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Abstract

Collective, coordinated cellular motions underpin key processes in all multicellular organ-

isms, yet it has been difficult to simultaneously express the ‘rules’ behind these motions in

clear, interpretable forms that effectively capture high-dimensional cell-cell interaction

dynamics in a manner that is intuitive to the researcher. Here we apply deep attention net-

works to analyze several canonical living tissues systems and present the underlying collec-

tive migration rules for each tissue type using only cell migration trajectory data. We use

these networks to learn the behaviors of key tissue types with distinct collective behaviors—

epithelial, endothelial, and metastatic breast cancer cells—and show how the results com-

plement traditional biophysical approaches. In particular, we present attention maps indicat-

ing the relative influence of neighboring cells to the learned turning decisions of a ‘focal

cell’–the primary cell of interest in a collective setting. Colloquially, we refer to this learned

relative influence as ‘attention’, as it serves as a proxy for the physical parameters modifying

the focal cell’s future motion as a function of each neighbor cell. These attention networks

reveal distinct patterns of influence and attention unique to each model tissue. Endothelial

cells exhibit tightly focused attention on their immediate forward-most neighbors, while cells

in more expansile epithelial tissues are more broadly influenced by neighbors in a relatively

large forward sector. Attention maps of ensembles of more mesenchymal, metastatic cells

reveal completely symmetric attention patterns, indicating the lack of any particular coordi-

nation or direction of interest. Moreover, we show how attention networks are capable of

detecting and learning how these rules change based on biophysical context, such as loca-

tion within the tissue and cellular crowding. That these results require only cellular trajecto-

ries and no modeling assumptions highlights the potential of attention networks for providing

further biological insights into complex cellular systems.

Author summary

Collective behaviors are crucial to the function of multicellular life, with large-scale, coor-

dinated cell migration enabling processes spanning organ formation to coordinated skin

healing. However, we lack effective tools to discover and cleanly express collective rules at
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the level of an individual cell. Here, we employ a carefully structured neural network to

extract collective information directly from cell trajectory data. The network is trained on

data from various systems, including canonical collective cell systems (HUVEC and

MDCK cells) which display visually distinct forms of collective motion, and metastatic

cancer cells (MDA-MB-231) which are highly uncoordinated. Using these trained net-

works, we can produce attention maps for each system, which indicate how a cell within a

tissue takes in information from its surrounding neighbors, as a function of weights

assigned to those neighbors. Thus for a cell type in which cells tend to follow the path of

the cell in front, the attention maps will display high weights for cells spatially forward of

the focal cell. We present results in terms of additional metrics, such as accuracy plots and

number of interacting cells, and encourage future development of improved metrics.

Introduction

Coordinated, collective migration is a hallmark, and enabler, of multicellular life. Spanning

local clusters of migrating cells [1], large-scale supracellular migration across tissues [2,3],

wound healing, and even coordinated cancer invasion [4,5], coordinated patterns of motion

allow for complex behaviors to emerge. Understanding the collective behaviors that enable

these processes can not only improve our fundamental biological knowledge, but can allow us

to more effectively detect abnormalities and pathologies, and perhaps make better prognostic

or diagnostic assessments [6,7]. To realize this potential, we need to first be able to define the

underlying ‘interaction rules’ that give rise to something like humans queuing in line, jammed

penguins clusters shuffling on the ice [8], and metastatic cancer cells disseminating through

healthy tissue [7]. However, detecting and classifying these behaviors is not straightforward, as

different fields rely on unique tools, analyses, and lexicons. Here, we explore the utility of

translating deep attention networks, previously used to reveal rules of collective motion in tens

of schooling fish [9], to thousands of interacting and migrating cells of disparate origins with

unique patterns of motion—blood vessel endothelial cell sheets; kidney epithelial cell sheets;

and large ensembles of metastatic breast cancer cells (representative motion trajectories are

shown in Fig 1A–1C, with movies in S1–3 Movies, respectively). We follow the methodology

of Heras et al. [9] in both modeling and analysis. Crucially, this technique requires only cell

trajectory data rather than any assumptions of underlying models or dynamics.

As collective behaviors play out at the ensemble level, approaches from statistical mechanics

are used to great effect to identify patterns in collective cell motion. For instance, early applica-

tions of measures such as velocity correlations to assess order and directionality in bird flock

and fish school dynamics [10–12] have since been repurposed for collectively migrating cells

[13–17]As an example, we computed the ensemble speed, velocity cross-correlations (Fig 1D–

1E), and mean-squared-displacements (S1A Fig) for three radically different cell types—epi-

thelia, endothelia, and metastatic breast cancer cells. While all three systems exhibit similar

mean migration speeds, they deviate in the other metrics. MDCK epithelia and HUVEC endo-

thelia cells are known to migrate collectively and present very similar, slowly decaying velocity

cross-correlations; indicative of long range correlated motion (Fig 1E). Metatstatic MDA-MB-

231 cells, by contrast, show a much more abrupt drop in correlation over distance (Fig 1E)

indicating much smaller coordinated domains. Further analysis via the mean-squared-dis-

placement (MSD) can also allow biophysical classification of collective migration strategies by

categorizing motion as super-diffusive (endothelial), highly diffusive (metastatic cells), or a

mix of super-diffusive and caged (epithelia) as in S1 Fig. In this vein, others have used
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measures of self-diffusivity and internal deformations to describe the glass-like dynamics of

such systems, quantifying the similarities between fluid-like behavior of cell sheets over long

time scales and solid-like behavior at short time scales with supercooled fluids approaching a

glass transition [18]. However, these are all bulk metrics describing the overall rheology or

coordination of the population rather than providing data that can be interpreted at the level

of the ‘rules’ followed by a given cell in the population.

Fig 1. Cell trajectory data reveals collective rules. (A, B, C) Representative cell trajectories within living tissues, from human umbilical vein endothelial cells

(HUVEC), Madin-Darby Canine Kidney cells (MDCK), and epithelial, metastatic human breast cancer cells (MDA-MB-231), respectively. All three cell lines

exhibit visually distinct dynamics: the HUVECs tend to have strongly correlated and directed leader/follower behavior; while MDCKs exhibit more complex

coordination patterns and lack the directedness of HUVECs (e.g. see [23]); and the MDA-MB-231’s lack coordination with neighbors. Scale bars are 100 μm.

See S1–3 Movies. (D) Classical collective analysis techniques reveal some group characteristics, such as mean speed or (E) velocity cross-correlations. (F) Deep

attention networks trained on cell trajectory data can directly reveal new types of collective information, such as the learned relative influence of neighboring

cells to forward motion of a focal cell. Here, the agents in front of the focal cell have higher weights, W (see Eq 1), with relative directions determined by agent

trajectories. Cell position is representing using nuclei centroids and black lines indicate Voronoi cells (see Methods).

https://doi.org/10.1371/journal.pcbi.1009293.g001
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Further, numerous classical physical models have been developed in an attempt to describe

collective cell migration, including lattice, phase-field, active network, particle, and continuum

models [19], with some scholars moving towards the utilization of reinforcement learning to

construct agent-based models in recent years [20–22]. A hallmark of all of these approaches is

that they are rooted in physical assumptions and first principles. Since the classical approaches

are constrained by parameter complexity, enabling scientists to write mathematical descrip-

tions of the system and obtain an intuitive grasp of the model components, they are often

unable to effectively or efficiently capture high-dimensional interaction relationships.

Deep learning, in contrast to physics-based approaches, offers intriguing potential for the

automated discovery of collective behaviors based solely on relatively simple biological input

data, such as cell migration trajectories. This approach can reduce researcher bias and the

need for formalized models and, when paired with interpretable data output and visualiza-

tions, can express clear patterns of behavior in complex systems. Thanks to recent advances in

high-throughput, high-content microscopy [24,25] and image processing [26–30], rich visual

features can be extracted from massive, dynamic populations of cells, providing a wealth of the

kind of raw data through which deep learning approaches excel at sifting. Unfortunately, while

deep learning methods can be structured to capture high-dimensional functions, they are

often difficult to interpret. To address this, recent efforts have employed a newer approach—

deep attention networks [31–33]—to reveal collective rules in schools of zebrafish (Danio
rerio). Critically, such attention networks can be structured such that system dynamics can be

learned using a function which is parameter-rich while still requiring only a small number of

inputs and outputs [9]. In this study, we apply deep attention networks to large cellular ensem-

bles in an attempt to identify patterns of cellular attention and underlying collective rules. Spe-

cifically we ask the following question of the deep attention network: given a ‘focal’ cell in a

group of cells of a given type, where the ‘focal’ cell is simply the primary cell of interest and

interacts with n nearest neighbor cells, to which other cells does the focal cell seem to “pay the

most attention” when deciding how to turn? More technically: which neighboring cells have

greater relative influence on the forward motion of the focal cell, according to the dynamics

learned by the model (Fig 1F)?

It is this interpretability of deep attention networks which is so crucial to the identification

and classification of collective rules. For any given focal cell, asocial data (α, trajectory data

from the focal agent) and social data from n nearest neighbors in the collective (σi, relative

positions, velocities, accelerations of neighbors) are integrated by the deep attention network

to predict the future motion of the focal cell—whether it will turn left/right, for example. Here,

interpretability is gained because the network is structured in the form of an equation which

combines a pairwise interaction function, P, with a standard weighting function, W, as fol-

lows:

z ¼
Xn

i¼1

Pða; siÞ
Wða; siÞ
SjWða; sjÞ

; ð1Þ

where z is a logit, a single value indicating a left or right turn of the focal agent after a fixed pre-

diction timestep, and n is the total number of nearest neighbors [9]. The logit differentiates

between forward motion in the left hemisphere with respect to the focal agent’s forward head-

ing, and forward motion in the right hemisphere. Since the pairwise interaction,P, and weight

function, W, may vary according to the social and asocial variable inputs, various collective

interaction rules may be recovered by observing how these functions and the output logit z
change as the inputs vary: see analyses of simulated and experimental swarm systems in [9].

