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Objective. The purpose of this study is to make a systematic review of the therapeutic effect of stem cells in animal models of disc
degeneration from an imaging point of view. Methods. Data were extracted by searching electronic databases for RCTs that met
the inclusion criteria. Data analysis was performed using RevMan 5.3 and STATA 15.1 software. This meta-analysis was registered
with INPLASY, registration number INPLASY202240148. Results. A total of 34 studies were included, covering four species of
animals, rabbits, sheep, rats, and mice, with a total of 1163 intervertebral discs. In terms of DHI, the efficacy of stem cell group
in rabbits (P < 0:001), mice (P < 0:001), sheep (P < 0:001), and rats (P = 0:001) was better than that in control group. In terms
of disc height, the efficacy of stem cell group in rats (P < 0:001) was better than that in control group, while in sheep
(P = 0:355), there was no statistical difference between two groups. In terms of MRI index, the efficacy of stem cell group in
rats (P < 0:001), mice (P < 0:001), and rabbits (P = 0:016) was better than that in control group. In terms of MRI signal score,
the efficacy of stem cell group in rabbits (P < 0:001) was better than that of control group. In terms of T2 signal intensity, stem
cell group was more effective than control group in rabbits (P < 0:001), mice (P < 0:001), and rats (P = 0:003).Conclusion. Stem
cell therapy can improve intervertebral disc-related imaging parameters in animal models of disc degeneration, indicating that
stem cell therapy has a repairing effect on intervertebral discs. However, given the heterogeneity and limitations of this study,
this conclusion still needs to be tested by a large number of studies.

1. Introduction

Degenerative disc disease is a clinical syndrome caused by
permanent structural changes in the intervertebral disc,
and it is one of the most common clinical diagnoses [1]. It
has been reported that more than 50% of asymptomatic
patients between the ages of 30 and 39 have disc degeneration
and loss of disc height [2]. According to statistics, there are 1
million lumbar disc surgeries worldwide each year, and only
10% and 15% of lumbar disc degeneration require surgical
treatment [3]. Disc degeneration imposes a heavy economic
and medical burden on the global aging population [4].

Disc degeneration is a complex multifactorial process
determined by genetic, nutritional, and mechanical factors

[5]. It is characterized by loss of intradiscal cells and extra-
cellular matrix, upregulation of matrix metalloproteinases
(MMPs), and inflammatory mediators, resulting in irrevers-
ible damage to the disc structure [6]. Current conservative
and surgical treatments focus on relieving symptoms rather
than preventing degeneration or restoring disc structure
and function [7]. Surgery may even exacerbate the degener-
ation of adjacent healthy discs [1]. Therefore, there is an
urgent need for a regenerative therapy to repair degenerated
discs.

In the past 20 years, people have tried to find new break-
throughs in the treatment of disc degeneration from stem
cells. Encouragingly, these efforts are paying off. There has
been a growing body of research demonstrating the
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therapeutic potential of stem cells in animal models, and
clinical studies are taking the first steps [1, 8–10]. Since no
one has yet summarized and evaluated this, we designed this
study to systematically evaluate the therapeutic effect of stem
cell therapy in animal models from an imaging point of
view.

2. Methods

This study was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement [11] and the Cochrane Handbook
[12]. Because this study was a systematic review of published
researches, it did not require ethical approval. This meta-
analysis was registered with INPLASY. The registration
number is INPLASY202240148, and the DOI is 10.37766/
inplasy2022.4.0148 [13].

2.1. Inclusion and Exclusion Criteria. Studies that met the
following requirements were included: (1) randomized con-
trolled trials (RCTs) using animal models of disc degenera-
tion as the research object, and the animal species were not
limited; (2) stem cell therapy was used as an intervention
measure, and other drugs were used as control measure.
Both could be combined with other drugs or materials; (3)
there were no restrictions on the source of stem cells, the
dose of drugs, and the course of treatment.

