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The upper gastrointestinal tract plays an important role in sensing the arrival, amount
and chemical composition of a meal. Ingestion of a meal triggers a number of
sensory signals in the gastrointestinal tract. These include the response to mechanical
stimulation (e.g., gastric distension), from the presence of food in the gut, and the
interaction of various dietary nutrients with specific “taste” receptors on specialized
enteroendocrine cells in the small intestine culminating in the release of gut hormones.
These signals are then transmitted to the brain where they contribute to food intake
regulation by modulating appetite as well as feedback control of gastrointestinal
functions (e.g., gut motility). There is evidence that the sensitivity to these food related
stimuli is abnormally enhanced in functional dyspepsia leading to symptoms such
nausea and bloating. In addition, these gut-brain signals can modulate the signaling
pathways involved in visceral pain. This review will discuss the role of gut-brain signals in
appetite regulation and the role dysregulation of this system play in functional dyspepsia.

Keywords: gastrointestinal tract, mechanosensation, chemosensation, pain, vagal afferents, functional
dyspepsia

INTRODUCTION

The gastrointestional (GI) tract plays an important role in sensing the arrival, amount and
chemical composition of a meal. However, exaggerated perception of a meal can have significant
implications, across the lifespan, for eating-related disorders such as functional dyspepsia (Feinle-
Bisset, 2016). The GI tract is richly innervated by sensory nerves that convey information to the
central nervous system (CNS) where it is processed and gut reflexes are coordinated with behavioral
responses and sensations such as satiety, fullness, nausea, bloating and pain. Sensory nerves that
originate in the nodose and jugular ganglia project to the gut via the vagal nerves, whereas,
thoracolumbar spinal afferent neurons project to the GI tract via the splanchnic nerves. While most
studies have focussed on the role of spinal afferents in mediating visceral pain (Gebhart and Ness,
1991; Mayer and Gebhart, 1994; Vermeulen et al., 2014; Spencer et al., 2016) there is evidence to
suggest that vagal afferent fibers play an important role in the modulation of nociception (Grundy,
1988; Randich and Gebhart, 1992; Holtmann et al., 1998; Wang et al., 2015). This review will focus
on the role vagal afferent fibers may play in the symptoms associated with functional dyspepsia
including pain.

VAGAL AFFERENT INNERVATION OF THE GUT

Anatomy
The sensory nerves within the vagus originate from two different embryonic tissues. A proportion,
of vagal sensory nerves (afferents), is derived from the embryonic placodes and the cell bodies are

Frontiers in Systems Neuroscience | www.frontiersin.org 1 April 2018 | Volume 12 | Article 10

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://doi.org/10.3389/fnsys.2018.00010
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsys.2018.00010&domain=pdf&date_stamp=2018-04-05
https://www.frontiersin.org/articles/10.3389/fnsys.2018.00010/full
https://www.frontiersin.org/articles/10.3389/fnsys.2018.00010/full
http://loop.frontiersin.org/people/14521/overview
https://loop.frontiersin.org/people/544005/overview
https://creativecommons.org/licenses/by/4.0/
mailto:amanda.page@adelaide.edu.au
https://doi.org/10.3389/fnsys.2018.00010
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Page and Li Gastrointestinal Mechanosensation

located in the nodose ganglia. The other population of vagal
afferent cell bodies are located in the jugular ganglia. These
afferents are derived from the embryonic neural crest similar
to spinal sensory neurones. It has been hypothesized, based on
the common neural crest origin of nociceptive spinal and vagal
jugular sensory neurones, that the jugular ganglia supply the GI
tract with nociceptive sensory nerves (Yu et al., 2005).

In the GI tract, at least three distinct vagal afferent terminals
are present at specific locations within the gut wall, including the
external muscular layers, the myenteric plexus and the mucosal
lamina propria. Vagal afferent endings in the longitudinal and
circular muscular layers consist of long trails of branching and
interconnecting fibers embedded within the muscular layers
and arranged in parallel to the muscle fibers (Berthoud and
Powley, 1992; Phillips et al., 1997). As a consequence these nerve
endings are known as intramuscular arrays (IMAs; Berthoud
and Neuhuber, 2000). IMAs are located throughout the GI tract,
however, the highest density is observed in the stomach wall and
the sphincters throughout the gut (Wang and Powley, 2000).
Given their morphology it has been hypothesized that IMAs
could function as tension receptors monitoring the length of the
muscle cells, however, there is no electrophysiological data to
confirm IMAs are tension sensitive.

