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Abstract

Semantic Textual Similarity (STS) is the task of identifying the semantic correlation between

two sentences of the same or different languages. STS is an important task in natural lan-

guage processing because it has many applications in different domains such as informa-

tion retrieval, machine translation, plagiarism detection, document categorization, semantic

search, and conversational systems. The availability of STS training and evaluation data

resources for some languages such as English has led to good performance systems that

achieve above 80% correlation with human judgment. Unfortunately, such required STS

data resources are not available for many languages like Arabic. To overcome this chal-

lenge, this paper proposes three different approaches to generate effective STS Arabic

models. The first one is based on evaluating the use of automatic machine translation for

English STS data to Arabic to be used in fine-tuning. The second approach is based on the

interleaving of Arabic models with English data resources. The third approach is based on

fine-tuning the knowledge distillation-based models to boost their performance in Arabic

using a proposed translated dataset. With very limited resources consisting of just a few

hundred Arabic STS sentence pairs, we managed to achieve a score of 81% correlation,

evaluated using the standard STS 2017 Arabic evaluation set. Also, we managed to extend

the Arabic models to process two local dialects, Egyptian (EG) and Saudi Arabian (SA), with

a correlation score of 77.5% for EG dialect and 76% for the SA dialect evaluated using dia-

lectal conversion from the same standard STS 2017 Arabic set.

Introduction

Recognizing the similarity between two sentences is a vital process in many applications since

the text is one of the most important media for communication [1]. This makes Semantic
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Textual Similarity (STS) a critical pre-step in several domains such as information retrieval,

document classification, machine translation, textual summarization, question answering,

short answer grading, semantic search, and conversational systems [2]. For example, In the

information retrieval problem, the most common criterion used to retrieve information is key

sentences. Given a set of available media such as documents or videos, millions of them for

practical applications, the user can query the system by entering a sentence to describe the con-

tent of the medium to be viewed. The same medium can be retrieved using several sentences.

i.e., the user can use a different query other than the key sentences that are associated with the

medium to describe it. For any efficient retrieval process, the system should be able to recog-

nize the correlation between similar, but different, queries [3].

STS and sentence embeddings

While there are several ways to tackle the problem of STS, the most promising ones are based

on word/sentence embeddings. Sentence embeddings are vector representations of sentences

in which each vector is mathematically close in the space to other vectors that represent

semantically close meaning. Embeddings can be calculated using different algorithms such as

Word2Vec [4], GloVe [5], and BERT [6]. BERT and BERT-Like models are generally based on

self-supervised machine learning techniques that make use of the huge amounts of unlabeled

text data available on the internet. While BERT is not intentionally created to generate embed-

dings, it can be adjusted to generate sentence embeddings of good quality. BERT models set

new state-of-the-art performance on various sentence classification and sentence-pair regres-

sion tasks. To generate a sentence-pair similarity score, BERT uses a cross-encoder: Two sen-

tences are passed to the transformer network and the target value is predicted using a simple

regression method for the output. However, this setup is unsuitable for various applications

due to the high number of possible combinations to be checked. In [7], the authors proposed a

method to generate effective sentence embeddings from BERT models, and several other mod-

els have been suggested for such a line of adaptations.

Motivation

While measuring semantic similarity of texts is applied widely for some languages, for exam-

ple, English, The Arabic version of the problem has three main limitations. The first one is that

the methods proposed to handle the problem for the Arabic language are not of good perfor-

mance. The second issue is that the development of STS models always requires the availability

of semantic similarity annotated corpus with considerable size [8]. Unfortunately, this type of

resource is not available for low resources languages such as Arabic. The third problem is that

the written form of dialectal Arabic doesn’t have lexical standards. So, there is always a need

for approaches that can minimize the gap between the performance of Arabic STS models and

the level of STS models of widely investigated languages like English. The motivation of this

work is to overcome these challenges. and to provide a methodology for handling these issues.

The general advantages and contributions of this work are provided in the next section.

Contributions

The main contributions proposed in the paper are the following:

• Proposing three approaches to tackle the problem of Arabic STS. The first is to use automatic

machine translation to translate English STS data to Arabic and to use the translated data for

converting Arabic BERT models into STS Arabic models. The second approach is to inter-

leave English STS data with Arabic BERT models to generate enhanced Arabic STS models.
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The third approach is based on knowledge distillation models that are optimized using pro-

posed translated Arabic STS datasets.