Studies were excluded according to the following exclu-
sion criteria: (1) the animal species used were different from
other literatures and could not be compared with any of the
other included studies; (2) the imaging evaluation indexes or
imaging data representations used were different from other
literatures and could not be compared with any other
included studies.

2.2. Search Strategies. After determining the inclusion and
exclusion criteria for this study, two researchers indepen-
dently searched multiple databases, including PubMed,
Cochrane Library, ScienceDirect, CNKI, and Wanfang Data-
base. The retrieved articles were published before March 1,
2022. The following search terms were used: disc degenera-
tion, animal model, stem cell, mesenchymal stem cell, bone
marrow-derived mesenchymal stem cell, adipose-derived
stem cell, MSC, BMSC, and ADSC with the Boolean opera-
tors AND or OR. The retrieved literatures were screened
by two researchers step by step according to title, abstract,
and full text. After identifying included articles, we traced
their references to identify potential articles.

2.3. Data Extraction. After screening was complete, data
were extracted from eligible literatures by two independent
researchers and then cross-checked by a third researcher.
For the differences in the included literatures, all researchers
reached consensuses through discussion. The data extracted
in this study included the name of the first author, year of
publication, country, animal species, modeling method, stem
cell type, stem cell source, injection dose, interventions in
the control group, and imaging evaluation indicators.

2.4. Quality Assessment. Since the target literatures for this
study were RCTs in animals, we used the Cochrane Risk Bias
Tool [14] for quality assessment. This work was done using
Review Manager software (RevMan 5.3).

2.5. Data Analysis. We performed statistical analysis of data
extracted from each study using STATA software (version
15.1). Continuous variables were reported as mean differ-
ence (MD) and 95% confidence interval (CI), while dichoto-
mous variables were reported as odds ratio (OR) and 95%
CI. Statistical heterogeneity was judged according to the I2

statistic. The greater the I2, the greater the heterogeneity. If
there was heterogeneity in this study (I2≥50%), a random-
effects model was used; otherwise, a fixed-effects model (I2

<50%) was used. In this study, differences were considered
statistically significant when P < 0:05.

3. Results

3.1. Search Result. According to the above search strategies,
978 relevant articles were preliminarily identified, including
PubMed (n = 136), Cochrane Library (n = 2), ScienceDirect
(n = 354), CNKI (n = 400), and Wanfang Database (n = 86).
After removing duplicate studies, 34 studies were finally
included according to the inclusion and exclusion criteria.
The flow chart of literature screening is shown in Figure 1,
and the basic characteristics of the included studies are shown
in Table 1.

3.2. Quality Assessment. In the included studies, except
Schmitt et al. [8] used a random number generator to gener-
ate random sequences, the rest of the studies did not explain
how random sequences were generated. None of the studies
mentioned blinding and allocation concealment. No selec-
tive reporting and incomplete data were found in all studies.
The existence of other biases could not be determined as
shown in Figure 2.

3.3. Results of the Meta-Analysis

3.3.1. DHI. A total of 22 studies compare the DHI of the
stem cell group and the control group, as shown in
Figure 3, including rabbits, rats, mice, and sheep.

Twelve studies evaluated the effects of both groups in
rabbits, including 214 rabbit discs. The main types of stem
cells are BMSCs, ADSCs, and NPSCs. The heterogeneity test
showed significant heterogeneity between studies (P < 0:001,
I2 = 86:8%), so a random-effects model was used. The com-
prehensive results showed that the difference between the
stem cell group and the control group was statistically signif-
icant (P < 0:001), and the stem cell group was better than the
control group.

Four studies evaluated the effects of both groups in mice,
involving 80 mouse discs. Stem cell types are mainly ADSCs.
The heterogeneity test showed significant heterogeneity
between studies (P = 0:003, I2 = 78:1%), so a random-
effects model was used. The comprehensive results showed
that the difference between two groups was statistically sig-
nificant (P < 0:001), and the stem cell group was better than
the control group.
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Three studies evaluated the effects of both groups in
sheep, involving 40 sheep discs. Stem cell types are mainly
BMSCs. The heterogeneity test showed no significant
heterogeneity between studies (P = 0:496, I2 = 0:0%), so a
fixed-effects model was used. The comprehensive results
showed that the difference between two groups was statisti-
cally significant (P < 0:001), and the stem cell group was
better than the control group.

