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Abstract: In this work, polyvinylidene fluoride (PVDF) aerogels with a tailorable phase composition
were prepared by following the crystallization-induced gelation principle. A series of PVDF wet gels
(5 to 12 wt.%) were prepared from either PVDF–DMF solutions or a mixture of DMF and ethanol
as non-solvent. The effects of the non-solvent concentration on the crystalline composition of the
PVDF aerogels were thoroughly investigated. It was found that the nucleating role of ethanol can be
adjusted to produce low-density PVDF aerogels, whereas the changes in composition by the addition
of small amounts of water to the solution promote the stabilization of the valuable β and γ phases.
These phases of the aerogels were monitored by FTIR and Raman spectroscopies. Furthermore, the
crystallization process was followed by in-time and in situ ATR–FTIR spectroscopy. The obtained
aerogels displayed specific surface areas > 150 m2 g−1, with variable particle morphologies that are
dependent on the non-solvent composition, as observed by using SEM and Synchrotron Radiation
Computed micro-Tomography (SR-µCT).

Keywords: aerogel; PVDF; crystalline phases; polyvinylidene fluoride

1. Introduction

Polyvinylidene fluoride (PVDF) is a chemically stable, inert, and piezoelectric poly-
mer [1]. Derived from these properties, this semicrystalline fluoropolymer finds applica-
tions in widespread fields such as catalysis [2], biomedicine [3], sensing technologies [4],
and many more. In the field of sensor technologies, PVDF is of remarkable interest since it
presents the highest piezoelectric constant of a polymer, good flexibility, and low density,
which are required features for wearable, wireless, and self-powered sensors [4–6]. The
semi-crystalline phase may comprise five different polymorphs (α, β, γ, δ, and ε), with
α, β, and γ crystalline phases being the most predominant ones [7–10]. The α phase is
easy to obtain since it is kinetically stable during crystallization, but its non-polar character
produces an electrically inactive compound, as the electric dipoles are neutralized due to
alternating trans-gauche conformation (TGTG’) [7–9]. Intended piezoelectric PVDF-based
sensors are expected to contain mainly β, and γ phases since they display highly polar
molecular conformations. Particularly, the atoms in the β phase are all trans-conformation
(TTTT), thus exhibiting the highest net dipole moment resulting in a high piezoelectric
constant [7,10]. On the other hand, the γ phase is structured in a gauche conformation for
every fourth repeating unit (T3GT3G´), showing the higher Curie temperature, breakdown
strength, and discharge energy, making it the best performer for large-scale applications
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under severe working conditions [7,11]. Hence, careful phase control of the PVDF-based
materials is required.

Several synthetic approaches are focused on obtaining PVDF materials with a high con-
tent of the polar phases, including melting, mechanical stretching [12–14], annealing [15,16],
blending [17,18], or addition of fillers [19–21], among others. However, such processing and
fabrication techniques are impractical for certain materials, or they are not compatible with
the final device design, thus stressing the importance of the exploration of alternative routes
such as a precise crystal growth control [16,17,22–24]. Currently, different methods are
being investigated to prepare PVDF materials such as fibers, films, or membranes exhibiting
good piezoelectric properties; nonetheless, their performance is still far from alternative
dense inorganic piezoelectric counterparts. It has been proven that induced porosity on
PVDF materials significantly improves the piezoelectric response of the system [3,25,26].
However, producing porous PVDF materials is an even bigger challenge since the current
production methods result in non-controlled porosity, large cavities, and difficulties to
remove the template, therefore compromising the piezoelectric potential [25,26]. It is even
more challenging to simultaneously optimize the porosity and specific phase configuration
in high-quality porous PVDF bulk materials.