The most abundant type of vagal afferent terminal is the
intraganglionic laminar endings (IGLEs) positioned in the
myenteric plexus between the longitudinal and circular muscular
layers (Berthoud and Powley, 1992; Fox et al., 2000). It is
hypothesized that IGLEs detect distortion of the surrounding
tissue (Zagorodnyuk et al., 2001). Their stimulus-response
functions saturate within the physiological range (Sengupta et al.,
1989), unlike spinal afferents which generally signal well above
the physiological range (Sengupta et al., 1990).

A third population of vagal afferent has endings in the
mucosal lamina propria where they are ideally situated to
detect fine tactile mechanical stimuli (Page et al., 2002) or
material absorbed across the mucosal epithelium or released
from specialized cells (e.g., glucagon-like peptide-1 (GLP-1)
from L-cells; Berthoud et al., 1995; Berthoud and Patterson,
1996; Williams et al., 1997). Specialization of these mucosal
vagal afferent endings is region specific. In the stomach, the
mucosal afferents detect the presence of luminal content via their
response to mechanical and chemical stimulation. In the small
intestine, the vagal afferent terminals are in close contact with the
basal lamina and therefore ideally positions to detect absorbed
nutrients and/or hormones and peptides released from epithelial
cells or other nerve fibers.

Centrally, these vagal afferent nerve fibers project to the
nucleus tractus solitarius (NTS) where the information they
transmit is integrated with brainstem, limbic and hypothalamic
signals to ultimately provide coordinated GI reflexes (e.g.,
motility and gastric emptying; Berthoud et al., 2004; Brookes
et al., 2013) along with behavioral responses and sensations, such
as fullness, satiety and bloating.

Functional Properties of Vagal Afferents
Vagal afferents have been shown to respond to a number
of different stimuli including nutrient and nutrient-related

compounds, mechanical stimulation, temperature and
osmolarity (Berthoud and Neuhuber, 2000). In this review
we will focus on the mechanical and chemical properties of GI
vagal afferent endings in the upper GI tract due to their possible
role in functional dyspepsia.

As food is ingested the vagal afferents innervating the stomach
respond to mechanical stimulation as the undigested food enters,
fills and distends the stomach wall. There are two fundamental
classes of mechanosensitive vagal afferent ending in the stomach
according to location and response to mechanical stimuli (Page
and Blackshaw, 1998; Page et al., 2002). Mucosal receptors
are generally silent at rest and are sensitive to light stroking
of the mucosa, generating a burst of action potentials each
time the stimulus passes over the receptive field (Page and
Blackshaw, 1998; Page et al., 2002). They are insensitive to
distension and contraction of the gastric wall. There is evidence
that they are important in the initiation of satiety, nausea
and vomiting by chemical and osmotic stimuli (Andrews and
Sanger, 2002). Although there is no direct evidence, mucosal
receptors are thought to discriminate particle size and give
negative feedback on the control of gastric emptying (Becker
and Kelly, 1983; Tuleu et al., 1999); as a consequence food
is not released from the stomach until sufficiently churned.
Tension receptors often have a resting discharge that may be
modulated in phase with ongoing contractions. They show
slowly adapting responses to normal contractions and distension
with a linear relationship to wall tension (Page and Blackshaw,
1998; Page et al., 2002). Tension receptors signal the level of
gastric distension to the CNS, which is important not only in
triggering reflexes controlling gastrointestinal function, but is
also critical in signaling food intake and generating sensations
such as satiety and fullness. Existing evidence indicates that both
tension and mucosal receptors play distinct but complementary
roles in the generation of mechanosensory satiety signals.
The mechanosensitivity of both mucosal and tension sensitive
afferents can be modulated by a variety of different mediators
including gut hormones, such as ghrelin (Page et al., 2007;
Kentish et al., 2012) found in specialized cells within the
stomach wall, and adipokines, such as leptin (Kentish et al.,
2013).

As gastric emptying occurs, nutrients enter the small intestine
and interact with nutrient receptors on the surface of specialized
cells within the intestinal mucosal layer. This initiates an
intracellular cascade that culminates in the release of one or
more gut hormones that can then activate vagal afferent endings
that project along the length of the villi, ramifying beneath
the epithelial layer (Powley and Phillips, 2011). There are
numerous subclasses of enteroendocrine cells releasing a subset
of mediators. These hormones, as described above, can act in a
paracrine fashion on vagal afferent endings, act as true hormones
coordinating activities within the gut (e.g., secretory function) or
by acting in the brain via the circulation or can work by more
than one of these pathways.

