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Abstract
Chagas disease (CD) is caused by Trypanosoma cruzi, whose sugar moieties are recog-

nized by mannan binding lectin (MBL), a soluble pattern-recognition molecule that activates

the lectin pathway of complement. MBL levels and protein activity are affected by polymor-

phisms in theMBL2 gene. We sequenced theMBL2 promoter and exon 1 in 196 chronic

CD patients and 202 controls. TheMBL2*C allele, which causes MBL deficiency, was asso-

ciated with protection against CD (P = 0.007, OR = 0.32). Compared with controls, geno-

types with this allele were completely absent in patients with the cardiac form of the disease

(P = 0.003). Furthermore, cardiac patients with genotypes causing MBL deficiency pre-

sented less heart damage (P = 0.003, OR = 0.23), compared with cardiac patients having

the XA haplotype causing low MBL levels, but fully capable of activating complement (P =

0.005, OR = 7.07). Among the patients, those with alleles causing MBL deficiency pre-

sented lower levels of cytokines and chemokines possibly implicated in symptom develop-

ment (IL9, p = 0.013; PDGFB, p = 0.036 and RANTES, p = 0.031). These findings suggest a

protective effect of genetically determined MBL deficiency against the development and

progression of chronic CD cardiomyopathy.

Author Summary

Chagas disease is considered an important neglected tropical disease, affecting approxi-
mately ten million people in Latin America. Although most infected individuals remain
asymptomatic, one third of patients develop a chronic heart disease, with progressive
inflammation, increase of myocardium, arrhythmia, cardiac insufficiency and heart fail-
ure. To date, there is no available marker to indicate the progression neither to determi-
nate the severity of heart damage. Mannan binding lectin (MBL) is an important protein

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004257 January 8, 2016 1 / 16

OPEN ACCESS

Citation: Luz PR, Miyazaki MI, Chiminacio Neto N,
Padeski MC, Barros ACM, Boldt ABW, et al. (2016)
Genetically Determined MBL Deficiency Is
Associated with Protection against Chronic
Cardiomyopathy in Chagas Disease. PLoS Negl Trop
Dis 10(1): e0004257. doi:10.1371/journal.
pntd.0004257

Editor: Herbert B. Tanowitz, Albert Einstein College
of Medicine, UNITED STATES

Received: May 30, 2015

Accepted: November 2, 2015

Published: January 8, 2016

Copyright: © 2016 Luz et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior
[Edital 32/2010, project 20] and Conselho Nacional
de Desenvolvimento Científico e Tecnológico [grant
number 309970/2011-3]. Grants were received by
IJMR. The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0004257&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


of the immune system able to recognize specific regions on the microorganism surfaces
(including Trypanosoma cruzi, the causal agent of Chagas disease) which activate the com-
plement system, a crucial mechanism of the effector immunity. MBL levels and protein
activity are affected by genetic differences, named polymorphisms, in theMBL2 gene. This
is the first Brazilian study withMBL2 polymorphisms in chronic Chagas disease. We
sequenced two regions ofMBL2 gene in 196 patients and 202 controls. We found that a
polymorphism associated with deficient complement activation protects against Chagas
disease and patients with deficiency-associated genotypes presented less echocardio-
graphic alterations. Among the patients, those with alleles causing MBL deficiency pre-
sented lower levels of cytokines and chemokines possibly implicated in symptom
development (IL9, p = 0.013; PDGFB, p = 0.036 and RANTES, p = 0.031). These findings
lead us to suggest that genetically determined MBL deficiency plays a protective role
against the development and progression of chronic Chagas disease.