These analyses may be further supplemented or validated using classical techniques, such as

PLOS COMPUTATIONAL BIOLOGY Learning the rules of collective cell migration using deep attention networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009293 April 27, 2022 4 / 28

https://doi.org/10.1371/journal.pcbi.1009293


assessment of mean speeds, velocity cross-correlation and MSD within a migrating collective

(Figs 1D, 1E and S1A). For cellular systems, we focused on attention maps, which represent

the output of the weight function, W, for many nearest neighbors, thereby allowing us to deter-

mine for any given cell which neighbors most strongly influence the future motion of the focal

cell according to the trained deep attention network model (Figs 1F and S2). Combining these

maps over many focal cells provides a sense of the ensemble migration rules.

To first build confidence in this approach from complex collective migration systems, we

tested network performance against the classic Vicsek agent-based model of collective motility.

Here, agents move with constant speed and adjust their heading to the average of all other

agents within their perception zone, typically a circle of a given radius, and we implemented

this in a manner that allowed us to directly pass trajectory data of individual agents to the

attention network (see Methods for our simulation parameters and approach). First, we con-

firmed that the network could recover the largely radially symmetry attention zone of the clas-

sic Vicsek model (S3A Fig). Next, and more striking, we implemented specific narrowed

perceptual zones, reducing any given focal agent’s awareness to a small sector of different

widths and directions. To a human observer, this subtle shifts in perceptual zone are impossi-

ble to detect by observation alone, and would be quite difficult to extract using classical meth-

ods. However, the network was able to accurately recover each unique perceptual zone we

tested (S3B–S3D Fig). Together with boids model simulation results in Heras et al. [9], these

data validate the efficacy of attention networks and allowed us to move forward with cellular

analyses.

Defining and constraining the problem: cellular model systems

selection

To determine if deep attention networks reveal useful information from cellular systems, we

selected three standard tissue models commonly used as gold standards in collective cell

behavior studies. First, we considered sheets of cultured Human Umbilical Vein Endothelial

Cells (HUVECs) whose hallmark is the development of strongly aligned ‘trains’ of cells migrat-

ing in a leader-follower fashion with weak lateral interactions. Next, we compare these to kid-

ney epithelial sheets (MDCK cells)—one of the most well-studied living collective systems

whose cells classically produce coordinated, swirling domains. Finally, as a negative control we

attempt to extract the rules for metastatic breast cancer cells (MDA-MB-231) as metastatic

cells behave more mesenchymally, or individualistically, and are known to lack key cell-cell

interaction proteins [34–36]. Representative collective motion trajectories of these three cell

types are shown in Fig 1A–1C, respectively.

To a human observer, these tracks are visually distinct, but relating the ensemble visual pat-

terns to which neighbors are most influential to the future motion of a given focal cell, as a

function of the learned dynamics, is not simple. Classical group-level analyses can be used to

quantify and understand some of these patterns, as discussed earlier with respect to correla-

tions and migratory dynamics (Figs 1D, 1E and S1A). However, while classical ensemble anal-

yses are powerful and can, and should, be used to learn more about these systems, ultimately

they cannot directly answer the question we posed above about how the dynamics of a given

focal cell are influenced by specific nearest neighbors. To address this, we trained a deep atten-

tion network using cell trajectory data from long, time-lapse recordings. The trained network

can then directly determine the number, location, and characteristics of the most important

neighbors for a focal cell, as shown in Fig 1F where a focal agent is shown with its 10 nearest

neighbors. Here, the neighbors are colored according to the (normalized) aggregation weights

(W) from a model trained on tissues of the same type (MDCK). Due to the structure of the
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network, the colors indicate the relatively higher influence of neighboring cells forward and to

the sides of the focal cell for influencing migration behaviors (representative snapshots from

our other model systems are shown in S2 Fig). In this study, we focused on aggregating these

snapshots across many focal agents- and their respective neighbors- to produce even more

informative attention maps.

Our approach here was to examine and compare attention maps for different cell types and

analysis conditions in order to determine the feasibility of using deep attention networks for

collective cell behavior insights, and to provide design guidelines for optimal parameters for this

application. From the network perspective, we investigated prediction time intervals, image

sampling frame rates, number of neighbors accounted for by the network structure, and blind-

ing to certain input parameters; in each case using archetypal cell types for validation. Having

validated the network, we then explored within a single model system how tissue age and where

a cell is located within a tissue of a given shape affected neighbor interactions rules. When possi-

ble, we compare our findings from the network-produced attention regimes to results from

classical analytical methods. Overall, our results demonstrate that deep attention networks offer

a powerful, complementary approach to classical methods for analyzing cellular group dynam-

ics that can reveal unique aspects of how specific cell types interact at the tissue level.

Results

Demonstration of attention maps for canonical cell types

To validate the deep attention networks on canonical experimental model systems, we first

compared network performance on HUVEC endothelial sheets and MDCK epithelial sheets.

Representative fluorescence images of each cell type are shown in Fig 2A highlighting VE- or

E-cadherin at cell-cell junctions. This context is important to understand that highly collective

cells tend to be physically coupled to each other through mechano-sensitive junctional pro-

teins [37]. To standardize all model systems and analyses and provide sufficient replicates, we

grew tissues in microfabricated circular stencil arrays and seeded a sufficient number of cells

to reach confluence before analysis. Specifically, we incubated cells within these stencils for

~16 hrs to ensure formation of confluent tissues with no gaps (all cells should have contiguous

neighbors), and then removed the stencils to allow the tissues to grow out. This approach is

well characterized for these cell types and collective cell behavior studies [15,38] and generates

tissues with distinct boundary and bulk regions. We then performed automated, phase-con-

trast time-lapse imaging over 12–24 hrs. Nuclei were segmented using a convolutional neural

network [39] (MDCK), or live nuclear imaging (HUVEC, MDA-MB-231), and then tracked to

generate trajectories for every cell over the course of the experiment, after which the data were

ready for attention analysis.

Raw trajectory data were processed to determine the social and asocial variables as input to

the attention network, as well as output turning logits. Data were split into training, validation,

and test sets, and all results provided are reflective of the test set (with the exception of training

loss and accuracy plots in S4 Fig). Raw data, code as adapted from Francisco J. H. Heras et al.

[9], and documentation are provided at GitHub and Zenodo (see Methods). To best visually

capture an attention map for a given tissue type, we integrated the individual attention snap-

shots (e.g. Fig 1F) over 10,000 individual cells from across the different replicates and interpo-

lated the attention weights in space (x,y position of neighboring cells of the focal cell) as a

contour plot as shown in Fig 2C–2C’. For our initial analyses, the attention networks were

structured to analyze only the 10 nearest neighbors of a given focal cell, trajectories were sam-

pled every ten minutes, and the prediction interval was 20 minutes. The importance of these

parameters and related design considerations will be discussed in the following sections.
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Looking first at the attention maps for HUVECs and MDCKs immediately revealed clear

differences in collective attention between the two cells. Starting with HUVECs, the network

determined the most influential neighbors to be overwhelmingly directly ahead of a given

focal cell (Fig 2C) with very little influence from either side or the rearward neighbors. An

advantage to working with HUVECS is that there is a clear biological basis for such behavior—

polarized fingers of VE-cadherin (visible in Fig 2A) protrude from the leading edge and into

the trailing edge of any given cell in a train. Such fingers are not observed at lateral edges,

resulting in the highly directed ‘trains’ of cell migration so characteristic of HUVECs [40].

Intriguingly, the lack of rearward attention captured in the map reveals information not

immediately recoverable by classical methods, which have previously indicated only that veloc-

ity correlations exist between a focal agent and both its forward and rearward nearest

Fig 2. Network attention across canonical cell types. (A) VE-cadherin cell-cell junctions are indicated in red, with cell nuclei indicated in blue. VE-cadherin

fingers in HUVEC cells indicate the direction of coupling between leader and follower cells. Scale bar is 30 μm. (B) E-cadherin cell-cell junctions are indicated

in red, with cell nuclei indicated in blue. E-cadherin walls do not visibly indicate coordination as VE-cadherin in HUVECs. Scale bar is 30 μm. (C, C’)

Representative attention weight contour plots are shown for HUVEC (top) and MDCK cells (bottom). For all conditions, normalized weight maps are shown.