A subset of enteroendocrine hormones/mediators act as
satiety factors largely through local effects on vagal afferent
endings. These hormones include cholecystokinin (CCK),
GLP-1 and peptide YY (PYY). CCK is released from I-cells
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located largely in the proximal small intestine. The release
of CCK is mediated by the presence of luminal nutrients
and both long-chain fatty acids and casein cause activation
of mucosal afferents via a CCK-1 (a.k.a. CCKA) receptor
dependent mechanism (Eastwood et al., 1998; Lal et al., 2001).
Administration of CCK reduces food intake (Gibbs et al., 1973)
and antagonists of the CCK-1 receptor increase food intake
(Hewson et al., 1988) indicating that endogenous CCK has a role
in the control of food intake. The satiety effects of CCK require
an intact vagus (Blackshaw and Grundy, 1990).

GLP-1 is an incretin hormone released from intestinal L-cells
(Lee et al., 1990). These cells have the ability to respond
to a broad range of nutrients including digestion products
of proteins, fats and carbohydrates (Elliott et al., 1993). The
release of GLP-1 causes a decrease in food intake (Gutzwiller
et al., 1999), stimulation of insulin release (Fridolf and Ahrén,
1991), reduction in glucagon secretion (Drucker, 2006) and
a reduction in gastric emptying (Delgado-Aros et al., 2002).
GLP-1 receptor is expressed in the nodose ganglia (Nakagawa
et al., 2004) and has been localized on vagal afferent endings
(Bucinskaite et al., 2009). Further, GLP-1 has been shown to
increase gastric and jejunal vagal afferent activity (Bucinskaite
et al., 2009; Gaisano et al., 2010) and activation of vagal
afferents is thought to be the mechanism responsible for its
effect on food intake and insulin release (Hayes et al., 2011).
However, there is some debate on whether vagal afferents
are the main pathway by which GLP-1 signals to the brain.
Following subdiaphragmatic vagotomy GLP-1 induced changes
in food intake were not affected if the GLP-1 was administered
via the hepatic portal vein but abolished if administered
intraperitoneally (Rüttimann et al., 2009). Therefore, local and
circulating GLP-1 may have different effector locations. For
example, the effects of GLP-1 on satiety and gastric emptying
could also involve endocrine actions at central sites within
the brainstem and hypothalamic nuclei (Turton et al., 1996;
Imeryüz et al., 1997; Nagell et al., 2006; Nakade et al.,
2006).

PYY, similar to GLP-1, is released from intestinal L-cells.
However, the distribution of PYY positive cells is different from
GLP-1 and although PYY is present throughout the intestine
there are very low levels in the proximal small intestine with
levels increasing substantially in the ileum and even more
in the colon (Adrian et al., 1985). The release of PYY is
regulated by direct contact with luminal nutrients or indirectly
through CCK release in response to proximal exposure to fat
(Greeley et al., 1989). Intraperitoneal administration of PYY3–36
has been shown to have an anorexigenic effect in rodents
(Batterham et al., 2002), an effect completely abolished by
subdiaphragmatic vagotomy (Abbott et al., 2005; Koda et al.,
2005). This is further supported by the fact that PYY receptors
(Y2) are expressed in intestinal vagal afferents (Burdyga et al.,
2008). A blockade of the Y2 receptor has been shown to
abolish the anorectic effects of PYY3–36 (Scott et al., 2005) and
Y2 knockout mice exhibit hyperphagia (Naveilhan et al., 1999).
Similar to GLP-1, the anorectic effects of PYY could be due
to paracrine effects on vagal afferents, as described above, or
via direct central activation by circulating PYY, or by both

pathways (Zhang et al., 1997; Fetissov et al., 2004; Koda et al.,
2005).

Therefore whilst capable of spontaneous activity the signaling
of vagal afferents within the GI tract are modulated or activated
by an array of substances released from specialized cells within
the GI mucosa which allows for rapid communication in
response to GI motility and nutrient content. If something is
disrupted in this multilevel system it could have a serious impact
on symptoms associated with functional dyspepsia.