Introduction
Chagas disease (CD) is considered the most important neglected tropical disease worldwide,
affecting approximately ten million people in Latin America [1,2,3]. The disease is caused by Try-
panosoma cruzi, a flagellated protozoan parasite transmitted to humans mainly by blood-sucking
triatomine bugs or by blood transfusion [4]. Approximately 50% of the individuals infected by
T. cruzi remain in the indeterminate or asymptomatic clinical form of CD for their whole lives.
Although asymptomatic patients present in general a good prognosis, each year about 2–5% of
them progress to symptomatic forms of the disease, developing cardiac, digestive and/or neuro-
logical clinical manifestations [5]. About 30–40% of the patients develop chronic chagasic cardio-
myopathy (CCC), characterized by progressive and multifocal inflammation, fibrosis and
subsequent cardiac insufficiency (CI). In advanced stages, there is a marked increase in the heart
in an attempt to compensate loss of function, with thromboembolic events, important arrhyth-
mias and heart failure. Sudden death is a constant risk at any clinical stage, occurring in one to
two thirds of patients who die due to CD. Although most of these patients presented prior CI,
about one third to one fifth of sudden deaths occur in asymptomatic CD patients [6,7].

To date, there is no available marker which is able to indicate the progression from asymp-
tomatic to symptomatic CD, neither to indicate the severity of the disease. Though predisposi-
tion to CD and progression to the different clinical forms are certainly modulated by several
factors involved in the interaction of T. cruzi with the host [8].

The complement system is considered one of the major mediators of innate host defense,
playing an important role in the control of experimental T. cruzi infection [9,10], as well as in
clinic evolution of CD [11,12]. The activation of complement can occur by three different path-
ways. One of them is the lectin pathway, initiated through the recognition of sugar motifs on
the pathogen’s surface by MBL (mannan-biding lectin), the collecting COLEC11 or ficolins.
MBL is a soluble pattern-recognition protein (PRP) of the innate immunity which binds to spe-
cific pathogen-associated molecular patterns (PAMP) on microorganism surfaces, leading to
complement activation. Additionally, MBL is able to promote inflammation, removal of apo-
ptotic cells and opsonophagocytosis independently of complement [13,14].

It has been demonstrated that complement activation is critical for the control of CD and its
depletion was associated with high parasitemia and early death in an experimental study using
a mice model [9]. Moreover, there is much evidence about the involvement of complement in
T. cruzi infection [15,16] as well as its important role in the clinical outcome of CD [12,17,18].
Besides its beneficial effect in the immune response, complement is known to play a significant
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role in various immune-mediated diseases. Increased concentrations of MBL were suggested to
lead to an excessive activation of complement, with consequent exacerbation of inflammatory
response, promoting tissue damage [19,20,21,22,23,24].

The humanMBL gene (MBL2) is located on chromosome 10q11.2-q21 and contains five
exons. Aminoacid substitutions caused by three single nucleotide polymorphisms (SNPs) located
at codons 52 (Arg52Cys, alleleD), 54 (Gly54Asp, allele B) and 57 (Gly57Glu, allele C) in exon 1
disrupt the collagenous tail of the protein and result in failure of production of fully functional
multimeric protein, loweringMBL serum levels (B, C andD are referred together as “O” alleles).
Heterozygous individuals for these mutations show substantial decrease in the concentration of
circulating MBL, while homozygotes have almost undetectable serumMBL (less than 100 ng/ml),
which characterizes deficiency of the protein. Aberrant MBLmolecules do not bind effectively to
PAMPs neither promote the activation of the lectin pathway. However, they may work as opsonins
or mediate cellular cytotoxicity [25]. In addition, SNPs in the promoter and 5’ untranslated regions
of theMBL2 gene (H/L, X/Y, P/Q at positions -221, -550 and +4, respectively) are also known to
affect the serum concentration of protein [26,27]. Three of the most commonMBL2 haplotypes—
HYPA, LYQA and LYPA—are associated with increased expression of circulating MBL, whereas
LXPA,HYPD, LYPB and LYQC—are associated with deficiency of this protein [28].