The HUVEC attention map highlights the tendency of HUVECs to “follow the leader”, with high attention weight values assigned to cells directly in front of

the focal cell, spatially. By contrast, the MDCK map displays higher attention weights forward and to the sides. Central black circles indicate the radius of the

closest neighbor location in the dataset. For all plots shown, networks were structured to encompass 10 neighbors, with trajectory timesteps of 10 minutes and

forward prediction times of 20 minutes. (D, D’) Histograms showing the distribution of data points (neighbor cell locations) from which the attention maps in

(C, C’) were generated. In (C, C’) and D, D’), thin red circular lines indicate the annulus in which the bulk of the data (5%-95%) lies by radius (see Methods).
Network results are expected to be more reliable within this region. Histogram bins span 1 μm2. (E, E’) Scatter plots showing locations of the closest neighbor to

a focal agent across all focal cells, colored by normalized attention weight. (F, F’) Histograms showing the locations of only the neighbor with highest weight

value for each individual focal cell. Histogram bins span 1 μm2.

https://doi.org/10.1371/journal.pcbi.1009293.g002
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neighbors, respectively [40]. Similarly, fluorescence imaging data alone was unable to reveal

the relative influence of front versus rear fingers. By contrast, the network can decouple simple

directionality correlations (e.g. cells are moving the same direction) from attention, revealing

that the immediately forward cells specifically have far more influence on endothelial cells than

lateral or rear cellular neighbors. By contrast, MDCK cells exhibited a far broader angle of

influence (Fig 2C’), with the most influential neighbors apparently lying within a ~160˚sector

around a given focal cell. This again agrees with biological context, given that epithelial cells

tend to adhere strongly to neighbors on all sides (Fig 2B) and move through arcing turns as

large, correlated domains [15,16,38]. Attention maps generated after different training steps

(in epochs) are shown in S5 Fig, and demonstrate convergence of the attention maps to the

fully trained result; these maps correspond to the training validation accuracy plots shown in

S4 Fig. With increasing accuracy, the attention maps refine to produce clearer patterns of

learned relative neighbor influence by spatial location. Attention maps are additionally gener-

ated for slower and faster cells in the system independently (above/below a median speed

threshold), but no structural difference in the plot was observed (see S6 Fig). The network

capacity to capture specific narrowed perceptual ranges were additionally validated in simula-

tion utilizing a Vicsek model (S3 Fig, Methods). To a human observer, the perceptual zones of

the agents are impossible to detect from the simulation output. In conjunction with the simu-

lation results in [9], this provides support for attention networks as a valuable tool for accu-

rately extracting perception information encoded in trajectory data.

Attention maps are interpolated over the population and could potentially be biased if cells

were irregularly distributed spatially. To rule this out, we analyzed distributions of neighbor

locations (Fig 2D–2D’) for the data used to calculate attention maps (Fig 2C–2C’) These plots

indicate where the 10 nearest neighbors of any given focal cell were likeliest to be found, bear-

ing in mind that all analyzed populations were confluent (the cells fully tiled the 2D space).

Additionally, we indicate via thin red circular lines the annular region within which the bulk

of the data points (5%-95%) lie as a function of radius (Fig 2C–2F’). Supplemental analogous

histograms of the closest neighbor plots for all three main cell systems are provided in S7 Fig

for comparison. The trained attention network weights are expected to be more reliable within

this annular region than in external regions where data points were too sparse to ensure ade-

quate modeling. In HUVECs, these neighbors appear to be evenly distributed within ~100 μm

directly ahead of the focal cell. In MDCKs, however, the neighbor distribution showed a dis-

tinct gradient, with likelihood of neighbors peaking within an ~15 μm radius of the focal cell,

and then dropping off by ~50 μm. However, in both cases neighbors are evenly angularly dis-

tributed about a given focal cell, meaning that the anisotropic attention maps are not due to

irregular neighbor distributions, and must instead genuinely reflect spatial patterns of cellular

attention. Finally, attention maps were additionally generated for slower and faster cells in the

system independently (above/below a median speed threshold), but no structural difference in

the plot was observed (see S6 Fig).

Attention networks offer the flexibility to investigate both population and individual cell

details, so we next raised the following question: is the closest nearest-neighbor always the

most important? We addressed this by comparing the attention weights of only the single clos-

est nearest-neighbor of each focal cell to attention maps showing the locations of only the

most highly influential neighbors. Fig 2E–2E’ are scatter plots of only those neighbors which

are the single closest neighbor by radial distance to the focal agent, with focal agents consistent

with those shown in Fig 2C–2C’. The scatter points are colored by normalized attention

weight. Fig 2F–2F’ are histograms indicating the location of only the single highest weighted

neighbor to those same focal cells. Here, we found that while the nearest neighbors themselves

were uniformly distributed around a given focal cell, the relative importance of a given
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neighbor depended on both proximity and orientation, rather than proximity alone, and this

trend applied to both of our archetypal tissues. When considered together, the kinds of analy-

ses shown in Fig 2 can provide a unique, rich view of the interaction network and decision

making within tissues.

Learned important neighbors and neighborhood size

Tissues such as the epithelia and endothelia serve a barrier and structural function, meaning

they must maintain integrity. To accomplish this, cells tile together to form confluent layers

with no empty space [41,42]. In such tissues, the dominant signaling appears to be largely

mechanical, with traction strains coupled through the substrate and cell-cell tension coupled

through cell-cell adhesion proteins such as the cadherins [43,44]. In such barrier tissues, a

focal cell only directly communicates with those neighbors to whom it is physically adhering,

while longer range force coupling requires that mechanical information be relayed from cell to

cell. Hence, confluent tissues acquire distinct packing geometries, with a key metric being the

number of physically contacting nearest neighbors [45,46]. This raises an interesting question

from the perspective of an attention network: what is the relative influence of contiguous

neighbors versus neighbors farther afield?

We first investigated this using our MDCK epithelial model as significant biophysical data

exist on cell-cell adhesion, packing structure, and force coupling. Here, we used cell nuclei to

tile a tessellation, from which we calculated the total number of physically contiguous neigh-

bors for each focal cell (Methods). These data are compiled in Fig 3A, showing that MDCKs

typically possess 5–6 contiguous nearest neighbors. The deep attention networks, however,

may be flexibly structured to take input information from arbitrarily large groups of neighbor-

ing cells in order to predict turning motions of the focal agent. Thus, the network may have

direct information pertaining to cells which the true biological agent may not physically con-

tact. It is essential to remember this key distinction as larger network structures are explored:

predictive power in the model may not directly indicate causative biological influence. For all

analyses shown for MDCK cells in Fig 3, the corresponding neighbor distribution, closest

neighbor, and highest weighted neighbor maps are shown in S8 Fig. For the matching study
with HUVEC endothelial cells, see S9 Fig.

By utilizing a function of the inverse of the typical weight, wt, as in [9]:

Ntotal ¼
1

wt
¼ e�

P
i
wi log ðwiÞ; ð2Þ

the most important neighbors (as learned by the network) to the turning dynamics may be

estimated. The number of total and “important” interacting agents are shown in the histogram

in Fig 3B, wherein a peak in the number of important interacting agents may be observed at 5

neighbors, indicating the bulk of influence to the learned dynamics even when the network

has access to information from ten neighbors in total. These data add context to the findings

in Fig 2 indicating that a combination of proximity and location determines relative influence

for a given neighbor.

To assess the impact of providing trajectory information to the network from larger sets of

nearest neighbors (structurally, more pairwise-interaction and aggregation subnetworks), we

provide network accuracy results from networks spanning 5–50 neighbors in increments of 5

(Figs 3D and S10 for additional accuracy results) and representative attention plots from net-

works structured to account for 10, 20, and 30 nearest neighbors in total (Fig 3E–3E”). Addi-

tionally, we consider different prediction time intervals to explore how attention network

accuracy relates to predicting turning dynamics 20 minutes vs. 60 minutes into the future. In
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all cases, we distinguish accuracy results across all turning motions of the focal cell (“all turns”)

from accuracy results restricted to turning motions ranging from ±20–160˚ (“large turns”)

(see Fig 3C). This compensates for edge cases where a cell may turn only very slightly off the

forward axis. Overall, we notice three distinct trends relating to neighborhood size, turn mag-

nitude, and temporal variables and discuss each aspect of Fig 3D in turn here.

With respect to prediction time steps, we observed a clear trend in both MDCK epithelia

and HUVEC endothelia where the network accuracy improved with increasing time-steps,

with data from either 20 min or 60 min forward predictions shown (red and blue lines in Fig

3D; see attention maps in S11 Fig). While modest (~5–7% for MDCK), we hypothesize that

this trend reflects the relatively high persistence of confluent cells in epithelia and endothelia

(S12D Fig). More specifically, predicting ahead over shorter time steps (e.g. 20 minutes) is

more susceptible to fluctuations in the cellular dynamics and noise in the tracking data, while

predicting over longer timesteps (e.g. 60 minutes) should act to temporally filter out these fluc-

tuations and better emphasize the directed nature of cell migration in these cell types. Addi-

tionally, cells will undergo smaller displacements over short time steps, likely resulting in more

ambiguous cases at the logit boundary (directly forward of the focal agent) where small spatial

variations may produce a change in left vs. right turn classification.

Fig 3. Local vs. long-range interactions in MDCK epithelia (bulk regime). (A) The number of nearest neighbors based on an analysis of 1165 cells using the

ImageJ/FIJI [47] BioVoxxel plugin [48] (see Methods). A peak can be observed at 6 nearest neighbors. (B) Histograms of total interacting cells (blue) and

“important” interacting cells (red), as determined by a function utilizing the network aggregation weights (W) to estimate the most influential neighbors to

learned focal cell dynamics. (C) A snapshot of MDCK cells with blue region indicating the extent of “large” turns (±20–160˚) according to the focal cell

trajectory, as indicated by the pink arrow. Scale bar represents 20 μm. (D) Network accuracy plots as prediction time and number of input neighbors is varied.

Solid lines reflect accuracy scores for all turning angles in the focal agent trajectory; dashed lines reflect only large turns (±20–160˚, see C). Accuracy increases

with both number of neighbors encompassed by the network and prediction time. Cell trajectory timesteps were fixed at 10 minutes. (E, E’, E”) Attention maps

for networks encompassing 10 (E), 20 (E’), and 30 (E”) neighbors. Plots shown here are analogous to Fig 2C’, with cell trajectory timestep of 10 minutes. As the

number of neighbors taken into consideration by the network increases, a wider spatial range of interactions may be considered for forward motion prediction.