In this work, we tackled these challenges by developing a direct method to produce
highly porous bulk PVDF aerogels with precise control of the phase composition, without
further sample processing or the incorporation of a template. The limited available research
on PVDF aerogels is focused on porous membranes [27–29], adsorbent media [30–32],
composites [33–35], thermal insulation [36], and airborne particle filtration [16,37], mostly
prepared by phase separation approaches using different solvents, followed by supercritical
drying process, or in some cases by freeze drying, without meaningful attention on control-
ling the crystalline phases, somehow demonstrating that this porous system is seemingly
ignored for piezoelectric applications. Consequently, an in-depth study on phase control
has not been reported yet.

Our results indicate that a precise control of choice and amount of the components
in the precursor solution allows for an excellent control of the crystalline phases, sur-
face morphology, and physicochemical properties in highly porous aerogel monoliths.
Namely, the interplay between the polymer, the solvent, and the gelation-induced crys-
tallization must be optimized to produce high-quality PVDF aerogels. This contribution
provides an easy and effective approach to crossover the outstanding physicochemical
properties of aerogels with the efficient electroactive response of the PVDF, resulting in
PVDF aerogels with adjustable characteristics that might be extrapolated to other porous
PVDF-based systems.

2. Results and Discussion

In the first set of experiments, the gel formation of PVDF was examined in pure
DMF solutions. The main focus was set on the concentration of PVDF that is necessary
to form stable three-dimensional gel bodies and on the investigation of the resulting
phase composition, as well as structural parameters such as specific surface area, porosity,
and particle sizes.

Gel formation. To determine the gelation boundaries, amounts of PVDF (3, 5, 7, 9, and
12 wt.%) were dissolved in DMF at 80 ◦C. Subsequently, the solutions were transferred
into sealed plastic containers to cool down and monitor the gel point. As presented in
Table 1, gelation is not observed for samples with lower amounts than 9 wt.% of PVDF.
Instead, liquid–liquid phase separation occurs with limited particle/chain connection [38],
and therefore, a three-dimensional network is not formed. On the contrary, the 9 and
12 wt.% solutions turned into a rigid whitish wet gel. In this case, the system undergoes
a spinodal decomposition in a colloid-rich region [9,39]. Thus, the 9, and 12 wt.% gels
(hereafter labeled as P9 and P12, respectively) were submitted to a supercritical drying
process to obtain PVDF aerogels.
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Table 1. Textural properties of the PVDF aerogels.

Sample SBET
(m2 g−1) a

Pore Diameter
(nm) b

Pore Volume
(cm3 g−1) c

tgel

min d
ρb

(g cm−3) e
ρs

(g cm−3) f
Porosity

(%)

P12 145 23 0.80 30 0.123 1.47 92
P9 168 23 0.99 45 0.093 1.39 93
P7 - - - No gel - - -
P5 - - - No gel - - -
P3 - - - No gel - - -

a Specific surface area obtained by N2 sorption, using the BET method. b Determined from the desorption curve,
using the BJH method. c Determined from the adsorption curve, using the BJH method. d Gelation time. e Bulk
density calculated by dimensions and weight. f Skeletal density calculated by using a He pycnometer.

After solvent extraction, an interconnected three-dimensional network of spherical
particles of ~1–2 µm, as determined by SEM imaging, builds the P12 and P9 aerogels
(Figure 1a–c) with no apparent differences between the two samples. The recorded N2
adsorption–desorption curves display type IV isotherms with H1-type hysteresis loops,
which are characteristic of mesoporous materials [40] (Figure 1d). The distinctive spherulitic
microstructure of both aerogels develops an SBET of 145 and 168 m2 g−1 for P12 and P9,
respectively (Table 1). The higher surface area of the 9 wt.% aerogel is attributed to the
lower PVDF concentration in comparison to the P12 sample. This concentration difference
slightly varied the density and the porosity of both aerogels, as observed in Table 1, but
there is no noticeable difference in the pore size distribution, which shows a maximum at
23 nm for both mesoporous samples (Figure 1e).
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Figure 1. (a,b) SEM micrographs of the P12 (a) and P9 (b) aerogels, respectively; (c) spherulitic
particles (P12) of the PVDF aerogels; (d) nitrogen sorption isotherms; (e) BJH pore size distribution
plots; (f) FTIR spectra; and (g) obtained P12 wet gel and its aerogel counterpart upon supercritical
drying.