In a previous report we showed that high MBL levels were associated with the presence of
echocardiographic alterations and cardiac insufficiency in patients with chronic CD from Bra-
zil [29]. In this study, we extended the investigation in the same cohort of patients, in order to
find out if the different protein levels result fromMBL2 polymorphisms or from the disease
course. Given the important role of MBL in innate immunity and in the association ofMBL2
functional polymorphisms with different chronic, infectious, inflammatory and auto-immune
diseases [27,30],MBL2 polymorphisms seem to be good candidate markers for susceptibility
and clinical progression of CD.

Materials and Methods

Subjects and samples
We investigated 196 chronic CD patients (59.2% female; average age 57.3 years (34–90); 74.5%
Euro-, 20.4% Afro-Brazilian, 0.5% Asian, 5.0% Amerindian) from the Chagas Disease Ambula-
tory of the Clinical Hospital of the Federal University of Paraná (HC-UFPR). CD diagnosis
was given by serological and clinical examinations. The clinical history of the patients was
obtained from medical records and interviews, using a standard questionnaire. For three
patients, the clinical form of CD was undefined at the time of sampling. Patients younger than
18 years-old, or that present history of blood transfusion, recent infections and suspected non-
chagasic cardiomyopathy (such as hypertensive cardiomyopathy) were excluded. Detailed
demographic and clinical characteristics of the specific CD forms are given in Table 1. A group
of 202 unrelated adult individuals with negative Chagas (anti-Trypanosoma cruzi) serology
were used as controls (56.9% female, average age 49.3 years (19–79), 74.3% Euro-, 20.8% Afro-
Brazilian, 0.5% Asian, 4.5% Amerindian). Ethnic background of patients and controls was
determined as previously described [31]. The project was approved by the ethics committee of
Hospital de Clínicas, Universidade Federal do Paraná (CEP/HC-UFPR n.1457.122/2007-06).

Classification of the cardiac patients
Stages of heart failure of the cardiac patients were determined according to the guidelines of
the American College of Cardiology and American Heart Association (ACC/AHA), adapted
for CD as suggested by the Brazilian Consensus on Chagas disease [32]. Using these criteria,
we graded CD cardiac patients in five different classes, which allows a functional classification
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of cardiac insufficiency as well as the identification of distinct sub-groups for prognostic and
clinical management, as follows: A: altered electrocardiogram (ECG) and normal echocardio-
gram (ECO); B1: altered ECO, left ventricular ejection fraction (LVEF)>45%, cardiac insuffi-
ciency (CI) absence; B2: altered ECO, LVEF<45%, CI absence; C: altered ECG and ECO,
compensable CI;D: altered ECG and ECO, refractory CI. After signing the formal written con-
sent, five ml of venous blood from each individual was collected and distributed in two collec-
tion tubes, one containing ethylenediamine tetra-acetic acid (EDTA) and other without the
anticoagulant. Buffy coat and serum samples separation was performed as quickly as possible.
Samples were kept on ice after being collected, during transport to the laboratory and separa-
tion, and immediately stored at -80°C until used. Genomic DNA was extracted from peripheral
whole blood using commercial kits (GFX Genomic Blood DNA Purification Kit, GE Health-
care, São Paulo, Brazil), according to the manufacturer’s instructions.

MBLmeasurement
We used previous published data on MBL serum levels [29] and on cytokine and chemokine
levels [33] from the same patient cohort in order to evaluate ifMBL2 genotypes were associated
with these phenotypes.MBL2 genotypes were grouped according to the published influence of
X/Y promoter and A/B/C/D (or A/O) exon 1 variants on MBL serum levels: YA/YA and XA/YA
(high MBL concentration), YA/YO (intermediate MBL concentration), XA/XA, XA/YO and
YO/YO (low MBL concentrations) [31,34].