• The development of a new data resource of professional translation for 1.3K pairs of sen-

tences from their original form in English to MSA, Egyptian Arabic, and Saudi Arabic

versions.

• Proposing different models that advance the state-of-the-art performance in the STS task in

MSA with limited resources.

• The development, to the best of our knowledge, of first STS models for Egyptian Arabic and

Saudi Arabic.

The rest of the paper is organized as follows: Section 2 illustrates the related work and litera-

ture review; Section 3 provides the details of the proposed approaches, the developed datasets,

and the developed models. Section 4 includes the experimental results and Section 5 includes

comparisons with the state-of-the-art results. Finally, section 6 includes the conclusions and

some prospects for our planned future work.

Related work

Lexical-based similarity

Because semantic textual similarity has many applications in natural language processing, the

general form of the problem has attracted a lot of attention from the community [9, 10]. How-

ever, it has gained a less but considerable interest regarding the Arabic language. While there

are several methods tried to tackle the problem, these methods can be categorized into two

main tracks: lexical-based similarity and semantic-based similarity [11]. Lexical-based similar-

ity relies on calculating the correlation between the character streams of two sentences to be

compared. This process can be applied to the level of characters or the level of words. While

applying this process to the level of characters is relatively simple, it is not robust enough to

extract the real similarity between two sentences. Computing the correlation between two

texts based on words is better than character level [12]. Methods for measuring similarity

between words are using several distance measures to compute the relevance between two

terms [13]. Some examples of these measures are Jaccard distance and Levenshtein distance

[14, 15].

Semantic-based similarity

Semantic-based sentence similarity methods can be divided into three classes: word-based sen-

tence similarity, structure-based sentence similarity, and vector-based sentence similarity

methods [13]. In word-based sentence similarity, the sentence is handled as a list of words,

and the correlation between the words in the two sentences is compared [16]. In structure-

based sentence similarity, several methods have been suggested that use language grammar

[17], Part-Of-Speech (POS) [18] and words order [19]. Vector-based sentence similarity meth-

ods rely on calculating sentence embeddings that describe each sentence as a mathematical

vector. These methods are based on corpus analysis. The vector representing each sentence

can be calculated by training a model using a sufficiently large corpus. Many techniques have

been presented to provide sentence embeddings. For example, Kiros et al. in [20] proposed a

method named Skip-Thought that trains an encoder-decoder framework to try to predict the

surrounding sentences. In [21], the authors proposed a method that uses siamese transformers

and siamese DAN networks to generate sentence embeddings. Cer et al. [22] proposed Univer-

sal Sentence Encoder which used unsupervised learning with a transformer network. Conneau
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et al. [23] proposed InferSent, a siamese BiLSTM network with max-pooling over the output.

This method used labeled data of Stanford Natural Language Inference dataset (SNLI) [24]

and the MultiGenre NLI dataset (MultiNLI) [25].

BERT embeddings

The main recent approaches to calculate sentence embeddings are based on utilizing robust

language models such as BERT. BERT (Fig 1), which stands for Bidirectional Encoder Repre-

sentations from Transformers, is designed to train masked language models from an unlabeled

text by conditioning on both left and right contexts in all layers of a transformer network.

Such a language model randomly masks a specific percentage of input tokens and the objective

of the training is to predict the original masked tokens using only their context. BERT-based

models can be used to generate sentence embeddings. There are several ways to utilize BERT

for generating sentence embeddings. For example, by averaging the BERT output layer which

is known as BERT embeddings, or by using the embedding of a special token the BERT uses as

the first token for each input sentence (Known as the [CLS] token). Also, The BERT can be

used in a sentence-pair regression mode to generate a similarity score. However, the embed-

dings generated by these methods are either not of good quality or not practical for most appli-

cations [7].

Several techniques have been proposed to enhance the accuracy of BERT-based sentence

embeddings. For example, in [7], the authors present Sentence-BERT (SBERT). The SBERT

model [7] takes as input a pair of sentences into siamese architecture which consists of two

instances of a base model. Each instance produces an embedding using a pooling procedure.