With an increased range from which dynamic information can be directly captured from neighboring agents, we can observe shifts in learned relative influence

of neighbors; for example, as longer-range neighbors provide richer information pertaining to dynamic shifts in the forward direction than immediate forward

neighbors. See S9 Fig for the matching study in HUVEC endothelial cells.

https://doi.org/10.1371/journal.pcbi.1009293.g003
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To explore the importance of turning angles and the logit boundary, we compared accuracy

data for ‘all turns’ versus that for ‘large turns’, as defined earlier and highlighted in Fig 3D.

This comparison clearly showed improved accuracy for larger versus smaller turns. Again, this

is due to smaller turns being closer to the logit boundary (0˚) and more difficult to predict.

This finding was borne out across all experiments presented here. Further, the concept of turn

magnitude can clarify the relationship between cell type and accuracy as certain cell types

favor much smaller turns than others. To emphasize this, we plotted a radial histogram of focal

turn angles in S12A–S12C Fig, where it is clear that HUVEC endothelial cells favor smaller

turning angles (higher persistence) than MDCK epithelial cells (see S12D Fig for persistence

plots). This explains why the network is more accurate at predicting MDCK vs. HUVEC

behaviors, as HUVEC motion will lie closer to the logit boundary.

Overall, the number of neighbors assessed by the network was the most influential variable

on network accuracy—as the network was structured to account for larger sets of nearest neigh-

bors, the accuracy increased monotonically (Figs 3D and S9D). This trend was also true across

all epithelial and endothelial datasets we considered, with varying strength. For instance, MDCK

attention maps were more strongly affected by neighborhood size than HUVEC maps were (Fig

3D vs. S9D Fig). To more clearly capture this, we compared attention maps for three different

neighborhood sizes (10, 20, and 30 nearest neighbors; NN) in Fig 3E–3E” for MDCK cells.

Increasing the neighborhood size from 10NN to 30NN resulted in a shift from a forward cone of

influence to more of an axially symmetric lobular structure. This shift is further emphasized by

the associated scatter plots of closest nearest neighbors and highest weighted neighbors (S8A-A”,

S8B-B”, S8C–S8C” Fig, respectively). Again, we emphasize that the neural network will have

access to trajectory data for each one of the n neighbors, whether or not the real focal agent does,

and that long-range interactions (such as chemosignaling) can be captured as long as they occur

within the timespan of the trajectory data. Users must be wary of any unique boundary phenom-

ena (sustained tissue outgrowth and moving fronts), which may be captured within the analyzed

timeframe and can influence the learned importance of long-range neighbors.

Context of network accuracy for collective cell migration

The link between network accuracy and neighborhood size reflects an important and counter-

intuitive design consideration since the cells we analyzed here, unlike fish, only have direct,

physical awareness of their true contiguous nearest neighbors. Hence, while the accuracy

increases with increasing number of nearest neighbors accounted for by the network, as more

information can be obtained over a wider spatial range, an individual cell has a more limited

biological sensing regime. Thus, an increase in accuracy with increasing neighborhood size

may not reflect biological realities of the system, and may instead result from the network

learning more longer-range interactions. Given this, it may be helpful to configure attention

networks to match the desired biological questions or constraints rather than exclusively pur-

suing accuracy.

Typically, the objective is to obtain as high an accuracy result as possible for a given task for

most deep learning problems. Here, by contrast, the objective is more nuanced: first, we are

not interested in specifically using the predicted turning logit, but rather contrive the dynamics

prediction task specifically in order to recover collective rules from the trained network

weights in the form of interpretable attention maps. That is, the network only has to be “good

enough” to learn the essential collective dynamics. Second, certain systems may be more chal-

lenging to learn, such as the HUVECs which tend towards small turning angles.

To account for these two difficulties, we compare the standard network accuracies to accu-

racies derived from a network trained using shuffled trajectories: specifically, where social but
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not asocial data is shuffled for each trajectory. A difference in accuracy values indicates that

the network captures collective phenomena. For MDCKs, the standard training accuracy was

64.3% for all turns, 70.1% for large turns, compared to the shuffled training accuracy which

was 59.1% for all turns, 62.5% for large turns. For HUVECs, the standard training accuracy

was 58.0% for all turns, 58.5% for large turns, compared to the shuffled training accuracy

which was 53.4% for all turns, 53.1% for large turns. While we consider this accuracy increase

to indicate learned collective dynamics, we hope that our work will encourage the development

of richer dynamic prediction tasks and metrics to this end.

In addition to network structure modifications, we also assessed the importance of (1) sam-

pling rate (time intervals between data points), and (2) the choice of input variables. To explore

sampling rate effects, we compared our prior networks trained on data captured at 10 min/

frame to new networks trained from scratch on data sub-sampled at 20 or 30 min/frame (S13

and 14 Figs for MDCK and HUVECs, resp.) In these experiments, the accuracy increases as

the time delay is increased, most likely due to the access of the network to longer total time

intervals due to the use of the same number of historical time steps. Finally, we blind the net-

work to focal tangential acceleration and neighbor accelerations (S15 Fig), that is, we exclude

these parameters as input to the network. The accuracy results are not significantly impacted

by the exclusion of acceleration parameters. When we consider network performance in a

complex system like an epithelium, we see that no single modification—temporal variables,

neighborhood size, turn binning—accounts for more than a 10% improvement in perfor-

mance at best, while all network conditions outperformed a random guess and generally pre-

sented similar overall trends, or rulesets.

As a final note, we emphasize that it is crucial to consider context when comparing accuracy

results. For data taken from the same cell types under the same experimental conditions,

increased accuracy results can provide useful information about which input variables may

strongly impact turning dynamics. However, accuracy comparisons may provide less insight

across cell types, such as in the case of HUVEC endothelial cells which have narrower turn angle

distributions than MDCK epithelial cells (see S12A–S12C Fig), or differences in prediction task,

such as short- vs. long-time prediction intervals, which can modify which neighbors are likely to

influence focal agent dynamics. While we did perform parameter sweeps over key variables such

as forward prediction time and number of neighbors considered, it was necessary to establish

baseline conditions to present our findings. For all standard epithelial and endothelial experi-

ments, unless otherwise stated, 10 total nearest neighbors were accounted for by the network (i.e.

10 pairwise-interaction subnetworks, 10 aggregation subnetworks), the time between trajectory

points was 10 minutes, the prediction time interval was 20 minutes, and no parameter blinding

was performed. Further, we restricted our core analyses to these standards in order to best learn

temporally local cell dynamic “decisions”—with 20 minutes corresponding to the approximate

time it takes these cells types to move approximately half a nuclear-length within a confluent

ensemble based on our data (Fig 1D)—and additionally to sufficiently encompass spatially local

neighboring cells, as a function of classical neighbor analyses as in Fig 3A.

Limiting cases: mesenchymal, metastatic cells lack coordinated collective

rules

Our goal is to study collective behaviors in cells, so a natural question which arises is: how do

these networks respond to cell types with apparently uncoordinated behavior? We explored

this using metastatic breast cancer cells as a hallmark in many metastatic cancers is that cells

undergo an epithelial-to-mesenchyme transition, effectively transitioning from more collec-

tive, epithelial cells to more individualistic mesenchymal cells [7]. We explored this here using
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the MDA-MB-231 cell line: a well-studied, highly aggressive triple-negative breast cancer

(TNBC) cell type, which exhibits spindle-shaped morphology, and lacks strong cell-cell adhe-

sion [49–51]. In contrast to the highly collective MDCK and HUVEC lines, the uncoordinated

MDA-MB-231s function more like a negative biological control.

The attention plots and accuracy scores for the MDA-MB-231s are shown in Fig 4. The

attention contour plot in Fig 4A highlights a radially symmetric influence regime around the

focal agent, indicating that dynamics are more likely influenced by proximity alone (possibly a

repulsion zone) than directed coordination. The histogram of neighbor locations (Fig 4B) con-

firms that the data are relatively consistently distributed about the focal cell, while the scatter

plot of the closest neighbor locations, colored by normalized attention weights (Fig 4C) and

histogram of highest weighted neighbors (Fig 4D) further emphasize the circular influence

region lacking any more specific spatial signature. Here, the prediction time interval was 20

minutes, the time between trajectory points was 5 minutes, and 10 nearest neighbors in total

were accounted for by the network structure.

As individual MDA-MB-231 cells lack cell-cell adhesion-mediated coordination, and

exhibit low-persistence trajectories (S12D Fig), the ability of the network to predict future

turning decreases with increasing prediction time interval (Fig 4E). The velocity autocorrela-

tion (S12E Fig) plot drops off sharply within approximately 50 minutes, which is consistent

with the drop-off in accuracy within the first approximately 50 minutes in accuracy vs. predic-

tion time interval, as the system loses its dynamic ‘memory’ within this time interval. This

accuracy drop-off is opposite the trend from more collective and persistent cell types where

accuracy increases with increasing prediction time interval and is likely a hallmark of poorly

coordinated cells. Additionally, accounting for larger numbers of nearest neighbors does not

obviously impact the network accuracy results (S12F Fig). Again, since the agents are highly

uncoordinated, the range of interacting cells does not affect predictive accuracy.