FUNCTIONAL DYSPEPSIA AND VAGAL
AFFERENT SIGNALING

Functional dyspepsia is associated with enhanced GI sensitivity
with no clear evidence of an organic cause (Tack et al., 2006).
Functional dyspepsia affects about 20% of the population and
significantly impairs their quality of life. Functional dyspepsia
is meal related with about 80% of patients reporting that the
symptoms are aggravated by ingestion of a meal (Bisschops
et al., 2008). Hypersensitivity to mechanical stimulation of the
stomach is frequent in functional dyspeptic patients, however,
the underlying mechanisms for this hypersensitivity are unclear.
Functional dyspepsia is also associated with delayed gastric
emptying and reduced gastric accommodation after a meal (Tack
et al., 1998; Sarnelli et al., 2003). Failure of the stomach to
accommodate food is also linked to the increase in transient
lower esophageal sphincter relaxations that occur in patients
with gastroesophageal reflux disease (GERD; Pauwels et al.,
2014). This may in part explain the overlap in functional
dyspepsia and GERD patients (Pauwels et al., 2014) and be
explained by enhanced gastric vagal afferent mechanosensitivity,
although this still remains to be determined. There is some
indication transient receptor potential (TRP) channels may
be involved in the visceral hypersensitivity associated with
functional gastrointestinal disorders (Balemans et al., 2017).
The best characterized of these channels is TRP vanilloid
receptor 1 (TRPV1) a voltage-gated outwardly rectifying cation
channel activated by acidosis (pH < 6), noxious heat (Tominaga
et al., 1998), exogenous irritants such as capsaicin (active
component of hot chilli peppers; Caterina et al., 1997) and
endocannabinoids such as anandamide (Zygmunt et al., 1999).
TRPV1 is expressed in the nodose ganglia (Kentish et al.,
2015) and activation of TRPV1 increases gastric vagal afferent
excitability thereby signaling satiety whereas inhibition of
TRPV1 does the converse (Bielefeldt and Davis, 2008). Capsaicin
reduces food intake in humans (Yoshioka et al., 2001) and
consumption of spicy capsaicin containing food was positively
associated with scores of stomach fullness in functional dyspepsia
patients (Lee et al., 2016). Further, there is hypersensitivity
to capsaicin in patients with functional dyspepsia compared
to healthy controls (Hammer et al., 2008). Therefore, it is
possible that enhanced TRPV1 signaling in gastrointestinal
vagal afferents plays a role in the symptoms associated
with functional dyspepsia, however, further investigation is
required. Unfortunately, unlike irritable bowel syndrome (IBS)
a functional disorder of the lower GI tract, the majority
of research on functional dyspepsia has occurred at the
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clinical level with very few basic research studies investigating
the mechanisms driving hyper-perception of food related
stimuli in the upper GI tract. This is mainly due to
the lack of animal models for functional dyspepsia. An
animal model would allow the investigation of the molecular
mechanisms driving gastric vagal afferent hypersensitivity and
possibly identify new targets for the treatment of functional
dyspepsia.

Functional dyspepsia is further subdivided into two clinically
distinct syndromes:

Postprandial Distress Syndrome
In postprandial distress syndrome, feelings of fullness (satiety)
occur early in the meal, preventing the completion of a normal
size meal, and/or there is persistent feelings of bloating or
nausea, with symptoms occurring after eating at least several
times a week. Hypersensitivity to gastric distension occurs
in 30%–40% of functional dyspeptic patients (Tack et al.,
2001; Boeckxstaens et al., 2002). This alone could explain
the early satiety and inability to complete a meal (Figure 1).
Additional studies suggest that 60%–70% of patients with
functional dyspepsia are hypersensitive to nutrients (Barbera
et al., 1995a; Feinle et al., 2001). For example, duodenal
infusion of a long chain lipid emulsion increases symptoms
of fullness, nausea and bloating and increases responses to
gastric distension in functional dyspepsia patients compared to
healthy individuals (Barbera et al., 1995b). There is evidence
that gut hormones, at least in part, mediate these effects.
It has been demonstrated that the plasma concentration of
CCK is elevated in functional dyspepsia patients compared
to healthy controls (Pilichiewicz et al., 2008). In addition,
exogenous administration of CCK enhances symptoms in
functional dyspeptic patients (Chua et al., 1994), whereas, the
CCK antagonist, dexloxiglumide, has been shown to reduce
symptoms during gastric distension and duodenal lipid infusion
(Feinle et al., 2001). In summary, lipid hypersensitivity in
functional dyspepsia patients is mediated, at least in part,
via CCK acting on CCK-1 receptors (Feinle et al., 2001).
The hypersensitivity appears to be fat-specific with duodenal
glucose having no effect on symptoms (Barbera et al.,
1995a).

