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a b s t r a c t 

Automatic segmentation of lung opacification from computed tomography (CT) images shows excellent 

potential for quickly and accurately quantifying the infection of Coronavirus disease 2019 (COVID-19) and 

judging the disease development and treatment response. However, some challenges still exist, including 

the complexity and variability features of the opacity regions, the small difference between the infected 

and healthy tissues, and the noise of CT images. Due to limited medical resources, it is impractical to ob- 

tain a large amount of data in a short time, which further hinders the training of deep learning models. 

To answer these challenges, we proposed a novel spatial- and channel-wise coarse-to-fine attention net- 

work (SCOAT-Net), inspired by the biological vision mechanism, for the segmentation of COVID-19 lung 

opacification from CT images. With the UNet++ as basic structure, our SCOAT-Net introduces the specially 

designed spatial-wise and channel-wise attention modules, which serve to collaboratively boost the at- 

tention learning of the network and extract the efficient features of the infected opacification regions at 

the pixel and channel levels. Experiments show that our proposed SCOAT-Net achieves better results com- 

pared to several state-of-the-art image segmentation networks and has acceptable generalization ability. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The coronavirus disease 2019 (COVID-19), which is caused by 

evere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has 

ecome an ongoing pandemic [1,2] . As of 9 September 2020, there 

ave been 212 countries with outbreaks, a total of 27,486,960 

ases diagnosed, and 894,983 deaths, and the number of infected 

eople continues to increase [3] . Clinically, reverse transcription- 

olymerase chain reaction (RT-PCR) is the gold standard for diag- 

osing COVID-19 [4] , but it also has the disadvantages of a high 

alse-negative rate [5,6] and the inability to provide information 

bout the patients condition. 

COVID-19 has certain typical visible imaging features, such as 

ung opacification caused by ground-glass opacities (GGO), consol- 

dation, and pulmonary fibrosis, which can be observed in thoracic 

omputed tomography (CT) images [6,7] . Therefore, CT can be used 
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s an essential tool for clinical diagnosis. CT can also directly re- 

ect changes in lung inflammation during the treatment process 

nd is a crucial indicator for evaluating the treatment effect [4] . 

owever, in the course of treatment, the need for repeated inspec- 

ions leads to a sharp increase in the workload of radiologists. In 

ddition, the assessment of inflammation requires a comparison 

f the region of lesions before and after treatment. Quantitative 

iagnosis by radiologists is inefficient and subjective and is diffi- 

ult to be widely promoted. Artificial intelligence (AI) technology 

ay gradually come to play an important role in CT evaluation 

f COVID-19 by enabling the evaluation to be carried out more 

uickly and accurately. AI can also realize the rapid response by in- 

egrating multiple functionalities, such as diagnosis [8,9] , segmen- 

ation [10,11] , and quantitative analysis [12,13] , assisting doctors in 

apid screening, differential diagnosis, disease course tracking, and 

fficacy evaluation to improve the ability to handle COVID-19. In 

his study, we focus on the segmentation of COVID-19 lung opaci- 

cation from CT images. 

Benefiting from the rapid development of deep learning [14] , 

any excellent convolutional neural networks (CNNs) have been 

https://doi.org/10.1016/j.patcog.2021.108109
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108109&domain=pdf
mailto:junliu123@csu.edu.cn
mailto:zhaodi@ict.ac.cn
mailto:liyj@uestc.edu.cn
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a

pplied to medical image analysis tasks and have achieved the 

ost advanced performance [8,15] . CNNs can be applied in various 

mage segmentation tasks due to their excellent expression ability 

nd data-driven adaptive feature extraction model. However, the 

uccess of any CNN is inseparable from the accurate manual la- 

eling of a large number of training images by medical personnel, 

o CNNs are not suitable for all tasks. COVID-19 lung opacification 

egmentation based on CT images is an arduous task that has the 

ollowing problems. First, in the emergency situation of the COVID- 

9 outbreak, it is difficult to obtain enough data with accurate la- 

els to train deep learning models in a short time due to limited 

edical resources. Second, the infection areas in a CT slice show 

arious features such as different sizes, positions, and textures, and 

here is no distinct boundary, which increases the difficulty of seg- 

entation. Third, due to the complexity of the medical images, the 

ung opacity area is quite similar to other lung tissues and struc- 

ures, making it challenging to identify. Several works [16–18] have 

ried to solve these challenges from the perspectives of reducing 

anual depiction time, using noisy labels, and implementing semi- 

upervised learning, and have achieved specific results. 

Our approach in this study is derived from the attention learn- 

ng mechanism, which makes full use of the inherent extraordi- 

ary attention ability of CNN to make the network generate atten- 

ion maps and make the attention vectors in the training process 

eight the spatial domain feature and channel domain feature. We 

ill show that the spatial and channel domain features activated 

y the network can characterize the target area more accurately. 

The attention mechanism stems from the study of biological vi- 

ion mechanisms [19] , particularly selective attention, a character- 

stic of human vision. The feature integration theory proposed by 

reisman and Gelade [20] uses a spotlight to describe the spatial 

electivity of attention metaphorically. This model points out that 

isual processing is divided into two stages. In the first stage, vi- 

ual processing quickly and spontaneously performs low-level fea- 

ure extraction, including orientation, brightness, and color, from 

he visual input in various dimensions in a parallel manner. In the 

econd stage, visual processing will locate objects based on the 

eatures of the previous stage, generate a map of locations, and dy- 

amically assemble the low-level features of each dimension of the 

ctivation area into high-level features. Generally speaking, essen- 

ial areas attract the attention of the visual system more strongly. 

olfe et al. [21] believe that the attention mechanism uses not 

nly the bottom-up information of the image but also top-down 

nformation of the high-level visual organization structure, and the 

igh-level information can effectively filter out a large amount of 

rrelevant information. 