FTIR measurements were carried out to determine the present crystalline phases; the
recorded patterns for the P12 and P9 aerogels are displayed in Figure 1f. Both spec-
tra confirm the presence of the β-phase due to distinctive peaks situated at 840 and
1275 cm−1 [41], which are complemented by the characteristic peaks of the γ-phase with
maxima at 482 and 1232 cm−1 [41]. This analysis revealed that the aerogels prepared with
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pure DMF as solvent exhibit a mixture of β, and γ phases without evidence of the non-polar
α phase at 761 cm−1.

Gelation by addition of a non-solvent to the solution mixture. It is common to use solvent
blends to shift the gelation boundaries of a polymer in solution. The blends can be sol-
vents of different solubility degrees toward the target polymer or solvent/non-solvent
mixtures [27], e.g., DMF/ethanol, DMSO/acetone, etc. In the membrane preparation, the
solvent mixture has a coagulation agent role [9,42,43]. Based on this principle, aiming to
synthesize aerogels at lower PVDF concentrations, a new series of samples were prepared
by dissolving 5–12 wt.% of PVDF in a mixture of DMF (solvent, xDMF = 0.5 − 0.8) and
absolute ethanol (non-solvent, xEtOH = 0.2 − 0.5) at 80 ◦C. Unlike dissolution of PVDF in
pure DMF, for a DMF/EtOH blend, wet gels are obtained at concentrations below 9 wt.%.
Detailed sample descriptions are displayed in Supplementary Table S1.

To explain this, it is necessary to evaluate the solubility of PVDF in the DMF/ethanol
blend. Hansen established an evaluation for a given solvent (or solvent mixture) based
on three different intermolecular interactions [44,45]: dispersive or non-polar interactions
(δD), polar interactions between permanent dipoles (δP), and hydrogen bonds (δH) [45,46].
Accordingly, Hansen states that a solvent mixture can be represented as a point in a three-
dimensional space, the so-called Hansen space, with δm

D , δm
P , and δm

H coordinates, and can
be expressed with the following equation:

δ2
T = δ2, m

D + δ2, m
P + δ2, m

H (1)

Similarly, a polymer can be represented as a volume in space. Thus, to achieve
polymer dissolution, the point that represents the solubility parameter of the solvent blend
must be situated within the volume corresponding to the solubility parameter of the
polymer [45,47]. To produce such an interaction between the polymer and a solvent blend,
Hansen established the relative energy difference (RED) parameter that is defined by the
polymer/solvent distance (Ra), and the experimental sphere radii for the polymer (R0):

RED =
Ra

R0
(2)

The parameter of distance is calculated with the following equation [45,46]:

Ra =
(

4(δD, P − δD, S)
2 + (δP, P − δP, S)

2 + (δH, P − δH, S)
2
)1/2

(3)

Essentially, the obtained values from these two equations give a simple analogy of
solubility in terms of relativeness: for RED < 1, the polymer will dissolve in the blend,
and for RED > 1, the affinity between the polymer and the solvent is poor; therefore,
the polymer will not dissolve in the blend. In our solvent blend (mixture of DMF and
EtOH), the distance (Ra) between the polymer and the solvent increases progressively
with the ethanol (EtOH) content, representing less solubility (Figure 2a). Particularly, the
lowest RED and Ra values (0.51, and 2.1 MPa1/2, respectively) are obtained when PVDF is
dissolved in pure DMF, representing the minimum possible difference between the solvent
and polymer interaction energies, implying the maximum affinity between polymer and
solvent [44]. On the other hand, though the PVDF-solvent affinity gradually decreases as
the ethanol content rises, PVDF still solubilizes in the blend in a range of xEtOH = 0 − 0.4
with RED < 1. However, as the RED value approaches 1, the boundary condition of PVDF
dissolution is reached (xEtOH = 0.4), and beyond this ethanol content limit (xEtOH > 0.5),
the RED > 1, and partial or non-dissolution occurs, as observed in Figure 2b, displaying
non-dissolved PVDF pellets after several hours under stirring and 80 ◦C.



