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Background. Pyroptosis is a type of cell death that plays an important role in predicting prognosis and immunoregulation in
cancers. However, the pyroptosis-related gene signature for prognosis and immune infiltration prediction has not been studied in
breast cancer (BC). Methods. -e Gene Expression Omnibus (GEO) and Cancer Genome Atlas (TCGA) databases were used to
obtain the expression and clinical data of genes. 52 pyroptosis-related genes were obtained from TCGA-BC and estimated
differentially expressed genes by the limma program. To categorize the molecular subtypes of pyroptosis-related genes, the
ConsensusClusterPlus tool was utilized. Cox and Lasso regression analyses were used to create a signature. TCGA-BC dataset as
the training set and the GSE37751 test set for risk research. Gene set enrichment analysis (GSEA) was used to conduct KEGG and
GO studies of subtype groups.We also used the ssGSEA approach in the GSVA package to calculate the risk score of immune cells.
Finally, pyroptosis-related genes in BC were validated using qPCR and immunohistochemical assays. Clone formation and EDU
assays were used to explore the ability of signature genes to regulate the proliferation of BC cells. Results. Based on pyroptosis-
related genes, the C1 and C2 subtypes were obtained. Survival analysis results showed that the C2 group had a better prognosis.
-en, a three-gene signature (APOBEC3D, TNFRSF14, and RAC2) were created by Lasso regression analysis, which had a good
prediction effect in the TCGA-BC and GSE37751 datasets. Our nomogram has a fair degree of accuracy in predicting the survival
rates of BC patients. -e pyroptosis-related signature has a good predictive effect in evaluating the tumour microenvironment
score, 28 types of immune cells and response to immune checkpoint therapy. Finally, qPCR and immunohistochemistry staining
results indicated that APOBEC3D, TNFRSF14, and RAC2 expression in BC tissues was low. -e results of clone formation and
EdU assays showed that high expression of signature genes inhibited the proliferation ability of BC cells. Conclusions. Based on
pyroptosis-related genes (APOBEC3D, TNFRSF14, and RAC2), we built a novel prognostic molecular model for BC that might be
used to assess prognostic risk and immune infiltration in BC patients. -ese signature genes are also tumor suppressor genes and
may serve as potential targets for BC.

1. Introduction

Breast cancer (BC) is the main health concern and is the
most prevalent tumour among females worldwide. It is
estimated that in 2020, 4.57 million new BC cases will be
detected, and approximately 680,000 people are expected to
die from BC [1]. -e NCCN guidelines recommend that BC
is mainly treated with surgery, chemotherapy and anti-
oestrogen therapy [2]. However, the value of treatment is not

very good among advanced BC patients. BC is a diverse
tumor with four major molecular subgroups; therefore,
finding new biomarkers is still vital for early diagnosis and
treatment methods. Pyroptosis is the process of gasdermin-
mediated programmed cell death (PCD), which is known to
involve extracellular responses and has been widely studied
in many cancers [3]. Pyroptosis has been shown to suc-
cessfully remove malignant cells and provide novel cancer
treatment strategies [4]. Surprisingly, inflammasome-
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mediated pyroptosis has been linked to tumor formation
and immunology in recent research [5]. As a result, finding
a pyroptosis-related signature to predict BC prognosis and
treatment methods is extremely important.

-e TCGA project, which provides a comprehensive
genetic examination of various malignancies and demon-
strates links with clinical outcomes. In addition, the tumour
project of TCGA includes mutations, genomic copy number
changes, transcriptome, and methylation profiles [6]. To
characterize molecular profiles, researchers combined in-
formation from transcriptome RNA sequencing with ap-
plied genomic characterizations, which revealed potential
druggable targets for female tumors including BC [7–9]. In
addition to identifying nearly all genes previously linked to
BC, the researchers discovered numerous new and severely
altered genes, including BRCA1 and BRCA2, which could be
used as therapeutic targets.