In our attention mechanism inspired model, we first use a tra- 

itional CNN to extract local image features spontaneously. After 

hat, we generate an attention map based on the low-level features 

f the previous stage to activate the spatial response of the feature, 

hen calculate the attention vector based on the feature interde- 

endence of the activation area to activate the channel response of 

he feature, and finally reorganize of the high-level features. The 

ttention map and attention vector contain top-down information 

ed back to the current local features in the form of gating. It is 

lear that this coarse-to-fine attention process is a hybrid domain 

ttention mode that includes spatial-wise and channel-wise atten- 

ion modules. 

The attention learning method proposed above is specially de- 

igned to tackle the challenges faced by the task of COVID-19 lung 

pacification segmentation. The lung CT slices of patients with 

neumonia contain tissue structures easily confused with inflam- 

ation areas such as the trachea, blood vessels, emphysema back- 

round, and the existing CNN based methods complete segmenta- 

ion mainly based on local information, leading inevitably to the 

verfitting of irrelevant information. In contrast, we designed the 
2 
patial-wise module to generate attention maps in feature extrac- 

ion, suppressing irrelevant information, and enhancing essential 

nformation in the spatial domain. Given the large intra-class dif- 

erences between opacity regions, our channel-wise module is de- 

igned to select and reorganize the spatial domain features. On the 

hole, we use a CNN with strong generalization ability to capture 

ll the salient areas of lung CT images and then gradually enhance 

elevant and suppress irrelevant spatial and channel domain fea- 

ures. It is like the process of radiologists searching for the target 

rea, i.e., first finding the approximate search range through the 

elevant tissue structures, and then checking one-by-one whether 

ach salient area belongs to the target [22] . Our method is more in

ine with such diagnostic experience of the radiologists. 

Our experimental results will show that compared with tradi- 

ional CNNs, our so-called spatial- and channel-wise coarse-to-fine 

ttention network (SCOAT-Net) recognizes the opacity area better 

hen segmenting COVID-19 lung opacification. The contributions 

f this paper are threefold: 

• A novel coarse-to-fine attention network is proposed for seg- 

mentation of COVID-19 lung opacification from CT images, 

which utilizes embedded spatial-wise and channel-wise atten- 

tion modules and achieves state-of-the-art performance (i.e., an 

average Dice similarity coefficient, or DSC, of 0.8899). 
• We use the attention mechanism so that the neural network 

can generate attention maps without external region of interest 

(ROI) supervision. We use these attention maps to understand 

the training process of the network by observing the areas that 

the network focuses on in different stages and increasing the 

interpretability of the neural network. 
• The generalization ability and compatibility of the proposed 

SCOAT-Net are validated on two external datasets, showing that 

the proposed model has specific data migration capability and 

can quantitatively assess the pulmonary involvement, a difficult 

task for radiologists. 

. Related works 

.1. Segmentation networks 

Deep neural networks (DNNs) have shown excellent perfor- 

ance for many automatic image segmentation tasks. Zhao et al. 

23] proposed the pyramid scene parsing network (PSPNet), which 

ntroduces global pyramid pooling into the fully convolutional 

etwork (FCN) to make the global and local information act on 

he prediction target together. DeeplabV3 [24] proposed the ASPP 

atrous spatial pyramid pooling) module to make the segmenta- 

ion model perform better on multi-scale objects. U-Net [10] was 

ntroduced by Ronneberger et al. based on the encoder-decoder 

tructure that is widely used in medical image segmentation due 

o its excellent performance. It uses skip connections to connect 

he high-level low-resolution semantic feature map and the low- 

evel high-resolution structural feature map of the encoder and de- 

oder so that the network output has a better spatial resolution. 

ktay et al. [25] proposed the attention gate model and applied 

t to the U-Net model, which improved the sensitivity and predic- 

ion accuracy of the model without increasing the calculation cost. 

Net++ [26] uses a series of nested and dense skip paths to con- 

ect the encoder and decoder sub-networks based on the U-NET 

ramework, which further reduces the semantic relationship be- 

ween the encoder and decoder and achieves better performance 

n liver segmentation tasks. 

.2. Artificial intelligence for COVID-19 based on CT 

The segmentation of lung opacification based on CT images is 

n integral part of COVID-19 image processing, and there are many 
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elated works on this topic. Using the lungs and pulmonary opac- 

ties manually segmented by experts as standards, Oulefki et al. 

12] developed a CT image prediction model based on CNNs to 

onitor COVID-19 disease development, and it showed excellent 

otential for the quantification of lung involvement. Some stud- 

es [27–29] trained segmentation or detection models with CT and 

egmentation templates of abnormal lung cases, which can ex- 

ract the areas related to lung diseases, making the learning pro- 

ess of pneumonia type classification easier in the next steps. The 

eep learning model relies on a large amount of data training, and 

t is impractical to collect a large amount of data with profes- 

ional labels in a short time. Some studies [30,31] use comparative 

earning as an entry point, which uses self-supervised compara- 

ive learning to obtain transformation-invariant representation fea- 

ures on limited-sample, effectively diagnosing COVID-19. Several 

esearch groups [16–18] attempted to solve this challenge from the 

erspectives of reducing manual delineation time, using noisy la- 

els, and implementing semi-supervised learning. VB-Net [16] has 

 perfect effect on the segmentation of COVID-19 infection regions. 

he mean percentage of infection (POI) estimation error for auto- 

atic segmentation and manual segmentation on the verification 

et is only 0.3%. In particular, it adopts a human-in-the-loop strat- 

gy to reduce the time of manual delineation significantly. Wang 

t al. [17] proposed noise-robust Dice loss and applied it in COPLE- 

et, which surpasses other anti-noise training methods to learn 

OVID-19 pneumonia lesion segmentation in noisy labels. Inf-Net 

18] uses a parallel partial decoder to aggregate high-level features 

nd generate a global map to enhance the boundary area. It also 

ses a semi-supervised segmentation framework to achieve excel- 

ent performance in lung infection area segmentation. 