The two embeddings are compared and the manual estimated correlation scores are used to

train the model for being oriented to the semantic similarity. In the testing phase, the testing

Fig 1. The main framework of BERT.

https://doi.org/10.1371/journal.pone.0272991.g001

PLOS ONE Semantic textual similarity for Arabic using transfer learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0272991 August 11, 2022 4 / 14

https://doi.org/10.1371/journal.pone.0272991.g001
https://doi.org/10.1371/journal.pone.0272991


pairs of sentences are given as input to the same architecture and produce a cosine similarity

value for each pair of sentences that can be compared with the manual given reference correla-

tion score. The SBERT has been shown to achieve state-of-art performance for the English lan-

guage STS tasks. To transfer such good performance to other languages, especially those with

limited resources, a knowledge distillation approach was proposed [26]. In [26], the authors

proposed an efficient method to extend existing sentence embedding models to new languages.

Network learning is based on the concept that the original sentence and translated sentences

should be mapped in the same location in the vector space. Given, for example, a teacher

model of English, they presented an approach to train a student model of another language.

They use the original teacher model to produce sentence embeddings for the source language

and train a new system using translated sentences to simulate the original model. Fig 2 illus-

trates an overview of the method. However, using such a technique needs considerable

amounts of parallel data from multiple languages to be effective.

The state-of-the-art

Transfer learning-based solutions for STS have been used in several recent studies. For exam-

ple, in [27], the authors presented an STS system based on transfer learning. They used an

approach that is utilizing RoBERTa [28] models and applied their work to a biomedical data-

set. Their proposed methodology obtained an accuracy of 0.9. However, this accuracy was

based on domain-specific data. Also in [29], Mutinda et. al. proposed Japanese BERT-based

models for textual similarity. They also created two datasets that targeted the clinical medical

domain to test their presented systems. They achieved a score of 0.904 on the clinical domain

dataset. Furthermore, Yang et. al, in [30] explored 3 transformer-based models for clinical

STS, BERT, XLNet [31] and, RoBERTa. They examined transformer models pre-trained using

both clinical text and general English text. Their best-performing system was based on a

RoBERTa model and obtained a Pearson correlation of 0.9065. However, such good results

were due to applying the system to a domain-specific dataset.

Some techniques have been presented to handle the Arabic STS problem. In [26], the

authors applied their knowledge distillation-based model on a standard Arabic dataset for test-

ing proposed by [8] and got 79.1 based on Spearman rank correlation. Also, in [32] Nagoudi

and Schwab proposed a combination of word embedding and word alignment techniques and

then calculated sentence embedding as a sum of its content of word vectors to tackle the Arabic

STS problem [9]. Also in [33], Nagoudi et al. proposed a sentence vectors-based method for

Fig 2. Given parallel data from two languages, a student model can be trained such that the generated vectors for

the two languages sentences are close to the teacher language sentence vector.

https://doi.org/10.1371/journal.pone.0272991.g002
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the cross-lingual similarity between Arabic and English sentences. and they found that using

weighting based on POS can enhance their output results.

Proposed datasets and approaches

Data

In [8], the authors presented the evaluation of their organized task for Multilingual STS. They

have proposed datasets for being used to train and test STS proposed models. The datasets are

formatted into pairs of sentences. For each pair, there is a given manual score that indicates

the correlation between the two sentences. This score is ranging from 0 (no correlation) to 5

(exact meaning). Table 1 provides some examples of various degrees of correlation between

each pair of sentences in the STS datasets.

While Arabic STS was one of their organized tracks, the authors of [8] have provided an

MSA Arabic dataset for training, This work adds to them a translation of another 1379 pairs of

sentences from the English STS data. The translation has been completed by professional

experts. A translation for the same dataset to Egyptian Arabic and Saudi Arabic variants has

also been provided by this work. A dataset for testing has been presented in [8]. It consists of

250 pairs of sentences of MSA Arabic. The structure of the testing dataset and training dataset

is similar. We proposed a translation of this testing dataset to Egyptian Arabic and Saudi Ara-

bic to be used in evaluation. It is worth mentioning that the testing dataset presented by [8] is a

standard measure that is used by state-of-the-art papers (for example [26]). Table 2 illustrates

some examples of the proposed translations along with their original English texts.

