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Background. Preservation of autologous brachiocephalic vessels in Stanford type A aortic dissection has good short-time
outcomes. However, getting access to the details is not easy by conventional examination methods. This study is aimed at
reconstructing the aortic arch model by three-dimensional (3D) printing based on convolutional neural networks (CNN) to
understand the details for performing surgery. Methods. Three patients with type A aortic dissection from October 2017 to
June 2018 were indicated for simplified Sun’s procedure. Convolutional neural network (CNN) is used as a deep learning
model, and the model was preset by transfer learning. The genetic algorithm (GA) was used to optimize the parameters. The
aortic arch models were reconstructed using the segmented image. Results. The predicted damage area (mean 0.021mm2) of
the model optimized by deep learning was consistent with the experimental results (mean 0.023mm2). Among the three
patients, one patient died due to multiple organ failure and septic shock on the 11th day after surgery. The other two patients
were cured, no reoperation was reported, and their cardiac functions were defined as class I during the 13 and 20 months of
follow-up. Conclusion. It is feasible to use CNN to optimize the manufacturing of the aortic arch models.

1. Introduction

Stanford type A aortic dissection is a life-threatening disease
that deteriorates rapidly. The incidence of this disease has
been increasing in China [1]. Without medical intervention,
the mortality rate of this disease increases by 1% each hour
after its onset and reaches 30-50% within 48 hours [2, 3].
At present, Stanford type A aortic dissection is mainly
treated by surgery. Among different surgical procedures,
Sun’s procedure (total aortic arch replacement combined
with stented elephant trunk implantation) [4] applies to a
variety of patients with complex changes in aortic arch mor-
phology [5].

Although well accepted, this procedure is complicated
because of its multiple anastomose. The autologous brachio-
cephalic vessel preserved Sun’s procedure is one of the sim-

plified procedures of conventional Sun’s procedure, and it
has excellent shot-term outcomes [6, 7]. Considering the
requirement of comprehensive understanding of the details
of patients’ aortic arch (including the autologous brachioce-
phalic vessels) for applying the simplified procedure and the
complex morphology of the aortic arch itself, the informa-
tion obtained from conventional imaging examination
before surgeries are relatively limited [8].

Convolutional neural networks (CNN) predictive anal-
ysis has been widely used in biomedical field [9–11]. Based
on the patients’ computed tomography angiography
(CTA) data, we tried to reconstruct the aortic arch models
using three-dimensional (3D) printing technology based
on the CNN to make an accurate diagnosis and grasp
the strict surgical indications of this simplified procedure
properly.
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2. Material and Methods

2.1. Case Information. From October 2017 to June 2018,
there were three patients with type A aortic dissection who
were indicated for simplified Sun’s procedure, and the clini-
cal data of patients are listed in Table 1.

2.2. Experimental Data Set. CT scan images of patients were
selected with scanning thickness of 3.0mm and reconstruc-
tion resolution of 512 × 512. Aortic CTA was performed,
and the occurrence of type A aortic dissection was con-
firmed in each patient. First, we transformed the original
CTA data into a rough 3D graphic of the aortic lumen, using
3D image processing software Mimics medical (21.0) (Mate-
rialise NV, Leuven, Belgium) (Figure 1). The transverse CT
images were classified by combining the reconstructed sagit-
tal and coronal positions. A total of 3/5 of the classified data
was used for training, 1/5 for testing, and 1/5 for verification.
The images were converted from DICOM format to PNG
format.

2.3. Convolutional Neural Networks. The CNN used in this
study includes convolution layer, full connection layer, and
pooling layer. The convolutional layer is the basic structure
of convolutional neural network, which can obtain local
information of image by acting on local image region with
a certain size of convolution kernel [12, 13]. The general
form of the convolution layer is shown in the equation (1).
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The pooling layer is essentially a “down-sampling” oper-
ation. Different from the convolutional layer operation, the
pooling layer does not contain parameters to be learned.
The general expression is as shown in the equation (2).
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The full connection layer is generally located at the end
of the network. Two-dimensional vector features obtained
from the convolution layer and pooling layer are converted
into one-dimensional vectors for classification, and the gen-
eral expression is shown in the formula (3).
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2.4. Transfer Learning. The parameter training of CNN
requires a large number of training samples; so, this paper
adopts transfer learning to solve the problem of insufficient
training samples [14]. Transfer learning can solve the prob-
lem of learning small sample data with existing knowledge,
thus improving the classification accuracy of small sample
data sets by CNN [15]. Compared with traditional machine
learning methods, transfer learning no longer needs enough
and available training samples to obtain a good classification
model nor does it require that the training samples and the

new test samples used for learning meet independent homo-
distribution [16, 17].