.3. Attention mechanism 

More and more attempts have been focused on the combina- 

ion of deep learning and visual attention mechanisms, which can 

e roughly divided into two categories: exogenous-attention mech- 

nisms and endogenous-attention mechanisms. An exogenous- 

ttention mechanism allows the network to learn to generate an 

ttention map during the training process by conducting ROI su- 

ervision externally so that the region activated by the network 

an accurately diagnose disease changes. Ouyang et al. [32] applied 

his mechanism to the diagnosis of COVID-19 and glaucoma re- 

pectively, and the sensitivity was greatly improved. In contrast, a 

ndogenous-attention mechanism does not rely on exogenous ROI 

upervision but rather exploits the intrinsic endogenous-attention 

bility of CNN. Endogenous-attention consists of two parts, among 

hich spatial-wise attention [25,33,34] redistributes the networks 

ttention at the pixel level of the feature map to achieve more pre- 

ise location, and channel-wise attention [35] redistributes the at- 

ention at the channel level to instruct the network in selecting 

ractical features. In Lei et al. [36] and Fu et al. [37] , spatial and

hannel dimension attention were combined with parallel mode to 

ointly guide network training, which captured rich contextual de- 

endencies to address the segmentation task. Zhang et al. [38] pro- 

osed an attention learning method with the higher layer feature 

s the attention mask of the lower layer feature, which can achieve 

he best performance in skin lesion classification. 

Recently, some studies also employed attention mechanisms to 

olve the segmentation of COVID-19 lesions. For example, Zhou 

t al. [39] and Zhao et al. [40] integrated the spatial and channel 

ttention mechanisms into U-Net to obtain better feature represen- 

ation. Unlike these studies, the proposed attention modules in our 

COAT-Net are not parallelly but serially connected. Our design is 

nspired by the feature integration theory [20] , which suggests that 

he attributes of a certain object are processed in sequence, i.e., the 

re-attentive and the focused attention stages. For the segmenta- 
3 
ion of COVID-19 lung opacification, the spatial pre-attention in our 

COAT-Net helps reduce significantly the irrelevant area features 

nd hence decrease the difficulty of optimizing the channel atten- 

ion for local feature extraction. Another recent model proposed 

n Mahmud et al. [41] not only includes spatial- and channel-level 

ttentions but also introduces pixel-level attention to supplement 

he low-level features, which adds more model parameters. In con- 

rast, to realize the integration of context features of various levels, 

ur SCOAT-Net introduces skip connections to integrate the fea- 

ures of lower level with that of current level, without introduc- 

ng additional parameters. These integrated features are then used 

o effectively calculate the interdependence between the channel- 

ise attention modules and adaptively recalibrate the response. 

. Method 

UNet++ is an excellent image segmentation network which has 

chieved high-grade performance in medical imaging tasks [26] . 

t contains dense connections that make the contextual informa- 

ion of different scales closely related. However, although this com- 

licated connection method improves the generalization ability of 

he model, it also causes information redundancy and weak con- 

ergence of the loss function on a small data set. Medical images 

ave the characteristics of high complexity and noise, which cause 

odel overfitting when the amount of training data is insufficient. 

he SCOAT-Net proposed in this work redesigns the connection 

tructure of UNet++ and introduces the more biologically plausible 

ttention learning mechanism. It extracts the spatial and channel 

eatures from coarse to fine with only a few added parameters and 

btains more accurate segmentation results. 

.1. Structure of the lung opacification segmentation network 

Fig. 1 compares the basic structures of UNet++ and the pro- 

osed SCOAT-Net. Inheriting the basic structure of UNet++, SCOAT- 

et is composed of an encoder and a decoder connected by skip 

onnections. The encoder extracts the information of the semantic 

evel of the image and provides a relatively coarse location, using 

 max-pooling layer as a down-sampling module. The decoder re- 

onstructs the segmentation template from the semantic informa- 

ion. It uses U-shaped skip connections to receive the correspond- 

ng low-level features of the encoder and calculate the final seg- 

entation result. The upsampling module of the decoder uses the 

ilinear interpolation layer instead of the deconvolution layer to 

mprove the resolution of the feature map. This method dramati- 

ally reduces the number of parameters as well as the calculation 

ost, and it has good performance on small-scale datasets. 

We reconstruct the connection at the top of the network (ex- 

ept for the bottom layer X 

0 , j ) and introduce the attention mod- 

le. This causes the calculation of the attention mechanism to act 

n the high-level semantic information and keep the bottom layer 

f the detailed image information as much as possible, resulting in 

ne, high-resolution segmentation. The proposed attention module 

onsists of two parts: the spatial-wise attention module and the 

hannel-wise attention module. 

We use context feature maps with different resolutions as infor- 

ation of different dimensions for the spatial-wise attention mod- 

le, as shown in the green circle of Fig. 1 , which can combine all

he multi-dimensional feature maps extracted by all the filters to 

alculate the attention map of the image and adjust the target area 

f the network adaptively. The output of the spatial-wise attention 

odule is contacted with the feature maps of the same layer to 

nter the channel-wise attention module, as shown in the orange 

ircle. The channel-wise attention module calculates the interde- 

endence between the channels and adaptively recalibrates the in- 
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Fig. 1. Comparison of UNet++ (a) and the proposed SCOAT-Net (b). The main difference in the network structure between the two models is that our SCOAT-Net introduces 

the new spatial-wise attention module (the light-green nodes in (b)) and extends some convolution units to the channel-wise module (the light-orange nodes in (b)). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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f

ormation response of the channel. Additionally, in each convolu- 

ion module, we use the residual block to train our network. 