Three studies evaluated the effects of both groups in rats,
including 123 rat discs. Stem cell types are mainly ADSCs.
The heterogeneity test showed significant heterogeneity
between studies (P < 0:001, I2 = 95:7%), so a random-
effects model was used. The comprehensive results showed
that the difference between two groups was statistically sig-
nificant (P = 0:001), and the stem cell group was better than
the control group.

3.3.2. Disc Height. A total of 7 studies compare the disc
height of the stem cell group and the control group, as
shown in Figure 4, including both sheep and rats.

Four studies evaluated the effects of both groups in sheep
and included 70 sheep discs. The main types of stem cells are
BMSCs and ADSCs. The heterogeneity test showed signifi-
cant heterogeneity between studies (P = 0:054, I2 = 60:7%),
so a random-effects model was used. The comprehensive

results showed that the difference between two groups was
not statistically significant (P = 0:355).

Three studies evaluated the effects of both groups in rats,
involving 60 rat discs. The main types of stem cells are
BMSCs and ADSCs. The heterogeneity test showed signifi-
cant heterogeneity between studies (P = 0:003, I2 = 82:5%),
so a random-effects model was used. The comprehensive
results showed that the difference between two groups was
statistically significant (P < 0:001), and the stem cell group
was better than the control group.

3.3.3. MRI Index. A total of 10 studies compare the MRI
index of the stem cell group and the control group, as shown
in Figure 5, including rats, mice, and rabbits.

Four studies evaluated the effects of both groups in rats,
involving 120 rat discs. Stem cell types are mainly WJ-MSCs
and ADSCs. The heterogeneity test showed significant
heterogeneity between studies (P < 0:001, I2 = 86:2%), so a
random-effects model was used. The comprehensive results
showed that the difference between two groups was statisti-
cally significant (P < 0:001), and the stem cell group was
better than the control group.

Four studies evaluated the effects of both groups in mice,
involving 80 mouse discs. Stem cell types are mainly ADSCs.
The heterogeneity test showed significant heterogeneity
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between studies (P = 0:021, I2 = 69:2%), so a random-effects
model was used. The comprehensive results showed that the
difference between two groups was statistically significant
(P < 0:001), and the stem cell group was better than the con-
trol group.

Two studies evaluated the effects of both groups in rab-
bits and included 24 rabbit discs. Stem cell types are mainly

ADSCs. The heterogeneity test showed significant heteroge-
neity between studies (P = 0:029, I2 = 79:0%), so a random-
effects model was used. The comprehensive results showed
that the difference between two groups was statistically sig-
nificant (P = 0:016), and the stem cell group was better than
the control group.

3.3.4. MRI Signal Score. A total of 5 studies compared the
MRI signal score of the stem cell group and the control
group. As shown in Figure 6, there is only one animal, the
rabbit, which contains 64 rabbit discs. Stem cell types are
mainly BMSCs and ADSCs. The heterogeneity test showed
significant heterogeneity between studies (P < 0:001, I2 =
85:5%), so a random-effects model was used. The compre-
hensive results showed that the difference between two
groups was statistically significant (P < 0:001), and the stem
cell group was better than the control group.

3.3.5. T2 Signal Intensity. A total of 13 studies compare the
T2 signal intensity of the stem cell group and the control
group, as shown in Figure 7, including rabbits, mice, and
rats.

Six studies evaluated the effects of both groups in rabbits,
including 108 rabbit discs. Stem cell types are mainly BMSCs
and NPSCs. The heterogeneity test showed significant het-
erogeneity between studies (P < 0:001, I2 = 92:6%), so a
random-effects model was used. The comprehensive results
showed that the difference between two groups was statisti-
cally significant (P < 0:001), and the stem cell group was bet-
ter than the control group.