In this study, based on the transfer learning strategy, the
convolutional neural network is trained as a pretraining
model. The weight parameters of the pretraining model are
transferred to the training model. Finally, various parame-
ters are fine-tuned and optimized, the whole network is
trained on the training set to update the parameters, and
finally, the new model weight is obtained. The specific pro-
cess is shown in Figure 2.

2.5. Model Training and Validation. CNN trains the model,
including image format conversion, random classification,
training, and testing. The specific training diagram is shown
in Figure 3. The genetic algorithm (GA) was used to opti-
mize the parameters [18, 19]. To verify the optimized
parameters, the optimized parameters after training were
printed once, and the damaged area of the model was
observed for comparison.

2.6. Operation Method. The optimized parameters were used
to build a 3D model, and the aortic arch model was printed
in 3D entity (Figure 4). After diagnosis and evaluation of the
surgical indications in assistance of the 3D models, we run
simplified Sun’s procedure under hypothermic cardiopul-
monary bypass with selective antegrade cerebral perfusion
on all 3 patients. The procedure of the surgery is briefly illus-
trated in Figure 4(d).

3. Results

3.1. 3D Reconstruction Printing and Surgical Results. Three-
dimensional reconstruction model of aortic arch tends to
theoretical model (Figure 1(e)). The damaged area of the
model printed with optimized parameters was 0.021mm2

(mean), which was not significantly different from the theo-
retical value (mean 0.023mm2). In addition, simplified Sun’s
procedure was applied as planned on each of the 3 patients,
and the relevant information are also listed in Table 1. The
aortic arch is replaced, a stented elephant trunk is implanted,
the autologous brachiocephalic vessels are preserved, and the
left subclavian artery is anastomosed to the left common
carotid artery.

3.2. Postoperative Follow-Up Results. The intraoperative
findings of the aortic arch were all consistent with the recon-
structed models. Of these three patients, one patient (patient
1 in Table 1) died due to multiple organ failure and septic
shock on the 11th day after surgery. The other 2 patients
were cured, no reoperation was reported, and their cardiac
functions were both defined as class I during the 13 and 20
months of follow-up, respectively.

4. Discussion

As one of the treatments for aortic dissection aiming at
reconstruction of the aortic arch, simplified Sun’s procedure
has the similar cardiopulmonary bypass time, selective ante-
grade cerebral perfusion time, and short-time outcomes with
that of conventional Sun’s procedure [6]. The advantage of
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this simplified procedure is that it preserves the autologous
brachiocephalic vessels of the patients, leading to a high
long-term patency rate. In addition, the reduced anastomo-
ses simplify the operation and reduce the related complica-
tions. What is more, the anastomosis of the aortic arch is
applied between the left common carotid artery and the left
subclavian artery in this procedure, and the relatively clear
visualization of the anastomotic site combined with limited
separation of the arch makes it more facilitated to do anasto-
mosis. In this study, for the patient who died after surgery,
the cause of death was not related to either the preservation
of brachiocephalic vessels or the arch anastomosis in the

Table 1: Clinical data of patients.

Patient 1 Patient 2 Patient 3

Age (years) 67 54 48

Gender Male Male Male

Hypertension Yes Yes Yes

Initial symptom Chest pain Chest tightness Chest pain

Time from onset to hospitalization (days) 1 3 1

CPB time (mins) 133 167 179

Aortic crossclamping time (mins) 64 82 99

SACP time (mins) 21 24 24

Concomitant procedure Ascending aorta replacement Bentall procedure Bentall procedure

CPB: cardiopulmonary bypass; SACP: selective antegrade cerebral perfusion.
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Figure 1: 3D reconstruction process diagram based on CNN model feature extraction. Coronal plane (a), horizontal plane (b), and sagittal
plane (c). (d) CNN radiomic feature extraction. (e) 3D reconstruction model of the aortic arch.
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Figure 2: Illustration of model fine-tuning.
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surgery. This patient had a long-term history of smoking.
Therefore, it was difficult to control his postoperative pul-
monary infection, which led to his multiple organ failure
and septic shock.