.2. Spatial-wise attention 

The proposed spatial-wise attention module emphasizes atten- 

ion at the pixel level, making the network pay attention to the key 

ormation and ignore irrelevant information. Normally, in a CNN, 

he features extracted by the network change from simple low- 

evel features to complex high-level features with the deepening of 

he convolutional layers. When calculating the attention map, we 

an not only use the information of single-layer features but also 

ombine the upper and lower features of different resolutions. The 

nal output of this module is expressed as x s ∈ R 

H u ×W u ×C u , which 

s given by (1) and (2) : 

 

i, j+1 
M 

= H S 

(
H R 

(
x i, j 

)
+ H R 

(
F U (x i +1 , j ) 

))
, (1) 

 s = (1 + x i, j+1 
M 

) · F U (x i +1 , j ) , (2) 

here the function H R (·) stands for the convolution of size 1 ×
 followed by a batch normalization and a ReLU, used for fea- 

ure integration. H S (·) denotes the convolution of size 1 × 1 fol- 

owed by a batch normalization and a sigmoid activation func- 

ion, used for feature integration and generation of the attention 

aps. F U (·) is the up-sampling operation with a bilinear inter- 

olation function. The input of this module is composed of the 

pper layer feature x i, j ∈ R 

H u ×W u ×C u and the lower layer feature 

 

i +1 , j ∈ R 

H d ×W d ×C d , where x i, j represents the output of each convo- 

ution module X 

i, j . x M 

∈ R 

H u ×W u ×1 is the attention map generated 

y this module, which uses the saliency information in the spatial 

osition to weigh the input features to complete the redistribu- 

ion of the feature attention at the pixel level. The attention map 

enerated by the sigmoid function is normalized between 0 and 

, and the output response will be weakened after point multipli- 

ation with the current feature map. Nested structure uses of this 

ethod will lead to over-fitting or the degradation of model per- 

ormance caused by the gradient’s disappearance. To improve this 

henomenon, inspired by the ResNet, we add the original features 

 

i +1 , j after weighting them by x 
i, j+1 
M 

, as shown in (2) . The final out-

ut x s is sent to the next channel-wise attention module, as shown 

n Fig. 2 . 
4 
.3. Channel-wise attention 

The input x c ∈ R 

H u ×W u ×C m of the proposed channel-wise atten- 

ion module is obtained by concatenating the spatial-wise atten- 

ion module’s output x s with the feature map of the same layer, as 

n (3) : 

 c = 

[ [
x i,k 

] j−1 

k =0 
, x s 

] 
, (3) 

here [ ·] represents concatenation. x g ∈ R 

1 ×1 ×C m is the channel- 

ise statistical information calculated by x c through a global aver- 

ge pooling layer, as in (4) , which can reflect the response degree 

n each feature map. 

 g = F P (x c ) = 

1 

H u × W u 

H u ∑ 

i =1 

W u ∑ 

j=1 

x c (i, j) . (4) 

e want the module to adaptively learn the feature channels that 

equire more attention, and we also want it to learn the interde- 

endence between channels. Inspired by the SENet [35] , we pass 

 g through two fully connected (FC) layers with parameters ω 1 and 

 2 to obtain the attention vector x V ∈ R 

1 ×1 ×C m of the channel, as 

n (5) : 

 V = F L (x g ) = σ ( ω 2 ρ( ω 1 x g ) ) , (5) 

here ρ(·) refers to the ReLU activation function, and σ (·) refers 

o the sigmoid activation function. A structure containing two fully 

onnected layers, which reduces the complexity and improves the 

eneralization ability of the model, is adopted here. The fully con- 

ected layer of parameter ω 1 ∈ R 

C m 
r ×C m reduces the feature chan- 

els’ dimension with reduction ratio r ( r = 16 in this experiment). 

n contrast, the fully connected layer of parameter ω 2 ∈ R 

C m × C m 
r re- 

ombines the feature channels to increase its dimension to C m 

. The 

ttention vector x V finally weights the input feature map x c , and 

fter the convolution operation completes the feature extraction, it 

s added to itself to obtain the final output x i, j+1 ∈ R 

H u ×W u ×C u , as

n (6) : 

 

i, j+1 = H 

2 
R (x V · x c ) + H R (x c ) , (6) 

here H 

2 
R (·) represents the two-layer convolution for feature ex- 

raction. 

.4. Loss function 

By combining binary cross-entropy (BCE) loss and Dice coeffi- 

ient loss [42] , we use a hybrid loss function for segmentation as 

ollows: 
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Fig. 2. The detailed structures of the proposed spatial-wise attention module and channel-wise attention module. 
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1 https://www.kaggle.com/c/covid-segmentation/data . 
 seg = L bce + α × L dice 

= − 1 

N 

N ∑ 

b=1 

(
Y b · log 

(
σ
(

ˆ Y b 
))

+ ( 1 − Y b ) · log 
(
σ
(
1 − ˆ Y b 

)))
− 2 α × Y · ˆ Y 

Y 2 + 

ˆ Y 2 
,

(7)

here Y = { Y 1 , Y 2 , · · · , Y b } denotes the ground truths, ˆ Y denotes 

he predicted probabilities, N indicates the batch size, and σ (·) 
orresponds to the sigmoid activation function. This hybrid loss 

ncludes pixel-level and batch-level information, which helps the 

etwork parameters to be better optimized. 