MBL2 sequencing
A fragment of 1059 nucleotides was amplified using the forward primers MBL_PromF (5'-GC
CAGAAAGTAGAGAGGTATTTAGCAC-3') and the reverse primer MBL_Rev (5'-CCAACA
CGTACCTGGTTCCC-3'). The PCR fragments were stained with SYBR Safe DNA Gel Stain

Table 1. Demographic data and clinical parameters of Chagas patients.

Chagas Clinical Form

Indeterminate Cardiac Digestive Cardiodigestive

Parameters n = 72 n = 74 n = 20 n = 27

Age (years) Average ± SD 55.7 ± 8.3 59.2 ± 10.0 59.9 ± 11.6 57.8 ± 9.9

Gender (%) Female 69.5 51.4 80.0 40.7

Ethnic group (%) European 84.7 67.6 60.0 74.1

African 11.1 25.7 35.0 22.2

Asian 0 1.3 0 0

Amerindian 4.2 5.4 5.0 3.7

Functional classification of cardiac insufficiency A 2 16 n.a. 9

ACC/AHA& B1 4 18 n.a. 5

B2 0 3 n.a. 0

C 2 26 n.a. 10

D 0 2 n.a. 1

MBL levels [28] Median (n): 1314 (47) 1441 (44) 1883 (12) 2119 (19)

(ng/ml) [Min-Max] [50–6379] [50–7214] [50–4700] [50–5600]

“A” means altered electrocardiogram (ECG) and normal echocardiogram (ECO); “B1” means altered ECO, left ventricular ejection fraction (LVEF) higher

than 45% and no cardiac insufficiency (CI); “B2” means altered ECO, LVEF lower than 45% and no CI; “C” means altered ECG and ECO and

compensable CI; “D” means altered ECG and ECO and refractory CI.; n.a. = not applicable; SD = standard deviation; n = number of individuals
& At the time of blood sampling, three patients were only defined as T. cruzi-infected, 64 patients with the indeterminate, 9 with the cardiac and two with

the cardiodigestive form of the disease have not been graded for functional classification of the ACC/AHA.

doi:10.1371/journal.pntd.0004257.t001
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(Invitrogen, Carlsbad, USA) and visualized on a 1% (w/v) agarose gel. The PCR products were
purified using ExoSAP-It (GE Healthcare, Uppsala, Sweden). All fragments were sequenced
with the amplification primers (IDT, Florida, USA) or an internal exon 1 sequencing primer,
MBL_EX1F (5'- CAGGTGTCTAGGCACAGATGAACC-3'), using Big dye terminator version 1.1
chemistry (Applied Biosystems, CA, USA), precipitated using ammonium acetate (7,5M), dena-
tured with formamide (Applied Biosystems) and analysed on an automated sequencer (ABI Prism
3500xL Genetic Analyzer, Applied Biosystems). Sequencing data was analyzed using Geneious
v5.4 (Biomatters Ltd, Auckland, New Zealand) and SeqScape v2.7 (Applied Biosystems) softwares.

Statistical analysis
Genotype and allele frequencies were obtained by direct counting. The hypothesis of Hardy–
Weinberg equilibrium (based on the approach of Guo and Thompson) [35] was tested using
ARLEQUIN software package version 3.5.1.3 (http://anthro.unige.ch/arlequin/). Possible associa-
tions betweenMBL2 genotypes/haplotypes/alleles and different clinical forms were evaluated
with two tailed Fisher’s exact test. Distribution of MBL and cytokine/chemokine concentrations
according toMBL2 genotypes in the different groups were compared using t-test or ANOVA
and, if not normally distributed, with Mann-Whitney or Kruskal-Wallis tests. Unless otherwise
stated, two-tailed P-values less than 5% were considered significant, presented “as is” and Bonfer-
roni-corrected. These analyses were done using the Graphpad Prism 5.04 software package.