Methodology

To develop our Arabic STS models, three approaches have been used. The first one is to train

an SBERT-based model. Such a model is based on an Arabic BERT model that is converted to

SBERT structure and fine-tuned using automatic translation to Arabic of the SNLI [24] and

Table 1. Examples of different levels of correlation between the sentences in STS dataset.

Correlation Example

5 The two sentences have the exact same meaning

I don’t see why there should be any problem with this whatsoever.

I don’t see why that should be a problem.

4 Some unimportant details are different but the two sentences are almost the same

A black and white photo of a man driving a car and someone with a motorcycle.

A black and white photo of a man in a classic car and a man with a classic motorcycle.

3 The two sentences are roughly equivalent, but there are some important different details.

A woman is talking on a cell phone.

A man and woman are talking on the phone.

2 The two sentences are not the same but they share some of the details

A man is playing the piano.

A man played the guitar.

1 The two sentences share the same topic but they are not equivalent.

A person is slicing some onions.

A woman is chopping herbs.

0 The two sentences are completely different

The train heads down the tracks and along the hedge.

A dog on the floor of a patio looks at a cat on the fence.

https://doi.org/10.1371/journal.pone.0272991.t001
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MultiNLI [25] English data sets. The M2M100 Many-to-Many multilingual model proposed

by [34] has been used for automatic translation of SNLI and MultiNLI datasets to MSA. To

build the SBERT-based model, the translated data have been used to convert the ArabicBERT

model into an SBERT version. The second approach is based on interleaving English STS data

with Arabic BERT models using transfer learning. In this approach, we started with an Arabic

BERT-based model. This model has been fine-tuned to be converted to an SBERT model. This

was done using English data from SNLI and MultiNLI English datasets and from original STS

dataset. As will be seen in the Experimental Results section, this approach considerably

impoved the accuracy of the model. The third approach is to utilize knowledge distillation-

based STS models as a base and fine-tune the models using the proposed translated dataset to

increase the accuracy of the models when used for Arabic STS. First, the pairs of sentences in

the translated dataset have been inputted into siamese architecture which consists of two

instances of a base model. Each instance produces an embedding using a pooling procedure.

The two embeddings are compared and the manual estimated correlation scores are used to

guide the network to fine-tune the model for being oriented to the dialect of the input data.

Second, in the testing phase, each generated model has been verified using a similar architec-

ture that takes the testing pairs of sentences as input and produces a cosine similarity value for

each pair of sentences that can be compared with a manual given reference correlation score.

Fig 3 summarizes the framework used in the third approach. The details of implemented

experiments are explained in the following section.

Experimental results

The proposed models have been tested on a standard dataset for testing proposed by [8]. As

mentioned before, this dataset has been translated to Egyptian and Saudi Arabic by native

speakers of both dialects. Three groups of tests have been applied. In the first group, the accu-

racy of MSA models has been checked. While in the second and third groups, the generated

models of Egyptian and Saudi Arabic have been tested. The accuracy measure that has been

Table 2. Some examples of the proposed translations along with original English sentences.

https://doi.org/10.1371/journal.pone.0272991.t002
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used is the standard Spearman rank correlation between the cosine similarity of sentence rep-

resentations and reference labels of testing datasets. The following is a brief description of the

current state-of-the-art STS models and the base models that have been utilized in our

experiments:

• ArabicBERT: ArabicBERT was the first pre-trained BERT model for Arabic. It is proposed

by Safaya et al. in [35].

• ARBERT: proposed by Abdul-Mageed et al. in [36]. It is an Arabic large scale masked lan-

guage model that targets modern standard Arabic.

• stsb-xlm-r-multilingual: It is a natural language processing model implemented in Trans-

former library. It was trained on SNLI + MultiNLI and on STS benchmark dataset. The

model is a multilingual version, trained on parallel data for 50+ languages [26].

• distiluse-base-multilingual-cased-v1: A multilingual knowledge distilled version of multilin-

gual Universal Sentence Encoder. Supports 15 languages including Arabic and English [26].

• distiluse-base-multilingual-cased-v2: It is a multilingual knowledge distilled version of

multilingual Universal Sentence Encoder. While v1 model supports 15 languages, this ver-

sion supports 50+ languages. However, performance on the 15 languages mentioned above

are reported to be a bit lower [26].