Gels 2022, 8, 727 5 of 17

Gels 2022, 8, x FOR PEER REVIEW 5 of 17 
 

 

cool to room temperature the expanded state is disturbed, and the polymer chains will 
stack and form nuclei that eventually grow as a spherulite [38]. If the polymer concentra-
tion is high enough, the spherulites will build an interconnected backbone; thus, crystal-
lization-induced gelation will take place. This induced gelation effect was observed in all 
the prepared samples, from 5 to 12 wt.%. In comparison, only the samples with 9 and 12 
wt. % PVDF in pure DMF turned into a gel. As 𝑅  and RED values steadily increase with 
the ethanol content, the solubility of PVDF decreases, and the polymer chains tend to con-
tract; hence, the contact between polymer and solvent is minimized. Consequently, the 
expanded state of the polymer chains shifts to a contractive regime [48,49] favoring nucle-
ation and resulting in crystallization-induced gelation behavior. Experimentally, a low 
nucleation rate results in slow gelation, whereas fast gelation occurs when a high nuclea-
tion regime is reached, as shown by the fast gelation times (Supplementary Table S1). 

 
Figure 2. (a) RED values at different solvent compositions (blue crossed squares), the distance be-
tween the polymer and the solvent coordinates in a three-dimensional Hansen space (crossed cir-
cles), and difference of the solubility parameters, as a function of the ethanol content in the solvent 
mixture (filled squares); (b) PVDF dissolved at 80 °C in different solvent blends; (c) state of the 
polymer coils as a function of the ethanol content. 

Microstructure and crystallinity. The aerogels prepared with low ethanol content 
(𝑥 = 0.2, Figure 3a–d) present a similar spherulitic morphology to the aerogels pro-
duced in pure DMF. This supports the calculated 𝑅  and RED values, showing that, at 
this composition, the blend behaves as a good solvent for PVDF, and the polymer chains 
are thus giving enough time for stacking and generating the characteristic spherulitic mor-
phology. Additionally, this ethanol content produces enough nucleation sites to promote 
crystallization-induced gelation. This equilibrium is no longer effective with an excess of 
nucleation sites (𝑥 = 0.4) since, at an initial state, the polymer will form spherulites, 
but as the amount of dissolved PVDF in the solution decreases, rapid nucleation takes 
place, and the remaining polymer will grow as leaf-like particles on the surface of the 
previously formed spherulites, as observed in Figure 3e–h. This effect is more visible at 
the highest ethanol content, as observed in the micrographs displayed in Figure 3i–l. At 
these conditions, the contraction of the chains is so strong that they will immediately nu-
cleate and will exclusively form leaf-like particles with some signs of tiny spheres. In sum-
mary, DMF allows for a complete dissolution and expansion of the polymer chains, re-
sulting in a controlled formation of spherulitic particles, whereas ethanol has a nucleation 
agent role that promotes gelation. However, at high concentrations, uncontrolled particle 
growth occurs. 

FTIR analyses were performed to reveal possible compositional variations due to the 
addition of ethanol (Figure 4a–c). The recorded IR spectra revealed that independently of 
the PVDF concentration and blend composition, all the samples contain a mixture of the 
α, β, and γ phases as validated by the most characteristic peaks arising at 761, 840, and 
1231 cm−1, representative of the α, β, and γ, respectively. Nevertheless, the ethanol con-
centration seems to influence the relative content of these phases, as observed in Figure 
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Upon PVDF dissolution (xEtOH < 0.5), the polymer chains can experiment different
expansion states as a function of the ethanol content; hence, the gelation behavior can vary
accordingly (Figure 2c). Namely, at strong PVDF–solvent interactions (i.e., xEtOH ≤ 0.2),
the PVDF chains are in an expanded state [48]; then, as the solution is left to stand and cool
to room temperature the expanded state is disturbed, and the polymer chains will stack
and form nuclei that eventually grow as a spherulite [38]. If the polymer concentration is
high enough, the spherulites will build an interconnected backbone; thus, crystallization-
induced gelation will take place. This induced gelation effect was observed in all the
prepared samples, from 5 to 12 wt.%. In comparison, only the samples with 9 and 12 wt.%
PVDF in pure DMF turned into a gel. As Ra and RED values steadily increase with the
ethanol content, the solubility of PVDF decreases, and the polymer chains tend to contract;
hence, the contact between polymer and solvent is minimized. Consequently, the expanded
state of the polymer chains shifts to a contractive regime [48,49] favoring nucleation and
resulting in crystallization-induced gelation behavior. Experimentally, a low nucleation
rate results in slow gelation, whereas fast gelation occurs when a high nucleation regime is
reached, as shown by the fast gelation times (Supplementary Table S1).