Four studies evaluated the effects of both groups in mice,
involving 80 mouse discs. Stem cell types are mainly ADSCs.
The heterogeneity test showed significant heterogeneity
between studies (P < 0:001, I2 = 84:1%), so a random-
effects model was used. The comprehensive results showed
that the difference between two groups was statistically sig-
nificant (P < 0:001), and the stem cell group was better than
the control group.

Three studies evaluated the effects of both groups in rats,
involving 100 rat discs. Stem cell types are mainly ADSCs.
The heterogeneity test showed significant heterogeneity
between studies (P < 0:001, I2 = 94:3%), so a random-
effects model was used. The comprehensive results showed
that the difference between two groups was statistically sig-
nificant (P = 0:003), and the stem cell group was better than
the control group.

3.3.6. Publication Bias. We used Egger’s method to detect
publication bias. The test results showed that DHI
(P < 0:001), disc height (P = 0:002), MRI index (P = 0:01),
MRI signal score (P = 0:016), and T2 signal intensity
(P < 0:001) had publication bias (P < 0:05), as shown in
Figures 8–12. We believe that publication bias may arise
from the selective reporting and publication of positive
results by authors and publishers.

3.3.7. Sensitivity Analysis. We conduct sensitivity analysis by
excluding articles one by one, as shown in Figures 13–17. It
can be seen from the figures that in the MRI signal score,
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after excluding the study of Zhou et al. [18], the combined
results changed significantly. In T2 signal intensity, the com-
bined results changed significantly after excluding the study
by Feng et al. [25]. This indicates that these two studies may
be one of the sources of heterogeneity. The remaining
merger results are robust and reliable.

4. Discussion

In this meta-analysis, we included a total of 34 studies cover-
ing four species of animals: rabbits (410 discs), sheep (110
discs), rats (403 discs), and mice (240 discs). We used five
imaging indicators, DHI, disc height, MRI index, MRI signal
score, and T2 signal intensity, to evaluate the efficacy of stem
cells in animal models. To our knowledge, this is the first
study to systematically evaluate the efficacy of stem cells in
animal models of disc degeneration over the past 20 years.
In our study, the stem cell group covered both monotherapy
and combination types, and subgroup analyses were per-
formed to minimize heterogeneity and increase confidence
in the results. Similar studies have not been done yet.

The results of our study showed that the effect of the
stem cell group in rabbits, mice, sheep, and rats was better
than that of the control group in terms of DHI. In terms

of disc height, the efficacy of the stem cell group in rats
was better than that in the control group, while in sheep,
there was no statistical difference in efficacy between the
two groups. In terms of MRI index, the effect of the stem cell
group in rats, mice, and rabbits was better than that in the
control group. In terms of MRI signal score, the stem cell
group was better than the control group in rabbits. In terms
of T2 signal intensity, the stem cell group was more effective
than the control group in rabbits, mice, and rats.

Determining a suitable cell source is the premise and
challenge for the successful establishment of disc regenera-
tion therapy [33]. Despite initial success, treatments using
purely autologous disc cell transplantation have not been
satisfactory [34, 35]. In particular, disc degeneration can pre-
cede disc herniation [36, 37]. Therefore, there is a need for
an alternative source of autologous cells. The repairing effect
of stem cells in the intervertebral disc has been confirmed by
a growing number of studies.

In the studies we included, ADSCs and BMSCs were the
most commonly used stem cells, both of which are able to
differentiate into chondrocytes [38, 39]. BMSCs not only dif-
ferentiate themselves into nucleus pulposus cells, but also
nourish the remaining nucleus pulposus cells by producing
cytokines such as transforming growth factor-β1 (TGF-β1)
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Figure 3: Forest plot showing the effect of stem cell group and control group on DHI in animal models.