In this study, we identified pyroptosis-related genes from
TCGA-BC and used them to construct a novel predictive
molecular model for BC. In addition, the model has the
potential to be a useful tool for assessing prognostic risk and
immune infiltration in BC patients. In conclusion, our
findings imply that the signature might be utilized to assess
prognosis and immune infiltration in BC and that the sig-
nature genes could be employed as possible targets for the
disease.

2. Methods

2.1. Downloading Data. -e TCGA dataset (GDC @ https://
gdc.cancer.gov/) (47 nontumor samples and 1096 tumor
samples) was used to obtain expression data and clinical
follow-up information for BC patients. GEO (https://www.
ncbi.nlm.nih.gov/geo/) has made the GSE37751 datasets
(112 nontumor samples and 61 tumor samples) publicly
available. From the literature, we gathered 52 pyroptosis-
related genes [3, 10–12].

2.2. Molecular Subtype Identification. Limma software was
used to analyse the differentially expressed genes (DEGs)
based on the threshold false discovery rate (FDR)< 0.05 after
the 52 pyroptosis-related genes expression data were
matched with the TCGA-BC dataset. Next, Consensu-
sClusterPlus was used to find new molecular subclasses of
BC, which provides quantitative evidence for determining
the number and membership of possible clusters within the
TCGA dataset.

2.3. Multivariate Analyses and Molecular Risk Model
Construction. For the TCGA-BC dataset, we used Cox re-
gression analysis. A p value of 0.05 was judged survival
linked based on the results of multivariate analysis. Fur-
thermore, the R software package glmnet for lasso Cox
regression was used to compress the screened genes and
used to build the risk model. We also employed the
TCGA-BC dataset as the study’s training set and the
GSE37751 test set.

2.4. Analysis of Immune Scores between Clusters. -e im-
munological score among the clusters in TCGA-BC dataset
was determined using the GSVA package’s single-sample
gene set enrichment analysis (ssGSEA) approach. We used
ESTIMATE software to estimate the tumor microenviron-
ment score for tumor purity, StromalScore, ImmuneScore,
and ESTIMATEScore. Twenty-eight different types of im-
mune cells were evaluated using the GSVA program ssgsea.
-e differences in immune ratings between the molecular
subtypes were then compared.

Furthermore, we analysed the correlation of the molecular
risk model with immune-inhibitory markers. We collected
6 immune-inhibitory markers, including CD274, PDCD1,
PDCD1LG2, CTLA4, HAVCR2, and IDO1, from the pub-
lished literature. Using the chi-square test, the response to
immune checkpoint therapy was estimated and compared.

2.5. Tissue Samples. Ten BC tissues were collected and kept
at 80°C. Preoperative antitumor treatments were not given to
any of the patients. Informed consent papers were signed by
patients. -is study was approved by the Ethics Committee
of Shanghai Tongren Hospital (2021-088-02).

2.6. RT–qPCR Analysis. Total RNA was isolated by TRIzol
reagent (Invitrogen, -ermo Scientific, Shanghai, China),
and RNA was reverse-transcribed into cDNA using
a HiScript II 1st Strand cDNA Synthesis Kit (Invitrogen,
-ermo Scientific, Shanghai, China) (Vazyme, China).
ChamQ SYBR qPCRMaster Mix was used to quantify qPCR
analyses (Vazyme, China).

2.7. Immunohistochemistry. Paraffin sections of breast cancer
tissue were used for immunohistochemistry. -e slides were
dewaxed with methanol and rehydrated with alcohol after being
dried at 60°C. -e slides were then submerged in 3% hydrogen
peroxide overnight and labelledwith antibodies.-e experiment
was carried out with the manufacturer’s instructions. -e an-
tibodies purchased from Abcam as follows: APOBEC3D anti-
body (ab105869), anti-TNFRSF14 antibody (ab47677) and anti-
RAC2 antibody (ab2244). -e immunohistochemistry results
were evaluated under a microscope at 20×10.-e IHC findings
were analysed by Image-Pro Plus 6.0 Software.