Other hormones may also play a role in the symptoms
associated with functional dyspepsia. For example, plasma levels
of the gastric hormone acyl ghrelin have been reported to
be reduced in postprandial distress syndrome (Choi et al.,
2016). A reduced acyl ghrelin level has been correlated
with impaired gastric emptying (Shindo et al., 2009) which
can lead to postprandial fullness and vomiting (Stanghellini
et al., 1996); diagnostic symptoms for functional dyspepsia.
Growth hormone secretagogue receptor type 1a, the receptor
for ghrelin, is expressed in the nodose ganglia (Burdyga
et al., 2006) and ghrelin has been shown to increase and
decrease responses to distension in the jejunum (Murray
et al., 2006) and stomach (Page et al., 2007) respectively. This
suggests specific vagal afferent populations respond differently
to ghrelin. The role of ghrelin effects on these different
vagal afferent populations in the symptoms associated with

functional dyspepsia remain to be determined. The gut hormone
nesfatin-1 may also be involved. A recent publication, using
a rat stress model of functional dyspepsia, has demonstrated
that nesfatin-1 protein levels were increased in the gastric
fundus of stressed compared with control rats (Jing et al.,
2017). Nesfatin has been shown to increase the sensitivity of
gastric vagal afferent mucosal receptors (Kentish et al., 2017)
and therefore heightened perception to meal related stimuli
in functional dyspepsia could be due to the elevated gastric
nesfatin-1 levels and subsequent effects on vagal afferents.
Further, it is uncertain whether other gut hormones, such as
GLP-1 and PYY also play a role in the symptoms associated
with functional dyspepsia (Lanzini et al., 2006; Pilichiewicz et al.,
2008).

Epigastric Pain Syndrome
In epigastric pain syndrome there is intermittent pain or a
burning epigastrium at least once a week. The pain experienced
by dyspeptic patients may be due to pathological alterations
in gut function and/or the events in the gastrointestinal tract
may be exaggerated in the brain. This could be due to
either: (1) an increase in the sensitivity of peripheral afferent
nerves and therefore an increase in central input; or (2) the
central integration is abnormally high in functional dyspepsia
(Malagelada, 2001; Holzer, 2002). Further, summation of afferent
input may also play a role in the pain experienced by dyspeptic
patients because unperceived electrical stimulation of mechano-
insensitive jejunal afferents has been shown to increase the
perception of distension to uncomfortable levels (Accarino et al.,
2002).

Although it was considered that vagal afferents are not
involved in abdominal pain, with spinal afferents playing
the predominant role in pain transmission, there is growing
awareness of a role for vagal afferents in visceral pain (Michl
et al., 2001; Lamb et al., 2003). For example, there is a
population of esophageal vagal afferents, namely nodose and
jugular C fibers, which have a high threshold of activation
(∼30 mmHg; Yu et al., 2005, 2008). Unlike the activity
of vagal tension receptors that saturate at innocuous intra-
esophageal pressures, this population linearly encode esophageal
distention in the noxious range (Yu et al., 2005). Therefore,
it is possible that similar gastric nociceptive vagal afferents,
thus far unidentified, may contribute to epigastric pain
syndrome along with the spinal afferents. However, it has
been reported that distension-sensitive gastric vagal afferent
fibers encode gastric distension but do not have thresholds
in what may be considered the noxious range (Ozaki et al.,
1999).

Gastric acid plays a role in the pain associated with GERD,
gastritis and peptic ulcers (Kang et al., 1986, 1989) and there
is some evidence that the painful symptoms of functional
dyspepsia may also involve gastric acid as a noxious stimuli.
Although gastric acid secretion is in the normal range (Collen
and Loebenberg, 1989) in dyspeptic patients there are some
indications that the stomach and duodenum, in these patients,
might be hypersensitive to acid (Son et al., 1997; Samsom et al.,
1999). In addition, acid can sensitize mechanosensitive afferents,
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FIGURE 1 | Schematic of how gastrointestinal vagal afferents can be involved in the symptoms associated with functional dyspepsia. For simplicity not all neural
pathways and regions are illustrated. The NTS receives input from vagal afferents innervating the gastrointestinal tract. Distinct neural outputs from the NTS
coordinate sensations such as satiety, bloating and nausea. Further, neural output from the NTS to the central amygdala can modulate the processing of nociceptive
information, from the spinal cord and brainstem, within the central amygdala. NTS, nucleus tractus solitarius; DMV, dorsal motor nucleus of the vagus; PBN,
Parabrachial nucleus.