.5. Evaluation metrics 

To evaluate the performance of lung opacification segmentation, 

e measure the Dice similarity coefficient (DSC), sensitivity (SEN), 

ositive predicted value (PPV), volume accuracy (VA), regional level 

recision (RLP), regional level recall (RLR), and 95% HD between 

he segmentation results and the ground truth in 3D space, which 

re defined as follows. 

SC = 

2 | V a ∩ V b | | V a | + | V b | , SEN = 

| V a ∩ V b | | V b | , 

PV = 

| V a ∩ V b | | V a | , VA = 1 − 2 abs ( | V a | −| V b | ) | V a | + | V b | , 
(8) 

here V a and V b refer to the segmented volumes by the model and 

he ground truth, respectively. 

In addition to the above voxel-level evaluation indicators, we 

lso design the regional-level evaluation indicators RLP and RLR, 

s in (9) : 

LP = 

N p 

N a 
, RLR = 

N t 

N b 

. (9) 

here N a denotes the total number of connected regions of the 

odel prediction result, N p denotes the number of real opacity re- 

ions predicted by the model, N b denotes the total number of real 

pacitiy regions, and N t denotes the number of real opacity regions 

redicted by the model. If the center of the connected area pre- 

icted by the model is in a real opacity region, then we accept that 

he predicted connected area is correct. We calculate the center of 

he connected area as: 

 = arg min 

i 
max 

j 

∥∥u i − v j 
∥∥, (u i ∈ U, v j ∈ V ) , (10) 

here U represents the point set of a single connected area of the 

rediction result, and V represents the point set of its edge. 
5 
We use 95% HD (hausdorff distance) to measure the boundary 

ccuracy of the segmentation results. HD is calculated as follows 

17] : 

D 

′ ( S p , S g ) = max 
i ∈S p 

min 

j∈S g 
‖ i − j‖ 2 (11) 

 D ( S p , S g ) = max 
(
H D 

′ ( S p , S g ) , H D 

′ ( S g , S p ) 
)

(12) 

here S p and S g represent the surface point set of the segmen- 

ation result and ground truth VOIs, respectively. For 95% HD, the 

5th percentile in (11) is taken. 

. Experiment and results 

.1. Data and implementation 

This study and its procedures were approved by the local ethics 

ommittees. All methods were performed in accordance with the 

elevant guidelines and regulations. The entire experiment fol- 

owed the Helsinki Declaration. Informed consent was not required 

or this retrospective study (i.e., those discharged or who died). 

ritten informed consent from the involved patients was not re- 

uired. The data contains 19 lung CT scans of COVID-19 patients 

btained using SOMATOM Definition AS. Volumes of interest (VOIs) 

f the opacity areas were manually delineated at voxel level by a 

adiologist with 5-year experience in chest CT interpretation using 

edical image processing and navigation software 3D Slicer (ver- 

ion 4.8.0, Brigham and Womens Hospital), and subsequently con- 

rmed (modified or re-delineated) by another radiologist with 12- 

ear experience in chest CT interpretation. Large vessels and bron- 

hioles were excluded from the VOIs. Because the margin of the in- 

ected lesions was ill-defined, we delineated the VOI as precise as 

ossible. The same delineate method has been published in [28] . 

Additionally, we prepared two external datasets to test the gen- 

ralization ability of our model. One is an image set containing 

 lung CT scans of two patients scanned at different times us- 

ng SOMATOM go.Top from Wuhan Red Cross Hospital (named as 

UHAN dataset). Another is a public dataset 1 containing 9 ax- 

al volumetric CT scans with the segmented templates (named as 

AGGLE dataset). 

The input images are single-layer CT images with the size of 

12 × 512 pixels, obtained from Dicom format files. For the high 

https://www.kaggle.com/c/covid-segmentation/data
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Table 1 

Quantitative evaluation of SCOAT-Net with different loss functions for lung opaci- 

fication segmentation. 

Loss functions Results (%) 

DSC SEN PPV VA RLP RLR 

MSE 83.22 71.89 83.86 87.00 81.68 81.75 

IOU [44] 75.29 71.72 81.57 76.76 80.69 76.23 

BCE 87.76 80.04 89.62 94.37 89.35 84.97 

Dice [42] 84.61 88.03 86.43 87.13 85.26 83.85 

Focal [45] 85.38 84.27 89.22 86.84 86.16 80.37 

BCE-Dice (α = 0 . 5) 88.99 87.85 90.28 96.25 90.87 84.83 
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Fig. 3. The segmentation performances of SCOAT-Net with BCE-Dice loss function. 
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ynamic range of CT images, we used a pulmonary window with 

 width of 1200 and a level of -600 to normalize the input images

n the range [0, 1]. In addition, we used the random horizontal flip 

o augment the data before being sent to the network. The sketch 

emplates of the radiologists served as the ground truth, so they 

ere used to calculate the loss function with the final output of 

he network. We used the gradient descent algorithm with Adam 

o optimize the loss function that updates the network parame- 

ers. The learning rate was set to 0.01, which was multiplied by 

.1 after every ten epoch decays. When the iterative result con- 

erged, we adjusted the learning rate to 0.001 for training again. 

he learning rate decay strategy remained unchanged, and the it- 

ration was set to 50 times. The final results of training in this 

arm-up [43] method will be slightly improved. All experiments 

ere conducted on an NVIDIA RTX GPU, and the proposed SCOAT- 

et 2 was implemented based on a Pytorch framework. We per- 

ormed five-fold cross-validation to test the results. 