Results

MBL2 polymorphisms
Genotype distribution was in Hardy and Weinberg equilibrium for all investigated SNPs in
both patient and control groups. We identified eightMBL2 haplotypes comprehending the
-221 (H/L) and -550 (X/Y) promoter SNPs, +4 (P/Q) SNP in the 5’ untranslated region, codon
52 (A/D), codon 54 (A/B) and codon 57 (A/C) SNPs in exon 1 (Table 2). The uncommon
LYPD haplotype occurred in a single patient presenting the associated clinical form of CD. The
MBL2�C variant, imbedded in the LYQC haplotype, was negatively associated with the disease
(7/392 or 1.8% in patients vs. 22/404 or 5.4% in controls, OR = 0.32 [95%CI = 0.13–0.75],
P = 0.007, PBF = 0.029). This effect was restricted to patients having either the cardiac, digestive
or cardiodigestive forms of the disease (2/242 or 0.8% in symptomatic patients vs. 22/404 or
5.4% in controls, OR = 0.14 [95%CI = 0.03–0.62], P = 0.002, PBF = 0.008). LYQC was absent
from cardiac CD patients (compared with controls: P = 0.001, PBF = 0.004; compared with
indeterminate patients: P = 0.028, PBF = 0.11).

There was no particular genotype with the C allele (in the LYQC haplotype), associated with
the disease, but summed genotype frequencies with this allele/haplotype did differ between
symptomatic patients and controls (2/121 or 1.7% vs. 19/202 or 9.4%, respectively, OR = 0.16
[95%CI = 0.04–0.71], P = 0.005, PBF = 0.02), especially between cardiac patients and controls
(0/74 vs. 19/202 or 9.4%, P = 0.003; PBF = 0.012). In fact, YC/YC and YA/YC genotypes were
not identified in symptomatic patients (S1 Table). As previously published [29], we did not
find a difference between MBL levels in controls and patient groups (S1 Fig), but confirmed the
well established association between the X/Y and A/O variants and the MBL levels in both
patients and controls (Fig 1).

MBL2 genotypes and functional classification of heart failure
Genotypes with the YO haplotype (YA/YO, XA/YO and YO/YO) were more common in
patients without echocardiographic alterations (15/28 or 53.6% in patients classified within the
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“A” class vs. 15/71 or 21.1% in patients classified within “B”, “C” or “D” classes, OR = 0.23
[95%CI = 0.09–0.59], P = 0.003, PBF = 0.009). Fourteen out of 17 individuals with the XA/YO
and YO/YO genotypes, including patients and controls (82.4%), presented MBL deficiency
(MBL levels lower than 100 ng/ml), being three in the A group, three in B1 and none in the C
and D groups (Fig 2). In contrast, individuals with the XA/XA and XA/YA genotypes were
more frequent in the patients with echocardiographic alterations (2/28 or 7.1% in the “A” class
vs. 25/71 or 35.2% in the “B+C+D” class, OR = 7.07 [95%CI = 1.55–32.2], P = 0.005, PBF =
0.015) (Table 3). Thirteen out of 17 individuals with these genotypes presented MBL levels
higher than 1000 ng/ml (Fig 2).

MBL2 genotypes and cytokine/chemokine levels
We found a trend for lower levels of pro-inflammatory interleukin 9 (IL-9), platelet-derived
growth factor (PDGF) and Regulated-on-activation, T-cell expressed and secreted (RANTES,
renamed CCL5) in patients with O variants (Fig 3). No significant associations were observed
for previously investigated levels of interleukin 1 receptor antagonist (IL-1RA), IL-17 and
interferon gamma (IFN-γ), eotaxin and granulocyte-colony stimulating factor (G-CSF) in the
same individuals.