• quora-distilbert-multilingual: It is the multilingual version of quora-distilbert-base, fine-

tuned with parallel data for 50+ languages [26].

• paraphrase-xlm-r-multilingual-v1: A multilingual version of paraphrase-distilroberta-

base-v1, trained on parallel data for 50+ languages [26].

Fig 3. A framework of models generation using the third approach.

https://doi.org/10.1371/journal.pone.0272991.g003
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• paraphrase-multilingual-mpnet-base-v2: It is the multilingual version of paraphrase-

mpnet-base-v2, trained on parallel data for 50+ languages [26].

The following tables show the results of MSA, Egyptian Arabic, and Saudi Arabic experi-

ments respectively. For each table, the base model, the training/fine-tuning data, and the accu-

racy measured in Spearman/cosine similarity are shown respectively.

Approaches evaluation

As can be seen in Table 3, in the first experiment, the first approach has been checked. The

M2M100 model has been used to automatically translate SNLI and MultiNLI datasets to MSA.

M2M100 is a Many-to-Many multilingual translation model proposed by Facebook that can

translate directly between any pair of 100 languages. The translated data have been used to

convert the ArabicBERT model into an SBERT model. As illustrated in Table 3, when the

translated version of SNLI and MultiNLI has been used, the spearman score was around 0.48.

But when the original English versions of SNLI and MultiNLI have been used to build the

SBERT model, the spearman score was over 0.65. This means that the accuracy achieved using

the original SNLI and MultiNLI English version is better than the accuracy we got using the

translated version. This may be due to the inaccuracies in the translated version. So, It is not

recommended to use automatic language translation-based solutions to tackle the STS prob-

lem; at least with the current maturity level of automatic translation.

To check the second approach, another experiment has been conducted. We have started

with the ARBERT model, which is an Arabic BERT-based model, and fine-tuned it using

English data to convert it into an SBERT model, In this direction, two trials have been tested,

in the first trial, only SNLI and MultiNLI English datasets have been used for model conver-

sion. while in the other trial, SNLI and MultiNLI datasets have been utilized and then a fine-

tuning process has been applied using original STS data [8] for one epoch. The first trial

provided a spearman score of around 0.70 while with the second trial, we got an accuracy of

over 0.73. From these two trials, It can be seen that interleaving English data with Arabic-

based models is more promising than the translation-based solution.

In the third approach, It has been checked how efficiently to use knowledge distillation-

based solutions. For this purpose, several experiments have been conducted. As shown in

Table 4, our translated 1.3k pairs of sentences have been used to fine-tune several state-of-the-

art STS models. The best Spearman score achieved using this approach was over 0.81 using

paraphrase-multilingual-mpnet-base-v2 proposed by [26] as a base model and our proposed

translated dataset along with original data presented by [8]. Using a similar procedure, the pro-

posed translated versions of STS data to Egyptian Arabic and Saudi Arabic have been used to

fine-tune the state-of-the-art models. As illustrated in Table 5, In the case of Egyptian Arabic,

the proposed translated data have been successfully used to fine-tune the base model para-

phrase-xlm-r-multilingual-v1 proposed by [26] with a Spearman score of 0.775. In the case of

Table 3. Accuracy of machine translation based and interleaved MSA models tested based on Spearman rank cor-

relation between the cosine similarity of sentence representations and the reference labels of the testing dataset in

[8].

Base Model Training data Score

ArabicBERT bert-base SNLI and MultiNLI datasets translated using M2M100 model into MSA 0.4798

ArabicBERT bert-base SNLI and MultiNLI English datasets 0.6525

ARBERT SNLI and MultiNLI English datasets 0.708

ARBERT SNLI and MultiNLI English datasets then STS for 1 epoch 0.7364

https://doi.org/10.1371/journal.pone.0272991.t003
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Saudi Arabic. the proposed translated Saudi data along with the original data proposed by [8]

have been utilized to fine-tune state-of-the-art base models. Table 6 provides the details of the

experiments done in this direction. As shown in Table 6, the best Spearman score achieved

was over 0.76 by fine-tuning the base model distiluse-base-multilingual-cased-v2.