.2. Results on lung opacification segmentation 

The aim of this experiment was to evaluate the performance 

f our proposed SCOAT-Net with different loss functions for lung 

pacification segmentation. We used six different loss functions, 

amely MSE, IOU [44] , BCE, Dice [42] , Focal [45] , and BCE-Dice,

o train the proposed network with the same strategy and hyper- 

arameters, and the quantitative comparison is listed in Table 1 . 

t is evident that BCE, Dice, and Focal had excellent segmentation 

erformance, and their DSCs were the highest. Among them, BCE 

as superior to Dice and Focal in terms of DSC, VA and RLR but 

lightly inferior in terms of SEN and RLP. It is worth noting that 

ice had a more significant performance in terms of SEN and RLR. 

ice can predict the entire opacity area better, but it also causes 

he PPV and RLP performance to decline because it yields more 

alse-positive predictions. The hybrid loss function combining BCE 

nd Dice with parameter α ( α is empirically set to be 0.5 in the 

xperiments) produced the best results. Except for SEN and RLP, 

hich were slightly lower than Dice, the other indicators were 

he best. The box plot shown in Fig. 3 demonstrates the perfor- 

ance of our proposed network with the BCE-Dice loss function. In 

9 cases, the model we proposed exhibited excellent performance. 

he medians of DSC, SEN, PPV and PLP were all higher than 0.9, 

nd the medians of VA was higher than 0.95, even though one or 

wo cases did not achieve excellent results. 

.3. Comparison of different networks 

We compared our proposed SCOAT-Net with other popular 

egmentation algorithms for lung opacification segmentation. The 

CE-Dice loss function was used to train these networks. The 

uantitative evaluation of these networks was calculated by cross- 

alidation, as shown in Table 2 . PSPNet had excellent PPV and RLP 
2 https://github.com/Phanzsx/SCOAT-Net . 

i

o

t

6 
ut the lowest SEN. Although most of the predicted regions were 

orrect, the voxel prediction could not cover all the opacity regions. 

SPNetv2 had good PPV and RLR, but RLP was extremely low, 

hich shows that the light-weight models could not achieve ex- 

ellent region-level segmentation results on complex medical im- 

ge segmentation tasks. DeepLabV3+ achieved an excellent result 

n Table 2 , which perhaps results from the good adaptability of 

ts atrous spatial pyramid pooling module designed for semantic 

egmentation. U-Net, which has an excellent performance in many 

edical image segmentation tasks, achieved general results in this 

ork. Compared with U-Net, which has a more complex structure 

nd more connections, UNet++ had slightly improved RLR perfor- 

ance, but it had a significant drop in other indexes. This indicates 

hat its dense connection improved the models generality but did 

ot achieve excellent results on the relatively small dataset used in 

his work. 

Our proposed SCOAT-Net achieved the best performance among 

he compared networks. In particular, our model identified and 

egmented the pulmonary opacities more effectively by using spa- 

ial and channel-wise attention modules. Fig. 4 shows a visual 

omparison of the results of each network. In the case #1 to the 

ase #4, SCOAT-Net had the best segmentation performance, not 

nly effectively hitting the target opacity region but also produc- 

ng the least difference between the segmentation area and the 

round truth. However, SCOAT-Net also returned some unsatisfac- 

ory segmentation results, as shown in the case #5 of Fig. 4 . All

he models, including our model, failed to predict this tiny opacity 

egion. 

.4. Effectiveness of the attention module 

In this experiment, we verified the performance of the attention 

odule on the lung opacification segmentation task. Our SCOAT- 

et uses a total of six spatial-wise attention modules, as shown 

n the green circle in Fig. 1 . These modules can adaptively gener- 

te attention maps with the focused area information of the net- 

ork. The early stage of our network is defined as the position 

hat closes to the input and passes fewer convolution layers. The 

ater stage is defined as the position that closes to the output and 

asses more convolution layers. We selected three different stages 

f attention maps for display, and the order from the early stage 

o the late stage is x 1 , 1 
M 

, x 3 , 1 
M 

, and x 2 , 2 
M 

, as shown in Fig. 5 . For better

isplay, we only show the lung area. We can see that our SCOAT- 

et had better performance in lung opacification recognition than 

Net++. From the attention map, we can see that x 1 , 1 
M 

focuses on 

ll the salient areas of the lungs, basically covering all the struc- 

ures of the lung. In constract, x 3 , 1 
M 

dramatically reduces the signif- 

cant area, and the attention of the network is more concentrated 

n the restricted area at the semantic level. With the compensa- 

ion of the lower features, x 2 , 2 
M 

further suppresses the attention 

https://github.com/Phanzsx/SCOAT-Net
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Table 2 

Quantitative evaluation of different networks for lung opacification segmentation. The BCE-Dice loss was used 

for training. 

Methods DSC (%) SEN (%) PPV (%) VA (%) RLP (%) RLR (%) 95% HD(mm) 

PSPNet [23] 80.86 75.67 88.87 84.42 89.12 76.24 59.93 

ESPNetv2 [46] 83.19 79.77 88.61 89.03 67.84 78.31 63.96 

DenseASPP [47] 86.87 85.76 88.98 94.83 88.62 78.71 51.96 

DeepLabV3 + [24] 85.26 83.97 88.33 93.75 89.16 78.57 53.61 

U-Net [10] 83.61 82.96 85.57 92.57 86.18 76.48 73.50 

COPLE-Net [17] 83.70 84.27 83.42 93.45 77.46 74.60 59.21 

CE-Net [48] 85.78 84.46 87.88 94.70 82.79 79.45 55.85 

Attention U-Net [25] 82.66 79.95 86.58 90.43 88.20 75.22 60.97 

UNet + [26] 81.83 80.29 84.03 91.87 80.30 76.72 74.32 

Proposed 88.99 87.85 90.28 96.25 90.87 84.83 29.16 

Fig. 4. Visual comparison of segmentation performance of different models trained with BCE-Dice loss function. The red curves represent the ground truth, and the cyan 

curves represent the results of different models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

a
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t
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s

rea of the network in detail. As the training phase progressed, 

he attention regions of SCOAT-Net gradually became smaller. Ad- 

itionally, for the opacity region that UNet++ did not recognize (the 

egion indicated by the yellow arrow), SCOAT-Net adequately iden- 

ified the target area, and on all the attention maps, much atten- 

ion focused on the target area. The attention module we designed 
7 
ot only effectively weights the feature map but also further helps 

s understand the training process of the neural network, which 

mproves its interpretability. 