Aortic dissection occurs and progresses rapidly, leaving a
small window of time for clear diagnosis and development of

a surgical plan. The diagnosis and the evaluation of surgical
indications require precise understanding of the details of
the aortic arch and the brachiocephalic vessels, as well as
the openings of the branched vessels. Considering the lim-
ited cases and relatively fewer training of surgeons in low-
volume heart centers like ours, the preoperative surgical plan
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Post-amplification
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Images data

Test set
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Validation set
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Training set 1

Training set 2

Migration
study
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Figure 3: The workflow of model training.

(a) (b)

(c) (d)

Figure 4: Preservation of autologous brachiocephalic vessels in the treatment for Stanford type A aortic dissection with assistance of three-
dimensional (3D) printing. (a) Bottom view of the aortic arch in 3D image, no sign of dissection, or hematoma around the opening of the
brachiocephalic vessels and the vessels themselves. (b) 3D printing model of the aortic arch (bottom view). (c) 3D printing model of the
aortic arch (anterosuperior view). (d) Illustration of the surgical procedure, the aortic arch is replaced, a stented elephant trunk is
implanted, the autologous brachiocephalic vessels are preserved, and the left subclavian artery is anastomosed to the left common carotid
artery.
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is particularly important for the application of such a com-
plicated surgery. Preoperative aortic CTA examination is
essential for the diagnosis of Stanford type A dissection
and is also the fundamental basis for determining the preser-
vation of autologous brachiocephalic vessels [20]. However,
the flat image of CTA cannot fully satisfy us with enough
details. In some patients with type A aortic dissection, before
surgery, according to the CTA image, we planned to pre-
serve the autologous brachiocephalic vessels, but it revealed
that the opening of the vessels was slightly involved in the
dissection during operation. In that situation, we had to per-
form conventional Sun’s procedure instead of the simplified
one, and the change of surgical procedure could increase the
risk of surgery [21].

Compared with reconstructed CTA images on the
screen, 3D printing models can be more helpful, since it
allows us to intuitively view the entire internal conditions
of the affected aortic arch and the branched vessels and let
us better define the specific condition of the aortic lesions
[22, 23]. Precision medicine is an important direction of
future medical development. In this paper, CNN is used to
train CT images. Transfer learning is applied to model
training to solve the problem of small sample size. The
GA was used to optimize, and the corresponding
manufacturing parameters were obtained [24]. In our
study, the model of 3D reconstruction based on image fea-
tures extracted by the CNN algorithm is closer to the the-
oretical value. Therefore, it makes it possible for us to
develop a surgical plan accurately and even to simulate
the surgical procedure. As in this study, the intraoperative
findings were all consistent with that of the reconstructed
models of the patients; therefore, we could run these sur-
geries exactly as planned. In addition, two cured patients
were followed up for 13 months. No reoperation was per-
formed, and all patients had grade I cardiac function. Li
et al. showed that the total endovascular repair for false
lumen stent-graft implantation was feasible and minimally
invasive [25], and the postoperative recovery of patient is
similar to that of our patients.

After obtaining the CTA data, 3D reconstruction of
images and model printing can be done within 6 hours; so,
we do not need extra time, since it can be done simulta-
neously with preparation of the operation before surgery.
The cost of 3D printing is about $ 150 per person, that is
affordable to most of the patient, and it is free of charge in
this study.

There are several limitations to our study. Given the
small sample size and short follow-up time in this study,
more information should be gained with more patients and
longer time of follow-up in the future. In addition, the algo-
rithm is too long, affecting the calculation time.

5. Conclusion

In summary, the application of 3D printing models based on
the CNN is feasible and can be benefit to low-volume heart
centers in performing Sun’s procedure with preservation of
autologous brachiocephalic vessels.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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