and its associated cost and morbidity.

A critical step in the formulation of metabolic trajectories
in this work is the metabolic score used to specify risk. We
decided to use ATP lll-defined metabolic syndrome compo-
nents to comprise our risk score because of their clinical
accessibility and previous association with cardiometabolic
disease.’® While more granular, longitudinal and direct
measures of physical activity (by accelerometry), cardiorespi-
ratory fitness (eg, exercise duration), visceral fat,*° and
dietary patterns would likely contribute to defining trajecto-
ries, we did not have access to longitudinal accelerometry,
fitness, adiposity, or dietary data in every examination within
CARDIA. In addition, our score purposefully excluded BMI;
instead, we specified a time-dependent BMI adjustment in
trajectory modeling to account for longitudinal changes in BMI
over time. Ultimately, these results suggest that metabolic
deterioration occurs early in adulthood in parallel with (but not
necessarily explained completely by) a rise in BMI over time.

The identification of early divergence in metabolic risk
independent of BMI prompts several additional questions.
First, early clinical differentiation of the different metabolic
trajectories would allow the identification of individuals at
higher risk at an earlier stage of cardiometabolic disease for
prompt prevention. Certainly, those individuals who enter
young adulthood at high metabolic risk tended to remain at
high metabolic risk or worsen over time, warranting aggres-
sive, guideline-mandated surveillance and prevention. Previ-
ous seminal work has demonstrated that changes in waist
circumference over time track changes in cardiometabolic
risk.3%” While clinical factors in our study only modestly
discriminated risk of worsening metabolic trajectory over
time, CARDIA was an observational (not an interventional)
study. As such, directed clinical interventions based on known
markers (eg, triglycerides, low fitness or activity levels, poor
dietary quality, or increasing waistline®¢*”) may offer preven-
tive benefits. Whether more sensitive markers of early
metabolic dysfunction (eg, adipokines and metabolite profiles)
central to insulin resistance and cardiometabolic risk would
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further call attention to patients at high risk remains an area
of active investigation. Moreover, it is critical to note that
these results do not negate the importance of BMI in standard
risk prediction. Obesity is a well-established marker of
increased CVD risk,' although these results suggest that it
does not fully explain CVD risk. Ultimately, these results
suggest that a “life-course” approach to risk assessment that
begins early and integrates BMI, known risk factors (eg, waist
circumference), and metabolic risk will be critical in halting
CVD progression.

Study Limitations

The limitations of this study must be viewed in the context of
its design. While the use of self-report to exclude participants
with CVD may introduce bias, the overall reduction in study
population was modest (5114 to 4941). With patient dropout
over time, 3262 participants (74% of the initial 4420 analytic
cohort) had quantified metabolic scores at year 25. However,
we adjusted for known CVD risk factors (smoking, self-
reported physical activity) in our final models to reduce the
impact of biases related to systematic differences in charac-
teristics of retained patients.® Furthermore, while not all
participants had metabolic scores assessed at every CARDIA
study visit, the median number of metabolic score assess-
ments was 7 (interquartile range 6—8 of 8 total CARDIA visits,
similar across trajectory groups (between 7 and 8 visits
across all groups) and suggested that any systematic patterns
in missing data are unlikely to impact trajectory assignments.
Given the absence of a priori weighting schemes, we weighted
each metabolic component equally, ascribing an equivalent
degree of cardiometabolic risk to each component. Finally,
serial dietary and physical activity assessments were not
available at every examination in CARDIA and represent a
potential area of future study.

Conclusions

Transitions in metabolic risk occur in early adulthood, are not
completely explained by increases in BMI over time, and are
associated with CAC and myocardial hypertrophy and dys-
function. Targeting therapeutic interventions focused on
weight, body composition, and physical activity maintenance
early in life along with regular cardiometabolic surveillance are
critical to reduce heart disease.
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Table S1. Presence of risk factors used to construct the metabolic risk score over CARDIA examinations. “N present” refers to
number of observations that have a measured covariate, and “%” reflects proportion out of 4420 individuals in initial analytic cohort.

Covariate Year O Year 2 Year 5 Year 7
N Present % N Present % N Present % N Present %
Body mass index 4420 100 4176 94.5 4086 92.4 3773 85.4
Insulin resistance (diabetes, fasting glucose) 4420 100 4171 94.4 4100 92.8 3862 87.4
Blood pressure 4420 100 4201 95 4104 92.9 3862 87.4
Waist circumference 4420 100 4173 94.4 4070 92.1 3759 85
High-density lipoprotein 4420 100 4094 92.6 4018 90.9 3799 86
Triglyceride 4420 100 4095 92.6 4018 90.9 3799 86
Total Metabolic Risk Score 4420 100 4045 91.5 3984 90.1 3710 83.9
Year 10 Year 15 Year 20 Year 25
N Present % N Present % N Present | % Present | N Present | % Present
Body mass index 3680 83.3 3439 77.8 3334 75.4 3274 74.1
Insulin resistance (diabetes, fasting glucose) 3731 84.4 3476 78.6 3349 75.8 3279 74.2
Blood pressure 3732 84.4 3478 78.7 3349 75.8 3280 74.2
Waist circumference 3673 83.1 3454 78.1 3338 75.5 3271 74
High-density lipoprotein 3672 83.1 3428 77.6 3318 75.1 3269 74
Triglyceride 3672 83.1 3428 77.6 3318 75.1 3269 74
Total Metabolic Risk Score 3623 82 3408 77.1 3309 74.9 3262 73.8




Figure S1. Baseline metabolic score across waist circumference and categories of
weight.
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