8 Stem Cells International



Study
ID SMD (95% CI)

%
Weight

Choi (WJ–MSCs+HAMC) (2020)

Zhu (ADSCs+PEAD+GDF5) (2018)

Xiao (Ad–Sod2–ADSCs) (2020)
Xiao (Ad–Cat–ADSCs) (2020)
Xiao (Ad–null–ADSCs) (2020)

Zhou (ADSCs+NPCS) (2018)
Zhou (ADSCs) (2018)

Xiao (ADSCs) (2020)

Zhu (ADSCs+GDF5) (2018)

Choi (WJ–MSCs) (2020)

Rats

Mice

Rabbits

Subtotal (I2 = 86.2%, p = 0.000) 

Subtotal (I2 = 69.2%, p = 0.021) 

Subtotal (I2 = 79.0%, p = 0.029) 

•

•

•
Overall (I2 = 77.6%, p = 0.000) 

Note: weights are from random effects analysis

0 1 5.56 15

11.77 (7.82, 15.71) 5.98
11.14
10.59
12.52
40.24

9.85
9.55

12.02
11.81
43.23

6.04
10.49
16.53

100.00

4.53 (2.81, 6.25)
8.11 (6.18, 10.04)
4.36 (3.20, 5.52)
6.70 (4.16, 9.25)

6.20 (3.99, 8.41)
6.58 (4.26, 8.90)
3.25 (1.87, 4.63)
3.57 (2.11, 5.03)
4.67 (3.07, 6.28)

8.53 (4.63, 12.44)
3.66 (1.70, 5.63)

5.79 (1.06, 10.53)

5.56 (4.29, 6.84)

Figure 5: Forest plot showing the effect of stem cell group and control group on MRI index in animal models.
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[40, 41]. The effects of ADSCs are mainly reflected in reduc-
ing apoptosis, inhibiting pro-inflammatory factors, inhibit-
ing catabolic factors, and promoting cell proliferation

[42–45]. Since BMSCs only account for a small part of bone
marrow cells, tissue damage is inevitable during the extrac-
tion process [1]. In contrast, ADSCs can be easily collected
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Figure 6: Forest plot showing the effect of stem cell group and control group on MRI signal score in animal models.
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Figure 7: Forest plot showing the effect of stem cell group and control group on T2 signal intensity in animal models.
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from adipose tissue with a lower complication rate, and the
yield is higher than that of BMSCs, so they are more accept-
able [1, 8].

Although the above studies have confirmed that stem
cell therapy can repair the intervertebral disc, it still has a
limitation; that is, the content of type II collagen and proteo-
glycan in the repaired intervertebral disc is still lower than
that of the normal intervertebral disc [22]. Therefore, from
the characteristics of the studies we included (Table 1), it
can be seen that in the past 20 years, stem cell therapy has

undergone a process from being used alone to being used
in combination with other drugs or novel biomaterial scaf-
folds. The application of new biomaterial scaffolds has gradu-
ally attracted the attention of scholars. It has been suggested
that injecting stem cells into degenerated discs alone is not
enough, as acidic environment and inflammation can inhibit
their proliferation, while hypoxia and nutrient deprivation
may lead to apoptosis [46]. In contrast, scaffolds are designed
to provide a suitable three-dimensional microenvironment for
injected cells without cytotoxicity, allowing their distribution
and proliferation and promoting cell survival and differentia-
tion [9]. At the same time, the adhesion provided by the scaf-
fold can limit the leakage of cells through the annulus fibrosus
fissure, avoiding osteophyte formation and potential nerve
root compression [8]. This is the theoretical basis for the use
of bioscaffolds. However, there is no optimal bioscaffold mate-
rial yet [9]. From the studies we included, hydrogels reinforced
with various biomaterials (such as collagen, hyaluronic acid,
and chitosan) have been widely used due to their high biocom-
patibility, high viscosity, and biodegradability. Although the
hydrogel can provide some mechanical stability, its elastic
modulus is still lower than that of healthy nucleus pulposus
tissue, so it cannot provide sufficient mechanical support for
the intervertebral disc [18]. Therefore, in addition to simulat-
ing the local biological environment, enhancing mechanical
properties is another important goal of bioscaffold research
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[18]. Of course, the safety and long-term efficacy of these novel
bioscaffolds also remains to be verified over time.