Discussion
The process of opsonization and phagocytosis of parasites and its destruction or survival within
phagocytic cells is crucial for the establishment of most infectious diseases. It is known that
MBL plays a central role in the initial interaction between pathogens and phagocytes,

Fig 1. Distribution of MBL levels according toMBL2 genotypes in controls and patients.Open circles
indicate individuals with the LYQC haplotype. Medians in each group are given by a horizontal line. P values
refer to Kruskal-Wallis test.

doi:10.1371/journal.pntd.0004257.g001
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mediating opsonization and phagocytosis, either directly or by activating the antibody-inde-
pendent lectin pathway of the complement system [36]. Importantly, complement is one of the
first lines of immune defense to interact with infective forms of T. cruzi, long before the devel-
opment of antibodies. In fact, MBL is able to bind to infective forms of T. cruzi [15], acting
directly in the control of parasitemia [37]. The major surface glycoprotein of T. cruzi amasti-
gotes, named SA85-1, is a ligand for human MBL and adhesion of amastigotes to macrophages
is facilitated by mannose receptor [38,39]. In addition, mannose receptors on cardiomyocytes

Fig 2. Distribution of MBL levels according to the functional classification of heart failure.Open circles
indicate patients with the YO haplotype; open diamonds, patients with the XA/XA or XA/YA genotypes.
Medians in each group are given by a horizontal line. MBL levels were not analyzed in patients classified
within the “B2” class. P value refers to Kruskal-Wallis test.

doi:10.1371/journal.pntd.0004257.g002

Table 3. MBL2 genotype distribution according to functional classification of heart failure.

Class A B1 + B2 * C + D * B + C + D

MBL2 n = 28 % n = 30 % n = 41 % n = 71 %

YA/YA 11 39.3 12 40.0 19 46.3 31 43.7

XA/XA 0 0 2 6.7 3 7.3 5 7.0

XA/YA 2 7.1 8 26.7 12 29.3 20 28.2

YA/YO 9 32.1 5 16.7 7 17.1 12 16.9

XA/YO 3 10.7 2 6.7 0 0.0 2 2.8

YO/YO 3 10.7 1 3.3 0 0.0 1 1.4

In bold, genotypes who’s summed frequencies (XA/XA + XA/YA and YA/YO + XA/YO + YO/YO) did differ between patients classified in the A and in the

joined B+C+D groups. “A” means altered electrocardiogram (ECG) and normal echocardiogram (ECO); “B1” means altered ECO, left ventricular ejection

fraction (LVEF) higher than 45% and no cardiac insufficiency (CI); “B2” means altered ECO, LVEF lower than 45% and no CI; “C” means altered ECG and

ECO and compensable CI; “D” means altered ECG and ECO and refractory CI.

* There were only 3 patients classified in the B2 class, as well as in the D class.

n = number of individuals.

doi:10.1371/journal.pntd.0004257.t003
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where shown to be involved in the binding and internalization of T. cruzi [40,41]. Recently, a
role for MBL in the regulation of host resistance on myocardial inflammation has been
described in T. cruzi experimental infection [16].

Fig 3. Distribution of cytokine/chemokine levels according to the presence ofMBL2*O (B,C orD)
alleles. A. IL9 distribution (P value refers to Mann-Whitney test; horizontal line indicates the median level). B.
PDGF distribution (P value refers to an unpaired t-test; horizontal line indicates the mean level). C. RANTES
distribution (P value refers to Mann-Whitney test; horizontal line indicates the median level). There were no
MBL2*O/O homozygotes among those measured for the investigated cytokines/chemokines. Three outliers
with inconsistent results were excluded from all comparisons. Due to small sample size, Bonferroni P values
were not significant.