Fig 4. Breaking coordination: attention in metastatic cancer cell line MDA-MB-231. (A) Normalized attention weight contour plot, (B) neighbor location

histogram, (C) closest neighbor scatter plot, as colored by normalized attention weights, and (D) histogram of highest weighted neighbors, with all plots

analogous to those in Figs 2 and 3. Results shown for MDA-MD-231 cells with cell trajectory points taken every 5 minutes, and networks encompassing 10

neighbors with 20 minute prediction times. This cancer line functions as a control, as the cancer cells are highly uncoordinated, resulting in nearly equal

attention weight applied to local neighbors in all directions. (E) Network accuracy plots as prediction time interval is varied, aggregated over networks

accounting for 5–50 neighbors in increments of 5. Solid lines reflect accuracy scores for all turning angles in the focal agent trajectory; dashed lines reflect only

large turns (±20–160˚). Accuracy decreases with increasing prediction interval and varies little as a function of neighbors observed by the network. Cell

trajectory timesteps were fixed at 5 minutes.

https://doi.org/10.1371/journal.pcbi.1009293.g004
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Biophysical and biological variations affect the attention maps

Finally, we explore how collective cell migration rules vary across a large tissue and in different

biophysical contexts. There is a growing appreciation in tissue biology that cells within a single

tissue can exhibit different behaviors based on their locations within the tissue—supracellular-

ity [2]. These differences can arise from local biological or biophysical properties, such as den-

sity-mediated jamming and contact inhibition of locomotion and proliferation [44,45]. Here,

we explore these questions in two parts using our MDCK epithelial model. First, we examine

the collective rules found in epithelial cells near either the outer boundary of a growing tissue

or deep in the bulk of the tissue. Next, we look at how the rules change in response to matura-

tion of the tissue and concomitant biophysical changes. Accuracy plots for the following data

can be found in S16 Fig.

To characterize ‘edge vs. bulk’ dynamics, we defined analysis zones to demarcate cell tra-

jectories in the bulk and edge regions, excluding those cell trajectories too close to the free

boundaries to avoid biases caused by reduction in neighbors (see Methods). Independent

deep attention networks were trained for each zone. The attention contour plot, closest

neighbor location scatter plot, and highest weighted neighbor histogram from Fig 2 are

shown again in Fig 5B–5D, and represent the dynamics in the bulk region. Neighbor loca-

tion histograms are shown in S17 Fig. Fig 5B–5D’ are the same visualizations for data from

the edge region of the tissue. Structurally, the key difference in these attention maps is the

relatively much higher importance of lateral neighbors for cells at the expanding edges of a

tissue. The neighbor location histogram plots (see S17 Fig) confirm that this difference is not
due to a lack of cells in front of the focal cell. Rather, we hypothesize that agents directly in

front of the focal agent near the edge of the tissue tend to have less influence over the turning

behavior because as edge cells expand outward, the forward agents are more likely to dis-

place outward, leaving space for the focal agent to follow yet not substantially impacting

turning decisions overall where lateral cell-cell adhesion likely mechanically influences cell

behavior. In both cases, agents forward-and-to-the-sides impact focal cell turning behaviors,

with little impact from rear neighbors. Noting that the edge regions contained ~30% fewer

cells overall than the bulk, we also provide attention maps representing reduced training

datasets (by including only a fixed number of trajectories) for the MDCK bulk region and

edge region cases (as well as for the HUVEC cell system), allowing us to ensure a sufficient

amount of data was collected (S18 Fig). The qualitative nature of the attention maps may or

may not change with an increasing training set size; in general, users should assess whether

or not the model itself adequately predicts the collective forward system dynamics for their

use case.

Having varied cell context across the tissue, we then varied cell context with respect to time

and crowding. As an epithelium matures, it undergoes multiple rounds of cell division that

drive the bulk density higher until it reaches a critical point where cell division is inhibited and

migration slows due to jamming and contact inhibition of proliferation and migration signal-

ing [15,45], S4 Movie. To study this here, we compared attention behaviors for cells in the bulk

of a relatively ‘young’ tissue to those of a more mature tissue. The four attention plots associ-

ated with the post-contact-inhibition case are shown in Fig 5B–5D” for comparison to the first

row of plots (Fig 5B–5D) which are representative of tissues prior to contact inhibition. These

attention contour plots of mature, dense epithelia (Fig 5B”) demonstrate a much shorter range

zone of influence, reflecting the increased packing and reduced motility for cells in these tis-

sues. The neighbor location histogram (Fig 5C”, red lines) also confirms the denser packing of

the tissue: more nearest neighbors proportionally lie within a thin annulus near the focal

agent. Finally, beyond simply reducing the interaction length, focal cells in high density tissues
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uniformly distribute their attention in all directions (Fig 5D”), in stark contrast to the biased

attention patterns observed in the earlier, more motile state of the tissue.

Interestingly, these data raise an important point about comparison between, and analysis

of, attention maps. For instance, the attention maps of highest weighted neighbors appear visu-

ally similar at first glance between metastatic (Fig 4D) and jammed epithelia (Fig 5D”) despite

vast differences in cell behaviors. However, quantifying these attention maps by radial averag-

ing revealed a key difference (S19A Fig). Specifically, MDCK cells exhibited a strikingly local-

ized radial zone of ‘high attention’ neighbors that, critically, does not overlap with the location

of the focal cell. This makes sense and indicates a hard-core of repulsion around the focal cell.

However, MDA-MB-231 metastatic cells exhibited a broad attention zone that overlapped

with the focal cell, consistent with cells literally crawling across the focal cell and suggesting

less structured motion overall. A comparison of MSD between dense epithelia and metastatic

cells emphasized this lack of structure (S19B Fig). This was further supported by comparison

of the accuracy plots (Figs 3D and 4E) that showed that MDCK prediction accuracy increased

with time lags while MDA-MB-231 accuracy decreased with increasing time lags.

Fig 5. Biophysical modifications and attention. (A, A’) For these experiments, cell trajectory data is extracted from either the bulk region (A) or the edge

region (A’) of the tissues. Scale bar represents 1 cm. (A”) Representative nuclei images of tissues before and after contact inhibition. Scale bars represent

200 μm. (B�, C�, D�) Attention map, closest neighbors scatter plot and histogram of highest weighted points, as before. (B, C, D) Network trained on MDCK

cell trajectories taken from a circular ROI in the center of an expanding tissue, prior to contact inhibition. Plots are representative of the bulk region (see

Methods). (B’, C’, D’) Network trained on MDCK cell trajectories taken from an annulus along the outer region of a circular expanding tissue, prior to contact

inhibition. Plots are representative of the edge region of the tissue (see Methods). (B”, C”, D”) Network trained on MDCK cells in the bulk region, after contact

inhibition. Plots are representative of a jammed tissue (see Methods).

https://doi.org/10.1371/journal.pcbi.1009293.g005
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Detection of collective behavior changes in response to external perturbations

Finally, we investigated the impact of modifications to cell signaling on the attention maps. Here,

we perturbed the canonical MDCK model cell system with a drug selected to impact epidermal

growth factor (EGF)—TAPI-1—which has been shown to inhibit spatial signaling and extracellu-

lar signal-regulated kinase (Erk) activation, and thereby collective migration [52,53]. The results

of this experiment (see Methods) are shown in S20 Fig and indicate a striking difference relative

to unperturbed tissues (e.g. Fig 2). Specifically, EGF disruption nearly abolished the relative

importance of immediate forward neighbors, shifting the focus to immediate left and right neigh-

bors. This shift in relative attention away from the forward neighbor and towards the lateral

neighbors likely reflects the network detecting underlying biomechanical differences induced by

EGFR/Erk signaling disruption as prior molecular studies have connected MDCK front-rear

polarity to EGFR/Erk signaling [54]. While future work may be needed needed to verify and eluci-

date the specific molecular mechanisms, there are two key points to emphasize. First, this resulting

shift in attention is not easily apparent from visual observation alone, emphasizing the importance

of attention works for detecting subtle, collective responses to perturbations. Second, the attention

network detected and clearly highlighted a connection between Erk and neighbor coordination

without any foreknowledge of biased assumptions from the user, which makes it a powerful tool

for hypothesis generation and screening of complex cellular dynamics datasets.

Discussion

Basic rules of collective cell attention can be learned from trajectory data

We demonstrated that deep attention networks can learn core rules of collective cell behaviors

given only cellular trajectory data, offering a complementary approach to traditional biophysi-

cal and statistical methods for analyzing collective cell behaviors. In blood vessel endothelial

cells (HUVEC), where strong leader-follower dynamics are visually observable, the attention

maps emphasized the overwhelming learned relative influence of cells directly in front of the

focal cell, rather than lateral or rearward neighboring cells. Again, these results do not follow

from either classical correlation analyses or biological morphology and protein localization

data. [40] In epithelial cells (MDCK), where cell-cell interactions are more complex and tend

to result in large-scale correlated motion domains within the tissue, the relative influence

region was much broader and encompassed neighboring cells forward and to the sides, with

minimal influence from cells behind the focal agent. In more individual, metastatic breast can-

cer cells (MDA-MB-231), which are highly uncoordinated and function as a biological control,

attention maps reflected a lack of learned influence in any particular direction in contrast to

the collective HUVEC and MDCK cells, with influence confined to a small region in close

proximity to the focal cell. Our visual attention map results, increased accuracy scores com-

pared to networks trained on shuffled trajectories, and accuracy trends as a function of net-

work modifications–such as increases in prediction time intervals—indicate that the deep

attention networks are effectively recovering collective influence regions.