presumably vagal afferents, in the stomach (Coffin et al., 2001).
In rats, exposure of the gastric mucosa to a gastric acid challenge
has been shown to lead to a rapid rise in c-Fos expression in
the NTS but not the spinal cord (Schuligoi et al., 1998; Michl
et al., 2001; Danzer et al., 2004). In addition, the medullary c-Fos
response to a gastric challenge is blocked by bilateral vagotomy
indicating that chemo-nociceptive gastric mucosal afferent input
to the NTS and area postrema is predominantly carried by vagal
afferents (Schuligoi et al., 1998; Michl et al., 2001). Consistent
with these observations, it has been demonstrated in rats that
the visceromotor electromyographic response to a gastric acid
challenge is abolished by vagotomy and not splanchnectomy
(Lamb et al., 2003). Data indicate that the central vagal afferent
input, in response to a gastric acid challenge, is initially
processed in the medullary brain stem before information is
passed to the lateral parabrachial nucleus (PBN), thalamic and
hypothalamic paraventricular nuclei, supraoptic nucleus, central
amygdala and the mediolateral habenula (Michl et al., 2001).
However, there was no observed activation of the insular cortex
(Michl et al., 2001), which suggests that the vagal afferent
responses, to a gastric acid challenge, do not give rise to the
perception of pain but instead lead to activation of subcortical
brain nuclei involved in emotional, autonomic, behavioral and
neuroendocrine responses to the noxious stimuli (Michl et al.,
2001). The participation of vagal afferents in nausea, emesis
and in cytokine-evoked illness responses (Goehler et al., 2000;
Konsman et al., 2002) corroborate this view of vagal afferent
involvement in abdominal nociception (Traub et al., 1996).
However, in addition to the emotional response to pain there
is accumulating evidence for the role of the central amygdala

in pain modulation. The latero-capsular region of the central
amygdala has been defined as the ‘‘nociceptive amygdala’’
due to the high content of neurones that process nociceptive
information from the spinal cord and brainstem (Neugebauer
et al., 2004). As previously stated, there are direct projections
from the NTS to the central amygdala (Ricardo and Koh, 1978;
Zardetto-Smith and Gray, 1990) and systemically administered
CCK has been shown to activate central amygdala neurons
(Myers and Rinaman, 2002). CCK is unable to cross the blood-
brain barrier (Passaro et al., 1982) and it has been demonstrated
that systemic CCK enhances visceral pain responses to colorectal
distension in rats in a vagal afferent dependent manner (Wang
et al., 2015). It is known that plasma CCK levels are elevated
in functional dyspepsia patients compared to healthy controls
(Pilichiewicz et al., 2008) and that endogenously released
CCK acts on vagal afferent mucosal terminals in the small
intestine (Lal et al., 2001). Further, a CCK antagonist reduced
symptoms to gastric distension in functional dyspeptic patients
(Feinle et al., 2001) suggesting that in these patients CCK
enhanced gastric vagal afferent tension receptor responses to
distention stimuli. Therefore, it is conceivable that the observed
hypersensitivity of gastric and small intestinal vagal afferents
(Feinle et al., 2001) will augment visceral pain responses
originating in the upper GI tract (Figure 1). However, this
remains to be determined. Nevertheless, it seems likely that vagal
afferents not only mediate the emotional, autonomic, behavioral
and neuroendocrine responses but also the pain responses
(Figure 1).

In summary, gastrointestinal vagal afferents play an important
role in sensing the arrival, amount and chemical composition
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of a meal. However, exaggerated vagal afferent signaling can
have significant implications for GI disorders, such as functional
dyspepsia. Along with the vagal afferent function associated
feelings in postprandial distress syndrome, such as early satiety,
fullness and bloating, the hypersensitivity of vagal afferent
responses to mechanical and chemical stimuli could also lead
to central modulation of pain pathways and therefore play

a role in the pain experienced in epigastric pain syndrome.
However, further research is required to fully elucidate the role
of gastrointestinal vagal afferents in these syndromes.
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