doi:10.1371/journal.pntd.0004257.g003
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To our knowledge, this is the first work to investigateMBL2 polymorphisms in Brazilian
patients with CD and to suggest a role for MBL in chronic disease. We found thatMBL�2 C
allele, imbedded in the LYQC haplotype and conferring MBL deficiency, is associated with pro-
tection against the development of symptomatic forms of CD. Interestingly, a protective effect
could be extended for all deficiency-associated exon 1 variants (B, C and D, also called O)
against the myocardial injury, which could lead to development of echocardiographic alter-
ations, corroborating the hypothesis that MBL deficiency may protect against the progression
to severe CCC. On the other hand, higher frequency of XA/YA and XA/XA genotypes in
patients with echocardiographic alterations partly explains higher MBL levels in the patient
group graded within the B, C and D stages of functional classification, as previously published
[29]. One must consider that other factors may affect MBL production, such as growth [42],
thyroid hormones [43] and the acute phase response [44]. However, it is important to note that
these physiological variables increase MBL levels by no more than three times, thus genetic var-
iation in theMBL2 gene seems to most significantly influence MBL protein levels in the disease
[26].

We were unable to directly compare these results with our former work done on C3 and BF
allotypes [12], since samples were not the same. Nevertheless the functional impact of the C3F
allele has been recently demonstrated [45]: the p.Arg102Gly amino acid substitution responsi-
ble for the “fast” electrophoretic mobility of the C3F allele disrupts a salt bridge necessary for
stable interaction with factor H, causing deregulated activation of the alternative pathway. Not
surprisingly, this allele increases inflammatory activity and was found associated with the car-
diac form of CD [12].

Corroborating our association of theMBL2�LYQC haplotype as well as YA/YO and YO/YO
genotypes with the indeterminate, or asymptomatic, clinical form in T. cruzi infected individu-
als, all three have been associated with positive parasitemia counts in asymptomatic adults
infected with Plasmodium falciparum [46]. A similar association was found with protection
against the lepromatous manifestation of leprosy, compared with the less severe tuberculoid
form [22]. On the other hand, theMBL2�B allele, imbedded in the LYPB haplotype and also
associated with MBL deficiency, was more frequent in CD patients than in healthy individuals
from northern Chile, but did not differ between asymptomatic and CCC patients. Noteworthy,
MBL2�C andMBL2�D alleles were not observed in Chilean patients or controls [47]. It is
important to consider thatMBL2 allele frequencies differ greatly between populations [48,49]
being 42–46% forMBL2�B in Guarani Amerindians from south Brazil [31] and Chiriguano
and Mapuche Indians from Argentina [50], and 11% for Euro-Brazilians from South Brazil
[31], as those investigated in the present study. Thus, the high frequency ofMBL2�B found in
Chilean patients (48%) is probably due to high Amerindian admixture (52%, based on ances-
try-informative markers [51]. The frequency of this allele was much lower in the present study
(13% in patients and 15.6% in controls), in accordance with the very low Amerindian admix-
ture (5%) of the investigated population [52,53]. Beside these differences in population struc-
ture, functional differences among theMBL2�B, C and D variants regarding MASP-2 coupling
[54] and serum concentration of low-mass oligomers [55] may explain opposite association
outcomes and should be further investigated in the context of Chagas disease [31].

In the last decade, cumulative evidence has pointed to an immunopathological role for MBL
in both experimental as well as clinical studies of cardiac disorders. High levels of MBL were
associated, for example, with increased risk of ischemia, myocardial infarction and sudden
death in patients with rheumatoid arthritis. A critical role for MBL in ischemia and reperfusion
injury of the ischemic myocardium in experimental diabetes has been shown [23], with MBL
enhancing post-ischemic reperfusion injury and its deficiency protecting against this damage
[56]. In fact, MBL deficiency was suggested to reduce tissue damage, arrhythmias and mortality
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of patients after myocardial infarction [57], probably due to endothelial cell binding, followed
by excessive complement activation [19]. In addition,MBL2 genotypes associated with high
MBL levels were shown to increase the risk of acute and chronic carditis in patients with rheu-
matic fever, whereas O alleles were protective [24,58]. In the same way, despite the beneficial
role of complement in early infection to control the parasite load, an excessive activation of
complement during the chronic phase of CD can be damaging to the host, contributing to tis-
sue damage and injury of the affected organs. It was previously reported that the persistence of
the parasite in the chronic stage could cause desialylation of myocardial and endothelial cells,
leading to complement activation and deposition of the membrane attack complex on cellular
surfaces [11].