From the perspective of the construction method of ani-
mal models, acupuncture caused annulus fibrosus damage,
which was widely used in the included studies. This model-
ing method has the advantages of simple operation, low cost,
and strong repeatability, and can cause the degeneration of

the intervertebral disc in a relatively short period of time.
However, the disadvantage is that there is a risk of infection,
which may cause an immune inflammatory response [47].
Also, as previously discussed, annulus fibrosus fissures
caused by acupuncture may lead to cell leakage. From the
point of view of animal selection, although it is believed that
large animals, especially sheep, because of the absence of
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Meta–analysis estimates, given named study is omitted
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1.62 1.76 2.03 2.30 2.50

Figure 13: Sensitivity analysis of DHI.
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Lykov (BMSCs+EPO) (2018)

Lykov (BMSCs) (2018)

Meta–analysis estimates, given named study is omitted
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Freeman (BMSCs into AFI) (2014)
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Schmitt (ADSCs+ChitosanGel) (2021)

0.35 0.64 1.09 1.54 1.99

Figure 14: Sensitivity analysis of disc height.
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notochordal cells and the good comparability with human
intervertebral discs in terms of biomechanical properties,
are the best simulations of human intervertebral discs except
primates [47]. However, from the studies we included, rab-
bits are still the most used animals, followed by rats, sheep,
and mice. We believe that this may be related to the eco-
nomic cost of animals. Large animals are more expensive

to raise and require higher experimental facilities. During
the literatures search, we found that there were also a small
number of studies using canine, porcine, and rhesus monkey
models, but due to the small number and no common out-
come indicators, meta-analysis could not be performed, so
these studies could only be excluded. We believe that, when
economic conditions permit, large animals are still the ideal

Choi (WJ–MSCs+HAMC) (2020)

Zhu (ADSCs+PEAD+GDF5) (2018)

Xiao (Ad–S od2–ADSCs) (2020)

Xiao (Ad–Cat–ADSCs) (2020)

Xiao (Ad–null–ADSCs) (2020)

Zhou (ADSCs+NPCS) (2018)

Zhou (ADSCs) (2018)

Xiao (ADSCs) (2020)

Zhu (ADSCs+GDF5) (2018)

Choi (WJ–MSCs) (2020)

Meta–analysis estimates, given named study is omitted
Lower CI limit Upper CI limitEstimate

3.93 4.26 4.83 5.40 5.77

Figure 15: Sensitivity analysis of MRI index.

Ma (ADSCs+PRP) (2018)

Ma (ADSCs) (2018)

Zhou (ADSCs+NPCS) (2018)

Zhou (ADSCs) (2018)

Wang (BMSCs) (2015)

Meta–analysis estimates, given named study is omitted
Lower CI limit Upper CI limitEstimate

4.01 5.06 6.61 8.16 14.05

Figure 16: Sensitivity analysis of MRI signal score.
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animal choice for disc degeneration. Although rabbits are
not as effective in simulating human intervertebral discs as
large animals, they have larger intervertebral discs compared
to rats and mice, are easy to operate, and have strong toler-
ance. They are still a suitable animal choice for limited eco-
nomic conditions. It should be pointed out that, given the
complexity of human disc degeneration, there is no animal
model that can fully simulate the entire pathophysiological
process of human intervertebral disc, and a perfect animal
model of disc degeneration still does not exist [47].

Imaging evaluation is the most commonly used clinical
evaluation method for disc degeneration. In terms of imag-
ing indicators, MRI index, MRI signal score, T2 signal inten-
sity, DHI, and disc height were the imaging indicators
commonly used in the included studies (Table 1). Therefore,
we performed this meta-analysis using these five indicators.
In addition to this, there were also studies using indicators
such as Pfirrmann grade, endplate degeneration score, NP
mid-sectional volume, and NP T2 relaxation time to assess
the degree of disc degeneration. Unfortunately, the amount
of literature using these metrics was too small to perform a
meta-analysis, so we had to discard these metrics. Since the
loss of intervertebral height is the most common imaging
manifestation of disc degeneration, DHI and disc height
were used in most studies, and most of them were measured
on X-ray films. Disc height is a direct measurement method,
which is greatly affected by factors such as population, age,
gender, height, weight, and body position, and cannot obtain
personalized measurement results. Therefore, the concept of
DHI was proposed, which focuses on reflecting the changes
in the disc height relative to the adjacent vertebral bodies,
and is a more personalized indicator [48]. The included
studies also reflect this, with DHI being used by more studies