Comparisons with state-of-the-art

To test the quality of the proposed models, they have been compared to state-of-the-art coun-

terparts. While different methods have been assessed on various datasets at testing, our results

can be compared to methods that used the MSA testing dataset suggested in [8]. Table 7 illus-

trates the comparisons with the best current MSA models.

As shown in Table 7, the proposed model for MSA enhanced the state-of-the-art result by

around an absolute 2%. It is worth mentioning that transfer learning-based solutions depend

on the similarity between the domain of the base model and the domain of the new model.

While the base model (paraphrase-multilingual-mpnet-base-v2) of the proposed MSA model

Table 4. Accuracy of knowledge distillation-based MSA models tested based on Spearman rank correlation

between the cosine similarity of sentence representations and the reference labels of the testing dataset in [8].

Base Model Fine-tuning data Score

quora-distilbert-multilingual translated 1.3K MSA pairs of sentences 0.7665

distiluse-base-multilingual-cased-v2 translated 1.3K MSA pairs of sentences 0.7752

distiluse-base-multilingual-cased-v1 translated 1.3K MSA pairs of sentences 0.7778

stsb-xlm-r-multilingual translated 1.3K MSA pairs of sentences 0.7785

paraphrase-xlm-r-multilingual-v1 translated 1.3K MSA pairs of sentences 0.7918

paraphrase-xlm-r-multilingual-v1 translated 1.3K MSA pairs of sentences + original Arabic STS 0.7999

paraphrase-multilingual-mpnet-base-v2 translated 1.3K MSA pairs of sentences 0.8012

paraphrase-multilingual-mpnet-base-v2 translated 1.3K MSA pairs of sentences + original Arabic STS 0.8103

https://doi.org/10.1371/journal.pone.0272991.t004

Table 5. Accuracy of main Egyptian models tested based on Spearman rank correlation between the cosine simi-

larity of sentence representations and the reference labels of the testing dataset in [8] after translation to Egyptian

Arabic.

Base Model Fine-tuning data Score

paraphrase-multilg-mpnet-base-

v2

translated 1.3K Egyptian pairs of sentences 0.7345

paraphrase-multilg-mpnet-base-

v2

original Arabic STS then the translated 1.3K Egyptian pairs of

sentences

0.763

paraphrase-xlm-r-multilingual-v1 original Arabic STS then the translated 1.3K Egyptian pairs of

sentences

0.7647

paraphrase-xlm-r-multilingual-v1 translated 1.3K Egyptian pairs of sentences 0.7751

https://doi.org/10.1371/journal.pone.0272991.t005

Table 6. Accuracy of main Saudi Arabian models based on Spearman rank correlation between the cosine similar-

ity of sentence representations and the reference labels of the testing dataset in [8] after translation to Saudi

Arabic.

Base Model Fine-tuning data Score

paraphrase-xlm-r-multilingual-v1 translated 1.3K Saudi pairs of sentences 0.7441

paraphrase-xlm-r-multilingual-v1 original Arabic STS then the translated 1.3K Saudi pairs of sentences 0.752

distiluse-base-multilingual-cased-v2 translated 1.3K Saudi pairs of sentences 0.7608

distiluse-base-multilingual-cased-v2 original Arabic STS then the translated 1.3K Saudi pairs of sentences 0.7622

https://doi.org/10.1371/journal.pone.0272991.t006
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has been trained on large scale amounts of data [26], the proposed new model has been fine-

tuned using small dataset of only a few thousands of sentence pairs. This is promising because

it indicates that the results can be even improved more without a need for new large scale

datasets.

While there are no models in the literature that intentionally target Egyptian and Saudi Ara-

bic, the state-of-the-art multilingual model that supports MSA Arabic provides a good result

for the Egyptian Arabic variant. But the contributed model that targets the Egyptian Arabic

boosts the result by 2.4% absolute enhancement. And the proposed Saudi-focused model also

provided around 2% absolute gain. However, the gap between the accuracy achieved in MSA

versus the Egyptian and Saudi dialects is still considerable. This is largely because the base

model used has been trained on MSA data, while the Egyptian and Saudi variants didn’t appear

in the training data of their base models. To tackle this problem in the future, is it planned to

automatically extract parallel data of high quality between MSA and Egyptian Arabic and

between MSA and Saudi Arabic. And then using these data to boost the performance of Egyp-

tian and Saudi models to match the level of MSA.