Furthermore, we also introduced the attention module from 

ther studies [25,34] into UNet and UNet++ and compared the re- 

ults with that of our SCOAT (spatial- and channel-wise coarse-to- 
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Fig. 5. Visualization of the segmentation results of Unet++ and SCOAT-Net (the left three columns) and the attention maps of our SCOAT-Net (the right three columns) on 

three COVID-19 cases. The red areas on the images of the left three columns are the lung opacification segmentation of the ground truth and the results of UNet++ and 

our SCOAT-Net, and the yellow arrows highlight some local differences of the segmentation results. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Table 3 

Quantitative evaluation of different attention module for segmentation. The baseline 

network is UNet++. 

Methods Params Results (%) 

DSC SEN PPV VA RLP RLR 

U-Net 30.01M 83.61 82.96 85.57 92.57 86.18 76.48 

U-Net&A1 32.08M 82.66 79.95 86.58 90.43 88.20 75.22 

U-Net&A2 30.03M 83.58 80.83 87.42 91.37 86.85 77.77 

U-Net&SCOAT 32.97M 85.74 85.16 86.47 95.72 85.57 77.36 

UNet + 35.05M 81.83 80.29 84.03 91.87 80.30 76.72 

UNet + &A1 37.69M 86.10 84.76 87.69 95.78 88.97 79.66 

UNet + &A2 35.09M 82.64 81.89 83.67 93.37 80.47 77.29 

UNet + &SCOAT 39.15M 88.99 87.85 90.28 96.25 90.87 84.83 
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ne attention) method, as shown in Table 3 . A1 imitates the con- 

ection structure of Attention UNet [25] , and A2 uses the pyramid 

ttention module of [34] . Compared with the U-Net, we found that 

he model with A1 or A2 attention module did not improve the 

erformance. With the SCOAT module, the performance of DSC, 

en and VA is improved, but the overall performance is not sig- 

ificantly improved. Note that the performance of the module is 

ot effectively reflected due to the defect of U-Net structure, which 

acks the calculation module between the encoder and the de- 

oder, resulting in the mismatch of low-level features to high- 

evel features. Compared with U-Net, although UNet++ has rela- 

ively weaker performance sometimes, it has the potential of pro- 

iding a more robust generalization performance for having a se- 

ies of nested connection structures. Compared with the baseline 

Net++, all the networks with the attention module obtained im- 

roved performance. SCOAT and A1 had an outstanding perfor- 

ance on DSC, SEN, and RLP, and SCOAT, A1 and A2 had signifi- 

antly improved VA. The results show that the attention module 

an improve the segmentation performance while only increas- 

ng a few parameters, especially for the recognition of the target 

rea. 

.5. Validation on external datasets 

First, we used an external dataset of another center, i.e., the 

UHAN dataset introduced above, to test the robustness and com- 

atibility of the proposed SCOAT-Net. The scans in this dataset are 

ifferent from the scans used for training. Fig. 6 presents the lung 

T scans of two cases under treatment. COVID-19 is clinically di- 

ided into four stages [49] : early stage, progressive stage, peak 

tage, and absorption stage. The clinical report of the first case 

hows that it was in the absorption stage at all four time points. 
8 
rom the result of our model, we can see that on both the ax- 

al unenhanced and coronal reconstruction CT images, the opacity 

egions were significantly reduced, which was further verified by 

he lung opacification volumes (LOVs) displayed on the lower-right 

orners of the coronal images. The clinical report of the second 

ase shows that the patient was in the early stage at the first time 

oint, the progressive stage at the second time point, and the ab- 

orption stage at the third and fourth time points. Our calculated 

OV was highest at the second time point, and there was a signifi- 

ant decrease in the third time point, which matched the diagnosis 

eport of the patient. 

Furthermore, we evaluated our model on the public KAGGLE 

ataset mentioned earlier, which includes 9 axial volumetric CT 

cans and is segmented the infected areas by a radiologist. In the 

xperiment, we directly verified the model trained on our own 

ata set, and the results on the 9 cases are shown in Table 4 . Over-

ll, our model achieves the highest performance in terms of aver- 

ge DSCs compared with other models and gives better predictions 

or the most cases, which further indicates the better generaliza- 

ion ability of our model. Note that for case #8, because it is a tiny

esion area that is very difficult to predict, the results of all the 

odels listed here are unsatisfactory. Although our model gave the 

est prediction for this case, it is far from complete segmentation. 

In summary, our proposed SCOAT-Net was validated on two dif- 

erent external datasets, proving that it has the ability to provide 

n objective assessment of pulmonary involvement and therapy re- 

ponse in COVID-19. 

.6. Attempt at fine-grained segmentation of lung opacification 

This study aims to establish a model for segmenting the lung 

pacification of COVID-19, and the opacity areas has visible imag- 
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Fig. 6. Qualitative evaluation of the results of SCOAT-Net on two cases from other type of CT scan. A and B show the evolution of one COVID-19 case during the 24-day 

treatment period. C and D show the evolution of another case during the 21-day treatment period. A and C are axial unenhanced chest CT images at four time points (dates 

are annotated in the lower-right corner of each panel); B and D are the coronal reconstructions at the same time points. The segmentation of pulmonary opacities derived 

from SCOAT-Net is displayed in red, and the volumetric assessment of our results (i.e., lung opacification volume (LOV)) is annotated in the lower-right corners of the images 

of B and C. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

Validation of different networks for lung infection segmentation on the KAGGLE dataset. 