relative to disc height. X-ray inspection has the advantages
of fast, convenient, and low cost. However, it cannot directly
image the intervertebral disc and is suitable for quick, rough
assessment. Although MRI is expensive and time-consum-
ing, it can directly observe the intervertebral disc, and the
signal intensity can directly reflect the degree of disc degen-
eration. MRI index, MRI signal score, and T2 signal intensity
are MRI-related indicators. In the studies we included, these
three indicators were directly calculated with the help of
third-party imaging software, such as Image J, GE ADW
work station, Analyze Direct, Paravision, and other software.
Except for the MRI index (NP area multiplied by the mean
signal intensity [49]), no studies have described the detailed
calculation of MRI signal score and T2 signal intensity. We
speculate that this may be related to the different ways of
data representation adopted by different software. To ensure
the accuracy of the results, we did not combine these two
indicators for analysis. In conclusion, from the studies we
included, disc height and MRI signal intensity are still widely
used imaging indicators for evaluating disc degeneration.

Our study has the following limitations. First, the hetero-
geneity of the studies is large. We believe that this may be
related to the large differences in the injected dose of cells
and the observation time between each study. Moreover,
the imaging equipment used differs between studies, and
the specific values of the images are calculated by third-
party software, and the types of these softwares are also
different, which may bias the results. Another point is the
restriction of animal movement in the rearing environment,
which was mentioned in only a few of the studies we
included. We believe that differences in the amount of ani-
mal exercise caused by crowded and loose housing environ-
ments may also affect the degenerative process of the

Yan (BMSCS+SAB) (2019)

Yan (BMSCs) (2019)

Chen (NPSCs) (2015)

Feng (BMSCs) (2010)

Cai (BMSCs) (2014)
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Xiao (Ad–Sod2–ADSCs) (2020)

Xiao (Ad–Cat–ADSCs) (2020)

Xiao (Ad–null–ADSCs) (2020)

Xiao (ADSCs) (2020)

Zhu (ADSCs+PEAD+GDF5) (2018)

Zhu (ADSCs+GDF5) (2018)

Jeong (ADSCs) (2010)

Meta–analysis estimates, given named study is omitted
Lower CI limit Upper CI limitEstimate

2.37 2.59 2.99 3.39 4.21

Figure 17: Sensitivity analysis of T2 signal intensity.
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intervertebral disc, which is also a source of heterogeneity.
Finally, we have yet to find studies examining the mechani-
cal properties of the repaired disc, which may be the next
step for refinement.

5. Conclusion and Prospect

In this study, through a large-scale meta-analysis of 34 stud-
ies, under multiple animal species and multiple evaluation
indicators, the therapeutic effect of stem cells in the animal
models of disc degeneration was observed from the perspec-
tive of imaging, which further demonstrated the role of stem
cells in promoting intervertebral disc repair. However, it
should be pointed out that it is not enough to demonstrate
this repair effect from an imaging perspective alone.
Researches on histology, biomechanics, and other aspects
are also essential, which is also the direction of our next
efforts.

At present, most of the studies related to the repair of
disc degeneration with stem cells are still in the stage of
cell and animal experiments, and there is still a distance
from clinical use. Encouragingly, there are already studies
taking the first steps towards clinical application [50–52].
In addition, the current bioscaffold materials still have
much room for improvement in terms of biocompatibility
and mechanical properties. Finally, how to deliver stem
cells more safely and accurately into the body and the tim-
ing of intervention are still issues that need to be resolved
in the future.
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