2.8. Cell Lines and Transfection. -e human normal mam-
mary epithelial cell line MCF10A, and BC cell lines (MDA-
MB-231 and MCF-7) were purchased from the National
Collection Authenticated Cell Cultures (Shanghai, China). All
cells were incubated at 37°C and 5% CO2 in a incubator.
Transfection was carried out by Lipofectamine 3000 reagent
(Invitrogen, China, No. L3000015) according to the in-
structions. -e coding sequences of human APOBEC3D,
TNFRSF14, and RAC2 were cloned into the pEZ-M03 vector.

2.9.EthynylDeoxyuridine (EdU)Assays. -e experiment was
carried out exactly as instructed. Cells were cultivated at
a density of 10000 cells in 96-well plates per well. -e 96-well
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plates were then incubated for 3 hours at 37°C with 10M
EdU labelling medium (Beyotime Biotechnology, Shanghai,
China). After fluorescence microscopy inspection, the
percentage of EdU-positive cells was determined.

2.10. Colony Formation Assay. A total of 1000 cells were
placed in six-well plates for the colony formation test. -e
cells were mixed together and grown for one week in culture
media containing 10% FBS. A single colony was defined as
a cluster of 30 cells or less.

2.11. Statistical Analysis. -e SPSS 13.0 statistical software
program was used to analyse the data (IBM Corporation,
Armonk, NY, USA). GraphPad Prism 8.0 was used to create
the graphs (GraphPad Software, Inc., San Diego, CA).
Statistical significance was defined as a p value< 0.05.

3. Results

3.1. Identification and Molecular Pyroptosis-Related Type.
-e TCGA-BC dataset was used to calculate 52 pyroptosis-
related genes expression, and 21 genes was high expression
and 17 genes was low expression (Figure 1(a)) in BC. To
further investigate the interrelationship among the DESs,
a PPI network and correlation analysis were constructed.
GSDMD and CHMP6 were shown to be linked to the risk of
BC in the study (Figures 1(b) and 1(c)). -e Consensu-
sClusterPlus tool was also used to perform clustering
analysis. -e 1096 BC samples were classified into C1 and
C2 clusters (Figure 1(d)). As shown in Figure 2(a)
(p � 0.006), C1 had the worst prognosis, and C2 had the
best prognosis in BC. In addition, we counted the differ-
entially expressed genes based on the clusters. A total of
1190 DES (padj <0.05 and |log2FC|>1) were found to be
common between the two groups (Figure 2(b)). Between
the 1190 candidate DESs mentioned above and the survival
data, we ran multivariate Cox regression analyses. APO-
BEC3D, TNFRSF14, and RAC2 were all found to be risk
variables in a forest plot of HRs. To minimize the genes
number for the risk model, Lasso regression was utilized
(Figure 2(d)). As shown in Figure 2(e), we then utilized
a 10-fold cross test to build the model and confidence
interval for each lambda. -e following is the final 3-gene
signature formula:

RiskScore � −0.268130112241867 ∗ APOBEC3D −

0.343435308531483 ∗ TNFRSF14 − 0.0874551279062335 ∗
RAC2.

3.2. Risk Model Analysis and Comparison. We used the
TCGA-BC dataset as the training set and the GSE37751 test
set for risk research to determine whether our signature was
feasible. To validate the prognostic relevance of the risk
score, the Kaplan–Meier survival curves, ROC curves, and
risk score distributions for OS prediction were examined.
In both the training and test sets, the risk model was highly
connected to the prognosis of BC patients, as shown in
Figures 3(a) and 3(b). ROC curve results showed that the

prognostic prediction for 1, 3, and 5 years had good
classification efficiency (Figures 3(c) and 3(d)). -ree
prognostic risk models (PMID 34589498) were chosen for
comparison with our risk model. -e 1-, 3-, and 5-year
AUC values for the 3-gene signature model were lower than
those for our model. -is finding demonstrates that our
model produces better results (Figure 3(e)). In the
TCGA-BC dataset, as the risk score increased, the ex-
pression levels of APOBEC3D, TNFRSF14 or RAC2 were
downregulated, and the number of surviving patients de-
creased (Figure 3(f )). -ese findings in the GSE37751
external test set, which were from different data sources,
indicate that the risk signature performs well in predicting
the survival of BC (Figure 3(g)).