Broadly, attention analysis reflects the integrated effects of a variety of cell-cell coupling

mechanics such as traction forces, cell-cell junctions, jamming, and chemical signaling [55–

57]. While attention maps cannot deconvolve these effects, they can still highlight the resulting

phenotypes. Extending the earlier discussion, the powerful forward neighbor influence in

HUVEC attention maps derive mechanistically from the polarized VE-cadherin structures

(Fig 2) that generate front/rear tension with no lateral coupling [40]. Similarly, the shift in

attention maps with young versus old MDCK epithelia reflects the classic biophysical jamming

transition, while the distinct influence pattern in attention maps taken at the growing edge of
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epithelia likely reflect the unique traction force and monolayer stress states at epithelial bound-

aries. Attention mapping may eventually help to connect biophysical mechanisms to collective

behavior ‘rules’, as is hinted at in the ability of the network to detect how chemical disruption

of EGFR/Erk signaling reprograms collective attention (S20 Fig).

Overall, attention maps can add new context and build on classical correlative or ensemble

approaches, allowing for improved interpretability of collective motion dynamics. Fundamen-

tally, the success of the intuitive power of the attention maps is a function of the success of the

deep neural network model to capture agent-agent relationships within the collective, from

which the learned, relative influence of each neighbor is obtained. Therefore, we can think of

the learned relationships between agents as “causal” in that the learned model reflects real-

world system dynamics.

Limitations of existing metrics and network design

Recall that our approach draws on tools originally developed for analyzing schooling fish, and so

we note that translation to complex, orders-of-magnitude larger populations of interacting cells is

not perfect. In particular, our work highlights the need for novel metrics and performance bench-

marks to validate network success. We utilize the deep attention network structure to both capture

rich dynamic relationships and expose meaningful attention weights for interpretation. Establish-

ing more rigorous criteria to assess if meaningful collective behaviors are captured would be of

great value towards transitioning similar techniques into standard practice, such as: (1) the devel-

opment of a suite of biologically-grounded perceptual range targets for canonical cell types; (2)

establishment of different learning goals beyond simple turning decisions; and (3) application of

new network architectures and strategies such as reinforcement learning.

Deep attention network accuracies may be augmented by providing information about the sys-

tem which is inaccessible to the biological agent, such as dynamic information about cells beyond

the focal cell’s physical sensing boundaries (Fig 3D), or the use of long-term historical data (S13

and S14 Figs). Moreover, we are applying a tool originally developed for the analysis of indepen-

dent, physically separated agents (e.g. fish) with wide, non-contact based perceptual fields (vision

and pressure wave detection) to a 2D confluent monolayer in which cells are physically contacting

one another. Thus, network inputs, network structure, and metrics of success must be carefully

designed to ensure the learned dynamics are reflective of the biological system.

Concluding remarks

Here, we characterize the application of deep attention networks to the recovery of cell-cell

influence within a collective setting. We apply the technique to data collected from well-stud-

ied epithelial cell lines with distinct collective behaviors and in distinct biophysical settings.

We compare accuracy results as a function of different training, data sampling, and sensory

range settings, and explore how different geometric and biological contexts can alter the

underlying ‘rules’ and corresponding attention maps. We highlight the need for improved net-

work structures and performance metrics; however, we are optimistic about the potential for

deep attention networks and related machine learning methods to reveal collective rules

beyond the capabilities of classical group analysis methods.

Methods

Ethics statement

Our study involved standard mammalian cell type the use of which is approved via Princeton

IBC committee, Registration #1125–18. MDCK-II wild-type and Ecad:RFP cells were a gift
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from the Nelson Laboratory at Stanford University. HUVEC cells expressing VE-cadherin

were a gift from the Hayer Laboratory at McGill University. Wild-type HUVEC cells were pur-

chased through Lonza. MDA-MB-231 human breast cancer cells were a gift from the Nelson

Laboratory at Princeton University.

Cell culture

MDCK-II cells were cultured in low glucose DMEM supplemented with 10% Fetal Bovine

Serum (Atlanta Biological) and penicillin/streptomycin as done previously [15]. HUVEC

endothelial cells were cultured using the Lonza endothelial bullet kit with EGM2 media

according to the kit instructions. MDA-MB-231 human breast cancer cells were cultured in

DMEM/F12 (1,1) media [58] (Thermo Fisher Scientific, Life Technologies, Item #11330–032)

supplemented with 10% Fetal Bovine Serum (Atlanta Biological) and penicillin/streptomycin.

All cell types in culture were maintained at 37˚C and 5% CO2 in humidified air.

Tissue preparation

Tissue samples were grown in 3.5-cm glass-bottomed dishes coated with an appropriate ECM.

To coat with ECM, we incubated dishes with 50 μg/mL in PBS of either collagen-IV (MDCK,

MDA-MB-231; Sigma) or bovine fibronectin (HUVEC; Sigma) for 30 min 37˚C before wash-

ing 3 times with DI water and air drying the dishes.

To pattern consistent circular tissues, ~3 μL of suspended cells were seeded into 9 mm2 sili-

cone microwells within each dish as described in [[44]] which allowed confluent monolayers

to form. MDCK-II cells were seeded at a density of 1.8x106 cells/mL; HUVEC cells were seeded

at a density of 0.8x106 cells/mL; and MDA-MB-231 cells were seeded at a density of 3.0x106

cells/mL. Then cells were allowed to adhere in the incubator (30 min for MDCK, 1 hr for

HUVECs, 2 hrs for MDA-MB-231s), after which we added media and returned them to the

incubator for 16 hrs prior to imaging. For contact inhibition samples, MDCK-II cells were

seeded at a density of 4.2x106 cells/mL on 20mm2 silicone microwells. After 30 min. incuba-

tion, tissues were continuously over 48 hrs to capture both pre-contact inhibition and post-

contact inhibition state. For TAPI-1 experiments, MDCK-II cells were prepared as previously

described, but 2 μL of TAPI-I (Selleck) at 10mM concentration in DMSO was added to each

dish. For TAPI-1 validation experiment, MDCK FUCCI iRFP ERK-KTR cells were prepared

with the same method without TAPI-1 treatment.

Fluorescent imaging

We used the live nuclear dye NucBlue (ThermoFisher; a Hoechst 33342 derivative) with a 30

min incubation for nuclear labeling on standard MDCK, HUVEC, and MDA-MB-231 tissues

and imaged with a DAPI filter set. For MDCK data collected for pre- and post-contact inhibi-

tion experiments, nuclear labels were reproduced using a convolutional neural network trained

to reconstruct nuclei features from 4x phase contrast images of cells. Complete documentation

including code and trained network weights for this tool may be referenced in [39]. Media was

swapped and silicone microwell stencil was removed prior to imaging. Cadherin imaging was

performed using conventional epifluorescence microscopy on a Nikon Ti2 equipped with a

YFP filter set (HUVEC VE-Cadherin) and an RFP filter set (MDCK E-cadherin).

Image acquisition

MDCK, HUVEC, and MDA-MB-231 data was collected on a Nikon Ti2 automated micro-

scope equipped with either a 4X/0.15 phase contrast (HUVEC) objective or 10X/0.3 phase
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contrast objective (MDCK, MDA-MB-231), and a Qi2 sCMOS camera (Nikon Instruments,

14-bit). An automated XY stage, a DAPI filter set, and a white LED (Lumencor SOLA2)

allowed for multipoint phase contrast and fluorescent imaging. MDCK and HUVEC data

were collected at 10 min/frame (49/140 frames in total, respectively), while MDA-MB-231

were given 5 min/frame (97 frames total), with temporal resolution increased for the

MDA-MB-231 cells to improve tracking quality. Contact inhibition data were collected at 20

min/frame for 48 hours. The first 60 frames and last 60 frames are used as pre and post contact

inhibition samples, respectively.

All imaging was performed at 37˚C with 5% CO2 and humidity control. Exposures varied,

but were tuned to balance histogram performance with phototoxic risk. Data with any visible

sign of phototoxicity (blebbing, apoptosis, abnormal dynamics) were excluded entirely from

training.

Timelapse pre-processing and tracking

Timelapse movies of individual expanding tissues were processed using ImageJ/FIJI [47,59]

prior to performing cell tracking via background subtraction and contrast enhancement.

Tracking was performed using the TrackMate plugin in ImageJ [60], with “bulk” vs. “edge” tis-

sue regimes initially differentiated using a circular ROI concentric with the tissue with radial

extent 80% of the tissue radius. Cell trajectories were generated and shortened tracks were

excluded to account for boundary effects: for instance, cells from the bulk tissue regime

migrating into the edge regime. Trajectories were normalized, by translation to the trajectory

arena center and scaling, and smoothed as in [[9]], with cell velocities and accelerations deter-

mined using finite differences. The bulk spatial regimes were further reduced by 20% prior to

training, while the edge spatial regimes were reduced by 10% of the maximal tissue growth

prior to training, again to mitigate edge effects. When trajectories were subsampled, cell trajec-

tory positions were sliced to use every nth value in time; when tissues at different growth stages

were analyzed; full trajectory datasets were sliced to include data spanning the required time

ranges.

The protocol for determining nearest neighbors, velocities and accelerations, turning

angles, and shuffled trajectories was identical to the protocol in [[9]]; however, the size of the

training dataset was reduced in order to increase the size of the validation and test datasets

(50%/30%/20% by timelapse splits). In total, 13 individual tissue timelapse movies were col-

lected for the HUVEC cell system; 15 movies for each MDCK cell system, and 17 movies for

the MDA-MB-231 cell system. Independent dishes were held out from the training dataset for

testing purposes. With data pre-processing, each timelapse movie for the HUVEC system

resulted in approximately 70,000 data points, compared to approximately 300,000 for MDCKs

and approximately 100,000 for MDA-MB-231s.