Discussions and conclusions

In this paper, the semantic textual similarity problem has been addressed with a focus on the

Arabic language and two of the major Arabic dialectical variants: Egyptian and Saudi Arabic.

The Arabic language is one of the low-resourced languages. This produces a considerable lag

Table 7. Comparisons between the proposed models and current state-of-the-art Arabic STS models based on

Spearman rank correlation between the cosine similarity of sentence representations and the reference labels of

the testing dataset in [8].

Variant Model Spearman/Cosine similarity

MSA quora-distilbert-multilingual 0.7075

distiluse-base-multilingual-cased-v1 0.7586

distiluse-base-multilingual-cased-v2 0.7734

stsb-xlm-r-multilingual 0.7867

paraphrase-xlm-r-multilingual-v1 0.791

paraphrase-multilingual-mpnet-base-v2 0.791

proposed MSA model 0.8103

Egyptian Model Spearman/Cosine similarity

quora-distilbert-multilingual 0.5811

paraphrase-multilingual-mpnet-base-v2 0.6847

distiluse-base-multilingual-cased-v2 0.6950

stsb-xlm-r-multilingual 0.7200

distiluse-base-multilingual-cased-v1 0.7237

paraphrase-xlm-r-multilingual-v1 0.7516

proposed Egyptian model 0.7751

Saudi Model Spearman/Cosine similarity

quora-distilbert-multilingual 0.5706

paraphrase-multilingual-mpnet-base-v2 0.6784

stsb-xlm-r-multilingual 0.6879

paraphrase-xlm-r-multilingual-v1 0.7145

distiluse-base-multilingual-cased-v1 0.7310

distiluse-base-multilingual-cased-v2 0.7410

proposed Saudi model 0.7622

https://doi.org/10.1371/journal.pone.0272991.t007
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of accuracy between semantic textual similarity models of Arabic and their counterparts in

rich-resourced languages such as English. The suggested work has been presented to tackle

this problem. The main contributions proposed in the paper can be summarized in the follow-

ing: First, the problem of limited resources for Arabic STS has been addressed by three

approaches. The first approach is to utilize automatic machine translation to translate English

STS data to Arabic and to use the translated data for converting Arabic BERT models into STS

Arabic models. The second approach is to interleave English STS data with Arabic BERT mod-

els to produce improved Arabic STS models. The third approach is based on utilizing knowl-

edge distillation-based models as a base and fine-tuning them using a proposed translated

dataset to improve the performance for Arabic STS. Also, we contributed a manual translation

of a large subset from the STS competition dataset [8]. It has been translated to modern stan-

dard Arabic, Egyptian Arabic, and Saudi Arabic by professional translators. Moreover, the

developed models that enhanced the accuracy for modern standard Arabic STS by around

absolute 2% gain over the state-of-the-art level have been presented. The models have been

tested on the standard dataset used by the community. Furthermore, the work presented the

details and experiments of the developed STS models for Egyptian Arabic and Saudi Arabic,

which achieved gains of around absolute 2.4% and 2% respectively.

Based on these results, the main conclusions to be considered are the following: Delivering

high-quality data to the community is of special importance to improve the accuracy of STS

models of low-resourced languages such as Arabic. Also, knowledge distillation based solu-

tions are competitive to tackle the STS problem. Furthermore, the accuracy of Egyptian Arabic

and Saudi Arabic STS models can be boosted considerably even with using relatively small

proposed datasets.

Limitations and future work

Although the suggested work presents significant improvement for Arabic MSA STS, there are

still some limitations to be considered. First, there is a large gap between the accuracy of MSA

STS models when compared with the state-of-the-art of English STS. It is important to mini-

mize this gap to support models integration in practical applications. Also, evaluation mea-

sures should consider the embedded semantic information included in sentences such as

named entities. Our future work plan is to check the robustness of the developed Arabic STS

models by evaluating them using different downstream tasks such as question answering and

Quora Question Pairs problem [37]. Moreover, it is planned to expand our work by targeting

new important Arabic dialects such as Maghribi and Levantine variants.
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