3.3. Cox Regression Analysis and Nomogram Construction.
In data mining, PCA and t-SNE are commonly utilized. In
both the training (4(a) and 4(b)) and test sets, we discovered
that risk models can effectively discriminate risk patients
(Figures 4(c) and 4(d)). Between the survival data and the
risk model, univariate and multivariate Cox regression
analyses were performed. -e forest plot revealed that
separate survival time parameters in the training
(Figures 4(e) and 4(g)) and test sets influenced the risk
model (Figures 4(f) and 4(h)). Furthermore, we analysed the
DEGs involved in pyroptosis using KEGG pathway en-
richment analysis and GO analysis. -e enriched biological
process (BP) term was linked to the humoral immune re-
sponse, the enriched molecular function (MF) term to T-cell
activation (Figure 4(i)), and the enriched KEGG pathways to
the NF kappa B signaling network and T-cell receptor
signaling pathway (Figure 4(j)). Risk signatures may be
applied intuitively and successfully with nomograms, and
outcomes can be predicted with ease. Our nomogram, as
shown in Figure 5, has a fair degree of accuracy in predicting
the survival rates of BC patients.

3.4. Analysis of Immune Scores among Molecular Subtypes.
We used ESTIMATE software, which can predict the tu-
mour microenvironment score. Our model can distinguish
the estimate score (Figure 6(a)), stromal score (Figure 6(b)),
immune score (Figure 6(c)) and purity of the tumour
(Figure 6(d)) well. -e pyroptosis-related signature has
a good predictive effect in evaluating 28 types of immune
cells (Figure 6(e)), including B cells memory (Figure 7(a)),
B cells naive (Figure 7(b)), dendritic cells resting
(Figure 7(c)), macrophages M0 (Figure 7(d)), macrophages
M1 (Figure 7(e)), macrophages M2 (Figure 7(f )), mast cells
activated (Figure 7(g)), monocytes (Figure 7(h)), NK cells
activated (Figure 7(i)), plasma cells (Figure 7(j)), Tcells CD4
memory activated (Figure 7(k)), T cells CD4 memory ac-
tivated resting (Figure 7(l)), T cells CD8 (Figure 7(m)),
T cells follicular helper (Figure 7(n)), T cells gamma delta
(Figure 7(o)), and T cells regulatory (Tregs) (Figure 7(p)).
Furthermore, a heatmap was used to evaluate the tumour
microenvironment score (Figure 8(a)) and immune cells
(Figure 8(b)). Patients with lower risk scores had a better
response to ICI therapy, indicating that the pyroptosis-
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related signature had well evaluation effect in checkpoint
therapy (Figures 8(c)–8(j)).

3.5.  e Role of APOBEC3D, TNFRSF14, and RAC2 in BC.
Based on the pyroptosis-related signature gene (APO-
BEC3D, TNFRSF14, and RAC2) risk score, the expression of
the genes was investigated using qPCR and immunohisto-
chemistry. -e findings of the qPCR (Figures 9(a)–9(c)) and
immunohistochemistry (Figures 9(d)–9(f )) analyses

revealed that the APOBEC3D, TNFRSF14, and RAC2 ex-
pressions in BC tissues. We examined the expression of
APOBEC3D, TNFRSF14, and RAC2 in BC cells, and the
PCR results showed that the APOBEC3D, TNFRSF14, and
RAC2 expressions were significantly low in MCF-7 and
MDA-MB-231 cells (Figures 10(a)–10(c)). Since APO-
BEC3D, TNFRSF14, and RAC2were all minimally expressed
in MCF-7 cells, we next selected it for further study. Western
blotting experiments showed that the protein expression of
APOBEC3D, TNFRSF14, and RAC2 were weaker in MCF-7
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cells (Figures 10(d)–10(f)). Furthermore, the biological
functions of APOBEC3D, TNFRSF14, and RAC2 were in-
vestigated. To test the proliferation of MCF-7 cells, we used
an overexpression method for APOBEC3D, TNFRSF14, and
RAC2. -e proliferation ability of MCF-7 cells was de-
termined using colony formation (Figures 10(g)–10(i)) and
EdU assays (Figures 10(j)–10(l)). -e results revealed that
overexpression of APOBEC3D, TNFRSF14, and RAC2
greatly suppressed MCF-7 cell proliferation.