Methods DSC (%) 

Case #1 Case #2 Case #3 Case #4 Case #5 Case #6 Case #7 Case #8 Case #9 Average 

PSPNet 68.27 67.41 78.14 64.06 78.61 48.92 48.52 0.00 76.38 58.92 

ESPNetv2 69.27 72.93 75.33 55.16 70.34 54.98 62.95 8.07 68.64 59.74 

DenseASPP 62.82 67.98 74.16 68.26 62.95 37.46 58.04 14.33 59.30 56.15 

DeepLabV3 + 66.73 70.10 73.14 63.80 61.11 38.13 60.58 14.01 63.07 56.74 

U-Net 65.65 78.36 54.95 68.04 76.30 62.37 54.55 11.47 78.50 61.13 

COPLE-Net 59.72 43.36 75.90 54.48 59.92 14.71 54.30 6.62 49.18 46.47 

CE-Net 68.20 79.73 72.69 58.37 78.76 52.37 62.04 0.69 72.47 60.59 

Attention U-Net 66.95 80.39 72.67 70.36 79.44 62.28 62.83 8.89 77.97 64.64 

UNet + 67.39 76.52 73.44 63.95 78.57 65.26 60.98 8.84 70.67 62.85 

Proposed 68.74 79.12 79.98 70.88 77.63 57.91 64.89 27.72 80.43 67.48 
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ng manifestation caused by GGO, consolidation, and pulmonary 

brosis. Fine-grained segmentation of the opacity areas will of 

ourse provide further help to the clinic. In this experiment, the 

ataset in Zhang et al. [50] was adopted, containing 750 slices with 

GO and consolidation segmentation templates from 150 CT scans. 

e used 100 samples for training and 50 samples for testing. Com- 

ared with the results of KISEG as well as other two methods re- 

orted in Liu et al. [51] , our model achieved acceptable GGO and 

onsolidation segmentation results, as shown in Table 5 . Note that 
9 
e selected KISEG for comparison because this method is a state- 

f-theart specifically designed for finegrained segmentation of lung 

nfection. 

Table 5 indicates that compared with others, the proposed 

ethod achieves a certain degree of performance on fine-grained 

pacity area segmentation, especially the higher IOU for consolida- 

ion, but it is not ideal for GGO segmentation. On the one hand, 

ne-grained segmentation of lung opacification is still a challeng- 

ng task due to the slight difference in imaging manifestation be- 
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Table 5 

Quantitative evaluation of different net- 

works for GGO and consolidation seg- 

mentation. 

Methods IOU (%) 

GGO Consolidation 

ENet [52] 51.54 53.99 

U-Net [10] 58.75 62.18 

KISEG [51] 56.74 64.03 

Proposed 52.32 66.29 
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ween GGO and consolidation. On the other hand, our SCOAT-Net 

oes not have a specific design for this task, but for the segmen- 

ation of abnormal areas of the lungs. In the future, to obtain a 

etter fine-grained segmentation performance we will attempt to 

esign a customized attention module that uses differences in the 

hape and density of various types of lung opacification to increase 

he distance between classes in the feature domain. 

. Discussion and conclusion 

CNNs have been widely used in various medical image seg- 

entation tasks due to their excellent performance [10,25,26,44] . 

ome networks have been improved from the perspective of con- 

ection structure (e.g., U-Net [10] ), and others have been improved 

rom the perspective of combining multi-scale features (e.g., PSP- 

et [23] ). These improvements have enhanced the expression abil- 

ty of the models to a certain extent. However, due to the particu- 

arity of medical image-related tasks, only a small amount of appli- 

able data can be obtained, making it impossible to converge when 

raining conventional DNNs, which is a common problem. In addi- 

ion to augmenting the data [53] , some studies show that attention 

echanisms can be more effective in enhancing the generalization 

apacity of models. 

The main difference between the proposed SCOAT-Net and the 

raditional segmentation network is our specially designed atten- 

ion modules, which can continuously suppress irrelevant features 

nd enhance useful features in the image space and channel do- 

ain during the training process. The better image segmentation 

erformance than state-of-the-art CNNs, shown in Table 4 , indi- 

ates that our method has great application potential in complex 

edical scenarios. Furthermore, we compared the influences of 

wo types of attention modules in other models and the proposed 

ttention modules in our network on this task. The network incor- 

orating the attention modules has improved performance to vary- 

ng degrees compared to the baseline network. It is worth men- 

ioning that the attention modules we proposed generate a se- 

ies of attention maps. We can observe the changes of the focused 

egions at different stages, which contributes to the better inter- 

retability of the neural network. 

Furthermore, we compared the influences of two types of atten- 

ion modules in other models and the proposed attention modules 

n our network on this task. The network incorporating the atten- 

ion modules has improved performance to varying degrees com- 

ared to the baseline network. Also, we verified the robustness and 

ompatibility of our network on different types of CT equipments 

nd confirmed that it has excellent data migration capability. Our 

etwork can accurately segment lung opacity regions in CT images 

t different time-points during the treatment. It provides a quan- 

itative assessment of pulmonary involvement, which is a difficult 

ask for radiologists but is essential to the clinical follow-up of pa- 

ient disease development and treatment response. 

Despite the superiority mentioned above, our network still has 

hortcomings, e.g., failure of predicting certain tiny opacity regions, 

s shown in case #5 of Fig. 4 . This suggests that we can continue
10 
o enhance our network’s recognition of targets of different scales 

y using multi-scale feature fusion or cascading convolution in dif- 

erent receptive field sizes. 
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