Furthermore, we found an association of higher pro-inflammatory cytokine IL-9 and
PDGF, as well as of the chemokine RANTES, in patients with theMBL2�A/A genotype. This
effect could be dependent on multimeric MBL forms, known to regulate the release of different
cytokines from monocytes and other immune cells in response to infection [31,59]. Although
IL-9 was not yet implicated in CD, PDGF was associated with proliferative lesions and fibrosis
in CCC [60] and RANTES is among the highest expressed genes in dogs with intense cardiac
parasitism and in end-stage CCC patients [61,62]. All these findings allow speculation for the
use of inhibitors of the lectin pathway, as a preventive therapy to reduce tissue injury in

Fig 4. Hypothetical role of high MBL levels in heart Chagas disease. In the acute stage of T. cruzi infection, MBL molecules function as opsonins for the
pathogen. Thus high MBL levels would increase phagocytosis of the parasite. In the chronic stage of the disease, MBL may bind to altered-cell molecular
patterns expressed on myocardium of CD patients, activating the lectin pathway and leading to an increased secretion of RANTES and pro-inflammatory
cytokines such as IL-9 and PDGF (in patients with theMBL2*A/A genotype), thereby promoting heart damage leading to chagasic chronic cardiomiopathy.

doi:10.1371/journal.pntd.0004257.g004
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inflammatory cardiac disorders and other chronic inflammatory diseases where activation of
the lectin pathway takes place [63].

Our hypothesis is that high levels of MBL, which are genetically determined, could facilitate
the internalization of T. cruzi in macrophages and cardiomyocytes thereby increasing cellular
invasion by the parasite and its consequent dissemination to target organs, increasing comple-
ment-mediated tissue injury and cardiac damage in the chronic stage of the disease (Fig 4).

MBL could bind to the myocardium of CD patients expressing: 1)T. cruzi antigens, 2) self-
antigens from the host presenting molecular mimicry with parasite epitopes or 3) neoantigens
containing MBL ligands, exposed after tissue injury. Due to high levels, MBL could deposit and
overly activate the lectin pathway, corroborating to persistent inflammation and tissue damage,
reparative fibrosis and cardiac dysfunction. In fact, increased deposition of complement termi-
nal lytic complex in the myocardium of patients with CCC, suggested an association of comple-
ment activation with active inflammation and fibrosis in CCC [11]. Thus, despite of the
important role of complement in controlling the initial T. cruzi infection and parasite replica-
tion, CD patients withMBL2 genotypes conferring high production of MBL seem to be prone
to develop cardiac dysfunction probably due to excessive complement activation. Similarly,
MBL deficiency could protect against cellular invasion by T. cruzi and minimize the exacer-
bated damage caused by unwarranted activation of complement. Thus, quantification of serum
MBL andMBL2 genotyping might be useful markers for prognostic and clinical evolution of
CD, especially of CCC. However, additional studies are needed in order to replicate these find-
ings and to confirm this hypothesis.

Supporting Information
S1 Fig. Distribution of MBL levels in controls and patient groups.Note: Black circles indi-
cate individuals with the LYQC haplotype. Medians in each group are given by a horizontal
line.
(TIF)

S1 Table. Distribution ofMBL2 genotypes in Chagas patients and controls. In bold: geno-
types with the C variant, whose summed frequencies differ between patients and controls
(P = 0.024, PBF = 0.096), symptomatic patients and controls (P = 0.005, PBF = 0.020), cardiac
patients and controls (P = 0.003, PBF = 0.012), cardiac and indeterminate patients (P = 0.027,
PBF = 0.108) (see text). � Symptomatic patients include cardiac, digestive and cardiodigestive
forms. n = number of individuals.
(DOCX)
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