Network training and analysis

The attention network structure, logit probabilities, loss function, and training hyperpara-

meters were identical to those described in [9], here again implemented using Keras with a

TensorFlow backend [61,62], yet with a standard 1000 epochs per training cycle and early

stopping. The structure of the deep attention network extends to include n pairwise-interac-

tion subnetworks and n aggregation subnetworks, where n is the number of nearest neighbors

accounted for by the network. The standard value of n is 10 unless otherwise specified. Each

pairwise interaction block consists of a fully connected network with 3 layers of 128 neurons

each followed by rectified linear unit (ReLU) operators, plus a final output layer of one neuron.

These blocks are also anti-symmetrized. The weight function blocks are identical except that

PLOS COMPUTATIONAL BIOLOGY Learning the rules of collective cell migration using deep attention networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009293 April 27, 2022 19 / 28

https://doi.org/10.1371/journal.pcbi.1009293


there is an exponential function after the final one-neuron layer, and the input is accepted in a

y-reflection-invariant form. The output of the weight blocks multiply the output of the corre-

sponding pairwise interaction blocks for each neighboring agent. All pairwise interaction

blocks share the same weights. Sample training loss plots are shown in S4 Fig. Training was

performed on a desktop using an NVIDIA GeForce GTX 1070 Ti GPU or in a cluster environ-

ment with an NVIDIA Tesla P100 GPU. As in Francisco J. H. Heras et al. [9], the attention net-

work logit was used to determine a logit indicating whether the focal agent will turn left or

right after a fixed time interval. The network input consisted of asocial information, specifi-

cally the speed, v, tangential acceleration, ak and normal acceleration, a?; and social informa-

tion pertaining to a set number of nearest neighbors to the focal agent, specifically relative

position, xi and yi, velocity, vi,x and vi,y, and accelerations, ai,x and ai,y. We performed experi-

ments “blinding” the model to the focal tangential acceleration and neighbor accelerations

(both normal and tangential), such that these variables would not be included as input to the

model, yet no significant effect was observed on accuracy (see S15 Fig).

All plots were generated using Python unless otherwise indicated. The representative cell

trajectories in Fig 1A–1C were generated using the TrackMate plugin ImageJ. The mean

speeds, MSD and persistence plots in Fig 1D and 1E were generated using TrackMate trajecto-

ries, with persistence calculated as (displacement)/(traveling distance) and MSD calculated by

MATLAB script (MSDAnalyzer). The cell position snapshot in Fig 1F plots a single random

focal cell, indicated by a central ellipse, and relative positions in space of its neighbors as a

function of nuclei centroids, colored by normalized attention weight output by the network

according to their trajectory data. Neighboring cell direction is indicated by elongated axis of

the ellipse, and nuclei centroids were used to generate Voronoi cells.

Attention maps (e.g. Fig 2A) were generated by selecting 10,000 random focal agents in the

test set and interpolating the attention weights assigned to every neighbor of every focal agent

to produce a contour plot. Attention weights are normalized in the range of 0–1 based on the

maximum and minimum attention weight values in the test set; only relative weight strength is

considered here. The radius of innermost black circle indicates the smallest radial distance

from any focal agent to its closest neighbor. The thin red circles indicate the region in which

the bulk of the neighboring points lie in space. The neighbor positions are converted into

radial distance values to determine radii between which 5%-95% of the data falls; these radii

are indicated via the thin red lines on both attention maps and neighbor distribution maps.

The latter (e.g. Fig 2B) were generated using the same 10,000 focal agents and their neighbors

and binning their (x, y) coordinates to produce a 2D histogram. Closest neighbor location

plots (e.g. Fig 2C) were produced by utilizing the same 10,000 focal agents yet sorting their

neighbors by radial distance to the focal agent; only those closest neighbors were plotted in

space, and points were colored by normalized attention weight. Highest weighted neighbor

histograms (e.g. Fig 2D) were generated using the same 10,000 focal cells, yet only binning the

(x, y) coordinates for the neighbor with the highest weight for each focal cell. The focal turning

angle radial histogram (S12 Fig) was generated using the same 10,000 focal cell trajectories and

binning angles by 10˚.

Neighbor analyses were performed using the ImageJ BioVoxxel toolbox [48]. First, cell

boundary binary images were obtained by processing nuclear fluorescence data using the

‘Find Maxima’ routine in ImageJ with ‘segmented particle’ output. Next, we used BioVoxxel

neighbor analysis with the ‘particle neighborhood’ approach and a neighborhood radius of 2

pixels. Interacting neighbor plots (e.g. Fig 3B) were produced as described previously [9], with

the important neighbors recovered as a function] of the inverse of the typical attention weight

(Eq 2) as presented previously [63]. All accuracy results are reported on the complete test set.
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Collective simulation analysis

To validate if deep attention networks recover differences in attention in known cases, we

trained them using simulated trajectories. This data was generated using a commonly used

model for collective motion—the Vicsek model. The model was set up according to the origi-

nal paper [64]. The parameters used are as follows: η = 0.1, L = 50, N = 3000, r = 1, v = 0.3,

tMAX = 200, δt = 1. For some simulation cases, changes were made to the model in order to

reduce the perceptual zone of each agent. In the modified Vicsek model, a focal agent’s head-

ing will only be affected by other agents within its perceptual zone. We tested four cases

defined by the agents’ perceptual zones: full 360˚ perception, 60˚ perception in front of the

agent, 120˚ perception in front of the agent, and 60˚ perception behind the agent. Each dataset

contained 15 simulations in the training set and 3 in the test set. The networks were trained

using 15 nearest neighbors and 1 prediction time step.

Supporting information

S1 Fig. MSD analyses. Mean squared displacement (MSD) over time. (A) Linear-scale MSD

to emphasize distinct differences in MSD trajectories; shaded zones indicate the weighted stan-

dard deviation of the individual MSD trajectories (see MSDAnalyzer software). (B) Log-scale

of MSD for a more traditional rendering of the MSD that highlights the long-lag caged behav-

ior of MDCKs.

(JPG)

S2 Fig. Neighbor importance to learned turning dynamics, additional snapshots. Individ-

ual agents are plotted in space (x, y) and colored according to relative attention weight (W) as

in Eq 1 for HUVECs (left) and MDA-MB-231 cells (right). Cell position is representing using

nuclei centroids and black lines indicate Voronoi cells (see Methods).

(JPG)

S3 Fig. Attention maps for collective simulation (Vicsek model) Individual attention maps

were produced for agent trajectories generated via (A) the classical Vicsek model with full

radial perception, and Vicsek models in which the perceptual range between collective agents

is constrained to (B) 60˚ (±30˚) behind the focal agent, (C) 60˚ (±30˚) ahead of the focal agent,

and (D) 120˚ (±60˚) ahead of the focal agent. The attention maps are able to capture these

ranges directly from trajectory data alone. See Methods.
(JPG)

S4 Fig. Representative loss functions from the attention network training process. Early

stopping was enabled, so that if the validation loss did not decrease within a set number of

epochs, the training process was terminated. Validation loss was noisier when training the net-

work on MDA-MB-231 data, in which there is reduced cell-cell coordination.

(JPG)

S5 Fig. HUVEC and MDCK attention maps with increasing training epoch. The attention

maps for (A-C) the standard HUVEC cell system and (A’-C’) the standard MDCK cell system

are shown, as (left to right) the number of training epochs is increased from 10 epochs, to 100

epochs, and finally to the fully trained system. The test accuracy for the HUVEC system after

10 epochs is 57.2% (57.3% large turns); while for the HUVEC system after 100 epochs it is

58.2% (58.7% large turns). The test accuracy for the MDCK system after 10 epochs is 54.1%

(57.3% large turns); while for the MDCK system after 100 epochs it is 53.9% (56.9% large

turns).

(JPG)
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S6 Fig. HUVEC and MDCK attention maps with speed thresholding. Attention maps are

shown for the (A-C) HUVEC cell system and (A’-C’) MDCK cell system. We compare the full

attention map for each system (C, C’) utilizing all available data points, to those data points

where the focal agent speed is either (A, A’) below or (B, B’) above a threshold speed chosen to

be the median speed value for all focal agents in the system. No meaningful structural differ-

ence was observed when speed thresholding was performed in this way.

(JPG)

S7 Fig. Closest neighbor histogram plots for main cell systems. The histogram representa-

tion of the closest neighbor plots for (A) HUVEC, (B) MDCK, and (C) MDA-MB-231 cell sys-

tems are shown, analogous to the closest neighbor scatter plots represented in Figs 2E, 2E’, and

4C, respectively.

(JPG)

S8 Fig. MDCK (bulk) neighbor distribution, closest neighbor, and highest weight maps.

Plots shown are analogous to the neighbor distribution, closest neighbor, and highest weight

neighbor maps shown in Fig 2D–2F’, yet corresponding to the 10, 20, and 30 neighbor net-

works with attention maps as in Fig 3D–3D”.

(JPG)

S9 Fig. Local vs. long-range interactions in HUVECs. (A) The number of nearest neighbors

based on an analysis of 1115 cells using the ImageJ/FIJI [47] BioVoxxel plugin[48] (see Meth-

ods). A peak can be observed at 3 nearest neighbors. (B) Histograms of total interacting cells

(blue) and “important” interacting cells (red), as determined by a function utilizing the net-

work aggregation weights (W) to estimate the most influential neighbors. (C) A snapshot of

HUVEC cells with blue region indicating the extent of “large” turns (±20–160˚) according to

the focal cell trajectory (indicated by the pink arrow). Scale bar represents 20 μm (D) Network

accuracy plots as prediction time and number of input neighbors is varied. Solid lines reflect

accuracy scores for all turning angles in the focal agent trajectory; dashed lines reflect only

large turns (±20–160˚). Accuracy increases with both number of neighbors encompassed by

the network and prediction time. Cell trajectory timesteps were fixed at 10 minutes. (E, E’, E”)

Attention maps for networks encompassing 10 (left), 20 (middle), and 30 (right) neighbors.