4. Discussion

Breast cancer (BC) is the most common women malignant
tumor all over the world [13], with significant heteroge-
neity and molecular features [14]. A growing number of
studies have found that pyroptosis is important in the
course of cancer and has a link to the effects of some
chemotherapy medications [15]. Furthermore, numerous
studies have revealed that pyroptosis-related genes may be
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Figure 9: -e expression of APOBEC3D, TNFRSF14, and RAC2 in BC tissues. In BC tissues, APOBEC3D, TNFRSF14, and RAC2 were
expressed at lower levels in the high-risk group, according to results of (a-c) qPCR and (d-f) immunohistochemistry.
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Figure 10: -e biological functions of APOBEC3D, TNFRSF14, and RAC2 in BC cells. (a-c) PCR results showed that the model gene
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potential therapeutic targets and have a link to breast
cancer chemotherapy drugs [16–18]. However, only a few
pyroptosis-related markers have been discovered, which
are intimately linked to the prognosis and immune in-
filtration of BC.

In the present study, we identified pyroptosis-related
genes from TCGA-BC, which used them to construct
a novel predictive molecular model for BC (APOBEC3D,
TNFRSF14, and RAC2). For the risk analysis, we used the
training set (TCGA-BC dataset) and test set (GSE37751
dataset) to determine whether our signature was feasible.
Our signature had good classification efficiency of the
Kaplan–Meier survival curves, ROC curves, and risk
score distributions for OS prediction. Furthermore, we
compared our model with other risk models and our
model has a more effective result. -e risk model is the
influence of survival time and accuracy for forecasting
the survival rates of BC patients in Cox regression
analysis and the nomogram. Our model can identify the
estimate score, stromal score, immunological score, and
purity of tumors well, which is another key point of the
risk model. Additionally, the pyroptosis-related signa-
ture has a good predictive effect in evaluating immune
cells and checkpoint therapy. -e qPCR and immuno-
histochemistry results showed that APOBEC3D,
TNFRSF14, and RAC2 were expressed at lower levels in
stages III and IV (high-risk group) in BC tissues. Fur-
thermore, the results of biological functions revealed that
overexpression of APOBEC3D, TNFRSF14, and RAC2
greatly suppressed MCF-7-cell proliferation. -e find-
ings of the current study provide more effective tools
for predicting prognosis and immune infiltration in
BC, and the signature genes may serve as potential
targets for BC, which have not been found in previous
studies.

Here, pyroptosis-related APOBEC3D, TNFRSF14, and
RAC2 genes were considered risk genes for BC. It has been
reported that the expression of APOBEC3D [19, 20],
TNFRSF14 [21, 22], and RAC2 [23, 24] is dysregulated
and is a potential target for therapy in cancer. In BC,
TNFRSF14 and RAC2 are prognostic markers, which is
consistent with our findings. For APOBEC3D, we report
for the first time that APOBEC3D could be used as a new
molecular marker in BC. However, our study also has
some limitations: 1. A small number of clinical samples
were used to test the pyroptosis-related APOBEC3D,
TNFRSF14, and RAC2 genes. In future studies, we will
expand the number of samples for research. 2. -e
function of APOBEC3D in vitro experiments will be
analysed in the future.

Finally, our research study presents a unique pyroptosis-
related genes prognostic molecular model (APOBEC3D,
TNFRSF14, and RAC2) that could be used to assess prog-
nostic risk and immune infiltration in BC.-e overexpression
of APOBEC3D, TNFRSF14, and RAC2 significantly reduced
MCF-7 cell proliferation, according to the results of biological
functions. Our pyroptosis-related signature could be utilized
to assess prognosis and immune infiltration and it could be
used to identify potential targets for BC.
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