Plots shown here are analogous to plots shown in Fig 3, with cell trajectory timestep of 10 min-

utes. As the number of neighbors taken into consideration by the network increases, a wider

spatial range of interactions may be considered for forward motion prediction.

(JPG)

S10 Fig. Complete MDCK bulk region network accuracy plot. Network accuracy plots as

prediction time and number of input neighbors is varied. Solid lines reflect accuracy scores for

all turning angles in the focal agent trajectory; dashed lines reflect only large turns (±20–160˚).

Accuracy increases with both number of neighbors encompassed by the network and predic-

tion time. Cell trajectory timesteps were fixed at 10 minutes.

(JPG)

S11 Fig. MDCK (bulk) attention maps, 60-minute prediction time interval. Representative

attention weight contour plots are shown for MDCK cells with networks accounting for 10

neighbors in total (A) and 30 neighbors in total (30) with prediction time intervals of 60 min-

utes. For all conditions, normalized weight maps are shown and are analogous to the 20 min-

ute prediction time interval attention maps shown in Fig 3D and 3D”.

(JPG)
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S12 Fig. Focal cell turning angle distribution and persistence. A radial histogram of turning

angles from focal cell trajectories, shown for (A) HUVECs, (B) MDCK cells in the bulk region,

and (C) MDCK cells in the edge region (from the same tissues; see Methods). HUVEC angles

tend to fall closer to vertical (0˚). (D) Persistence plot for all main cell systems indicating

“directedness” by orientation over time. The persistence plot here highlights the tendency of

the HUVECs in particular to proceed in a single direction; shaded zone represents standard

deviation (see Methods). (E) Representative velocity autocorrelation for MDA-MB-231 cell

system as an additional measure of the lack of dynamic persistence (generated using MSDAna-

lyzer). (F) MDA-MB-231 network accuracy is largely independent both of neighbor number

and of time steps.

(JPG)

S13 Fig. Network accuracy plots with trajectory subsampling: MDCK. Network accuracy is

shown as a function of number of neighbors encompassed by the network and time delay

between cell trajectory points. (A) displays accuracy for a prediction time of 40 minutes, with

10 (blue) and 20 (green) minute time delays, resulting from subsampling of the initial trajec-

tory results. (B) displays accuracy for a prediction time of 60 minutes, with 10 (blue), 20

(green), and 30 (red) minute time delays. Solid lines reflect accuracy scores for all turning

angles in the focal agent trajectory; dashed lines reflect only large turns (±20–160˚). Accuracy

increases as time delay is increased; in this experiment, the same number of historical steps is

utilized, so subsampled trajectories include data spanning longer total time intervals.

(JPG)

S14 Fig. Network accuracy plots with trajectory subsampling: HUVEC. Network accuracy

is shown as a function of number of neighbors encompassed by the network and time delay

between cell trajectory points. (A) displays accuracy for a prediction time of 40 minutes, with

10 (blue) and 20 (green) minute time delays, resulting from subsampling of the initial trajec-

tory results. Solid lines reflect accuracy scores for all turning angles in the focal agent trajec-

tory; dashed lines reflect only large turns (±20–160˚). Accuracy increases as time delay is

increased; in this experiment, the same number of historical steps is utilized, so subsampled

trajectories include data spanning longer total time intervals.

(JPG)

S15 Fig. Network accuracy plots with input acceleration blinding. Network accuracy is

shown as a function of number of neighbors encompassed by the network, prediction time,

and input parameters to the network. Either the standard inputs are utilized (lighter colors, see

Methods), or the model was blind to focal tangential acceleration and neighbor accelerations

(darker colors; i.e., these parameters were excluded from model inputs). (A) displays accuracy

for MDCK cells, (B) for HUVECs. Solid lines reflect accuracy scores for all turning angles in

the focal agent trajectory; dashed lines reflect only large turns (±20–160˚). Accuracy is not sub-

stantially changed as a function of acceleration blinding.

(JPG)

S16 Fig. Accuracy results for MDCK cells, biophysical modifications. (A) Network accuracy

plots as prediction time and number of input neighbors is varied for both bulk (darker colors)

and edge (lighter colors) regions within a confluent MDCK tissue. Solid lines reflect accuracy

scores for all turning angles in the focal agent trajectory; dashed lines reflect only large turns

(±20–160˚). Accuracy results tended to be slightly higher in the bulk region. (B) Network accu-

racy plots as prediction time and number of input neighbors is varied for the same MDCK tis-

sues prior to (lighter colors) and after (darker colors) contact inhibition. Accuracy results were
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higher prior to contact inhibition.

(JPG)

S17 Fig. Neighbor distribution plots for MDCK biophysical variations. Histograms show-

ing the distribution of data points (neighbor cell locations) from which the attention maps in

Fig 5B,B’,B” were generated.

(JPG)

S18 Fig. Training set reduction: attention maps. The training set size was reduced by limit-

ing the number of total trajectories for (A-C) the HUVEC cell system (10,000 / 100,000 /

433,063 trajectories respectively); (A’-C’) the MDCK bulk region cell system (100,000 /

1,000,000 / 2,082,519 trajectories respectively); and (A”-C”) the MDCK edge region cell system

(100,000 / 1,000,000 / 1,451,150 trajectories respectively). Accuracy results for reduced training

set cases were as follows: For HUVECs, accuracies were (A) 59.0% (59.4% large turns) and (B)

59.2% (59.2% large turns). For MDCK (bulk region), accuracies were (A’) 66.7% (73.0% large

turns) and (B’) 67.8% (74.9% large turns). For MDCK (edge region), accuracies were (A”)

66.1% (72.1% large turns) and (B”) 65.3% (72.1% large turns).

(JPG)

S19 Fig. Distinguishing and interpreting visually similar attention maps between meta-

static and jammed epithelial cells. (A) Radial distributions of the most important neighbors

is plotted for jammed MDCK tissue and MDA-MB-231 tissue. The most important neighbors

of jammed MDCK are focused on ~10–20 μm zone while MDA-MB-231 tissue has a much

broader distribution of the most important neighbors that also covers the focal cell, indicative

of cells crawling over each other and a lack of repulsion. (B) MSD comparison between

MDA-MB-231 and highly dense, jammed MDCK cells indicating how the MSD can comple-

ment the attention maps to reveal underlying differences.

(JPG)

S20 Fig. MDCK attention plots with cell signaling modifications via TAPI-1. TAPI-1 was

added to the standard MDCK cell system to inhibit cell-cell signaling (see Methods). (A-D)

Plots shown are analogous to the attention map, neighbor distribution, closest neighbor, and

highest weight neighbor maps shown in Fig 2C’–2F’. In comparison to the standard MDCK

cell system, the attention maps reveal the loss of the relative influence of forward neighbors to

the focal agent; however, “lobing” (relative influence of forward left/right agents) remains. The

test accuracy was 68.5% for all turns, and 76.2% for large turns. (E-F) Representative images of

MDCK cells immediately before and 2 hours after treatment with TAPI-1, respectively. Cells

show lower ERK activity (higher nucleus intensity) after treating TAPI-1.

(JPG)

S1 Movie. HUVEC, MDCK, and MDA-MB-231 representative data. S1 Movie shows a

phase-contrast timelapse of HUVEC cells, imaged at 4x magnification, with fluorescent stained

nuclei overlaid. S2 Movie shows a phase-contrast timelapse of MDCK cells, imaged at 10x

magnification, with fluorescent stained nuclei overlaid. S3 Movie shows a differential interfer-

ence contast (DIC) timelapse of MDA-MB-231 cells, imaged at 10x magnification, with fluo-

rescent stained nuclei overlaid.

(AVI)

S2 Movie. HUVEC, MDCK, and MDA-MB-231 representative data. S1 Movie shows a

phase-contrast timelapse of HUVEC cells, imaged at 4x magnification, with fluorescent stained

nuclei overlaid. S2 Movie shows a phase-contrast timelapse of MDCK cells, imaged at 10x

magnification, with fluorescent stained nuclei overlaid. S3 Movie shows a differential
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interference contast (DIC) timelapse of MDA-MB-231 cells, imaged at 10x magnification,

with fluorescent stained nuclei overlaid.

(AVI)

S3 Movie. HUVEC, MDCK, and MDA-MB-231 representative data. S1 Movie shows a

phase-contrast timelapse of HUVEC cells, imaged at 4x magnification, with fluorescent stained

nuclei overlaid. S2 Movie shows a phase-contrast timelapse of MDCK cells, imaged at 10x

magnification, with fluorescent stained nuclei overlaid. S3 Movie shows a differential interfer-

ence contast (DIC) timelapse of MDA-MB-231 cells, imaged at 10x magnification, with fluo-

rescent stained nuclei overlaid.

(AVI)

S4 Movie. MDCK post-contact-inhibition representative data. S4 Movie shows MDCK tis-

sue after contact inhibition, imaged at 4x magnification, with overlaid nuclei predictions pro-

duced using a neural network (see Methods). This movie is from the dataset as S2 Movie, but it

shows the complete progression from an early confluent tissue to a late stage, mature tissue

with full contact inhibition and jammed cells.

(AVI)
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