Microstructure and crystallinity. The aerogels prepared with low ethanol content
(xEtOH = 0.2, Figure 3a–d) present a similar spherulitic morphology to the aerogels pro-
duced in pure DMF. This supports the calculated Ra and RED values, showing that, at this
composition, the blend behaves as a good solvent for PVDF, and the polymer chains are
thus giving enough time for stacking and generating the characteristic spherulitic mor-
phology. Additionally, this ethanol content produces enough nucleation sites to promote
crystallization-induced gelation. This equilibrium is no longer effective with an excess of
nucleation sites (xEtOH = 0.4) since, at an initial state, the polymer will form spherulites,
but as the amount of dissolved PVDF in the solution decreases, rapid nucleation takes
place, and the remaining polymer will grow as leaf-like particles on the surface of the
previously formed spherulites, as observed in Figure 3e–h. This effect is more visible
at the highest ethanol content, as observed in the micrographs displayed in Figure 3i–l.
At these conditions, the contraction of the chains is so strong that they will immediately
nucleate and will exclusively form leaf-like particles with some signs of tiny spheres. In
summary, DMF allows for a complete dissolution and expansion of the polymer chains,
resulting in a controlled formation of spherulitic particles, whereas ethanol has a nucle-
ation agent role that promotes gelation. However, at high concentrations, uncontrolled
particle growth occurs.
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Figure 3. Microstructure of the as-obtained PVDF aerogels, using different DMF/ethanol blends;
(a–d) PVDF aerogels (5–12 wt.%) prepared in a solvent blend containing xEtOH = 0.2, and xDMF = 0.8;
(e–h) PVDF aerogels (5–12 wt.%) prepared in a solvent blend containing xEtOH = 0.4, and xDMF = 0.6;
(i–l) PVDF aerogels (5–12 wt.%) prepared in a solvent blend containing xEtOH = 0.5, and xDMF = 0.5.

FTIR analyses were performed to reveal possible compositional variations due to the
addition of ethanol (Figure 4a–c). The recorded IR spectra revealed that independently
of the PVDF concentration and blend composition, all the samples contain a mixture
of the α, β, and γ phases as validated by the most characteristic peaks arising at 761,
840, and 1231 cm−1, representative of the α, β, and γ, respectively. Nevertheless, the
ethanol concentration seems to influence the relative content of these phases, as observed
in Figure 4d. For the samples prepared with xEtOH = 0.2, the γ-PVDF is the most dominant
phase, ranging from 42 to 47%, followed by a considerable amount of α-phase from 32 to
39%, and complemented by a fluctuating 19–23% of β-phase. The same trend was obtained
with aerogels prepared with xEtOH = 0.4, where the phase dominance is γ>α>β, with slight
preference on the formation of γ, and α over β, since the content of the β phase is reduced
up to 8%, such as for the samples prepared with 5 wt.%. Important changes were detected
for aerogels prepared with the highest ethanol content (xEtOH = 0.5), as evidenced by the
predominance of the α phase with more than a double amount (60–67%) in comparison
with the xEtOH = 0.2 aerogels. The change is accompanied by a proportional reduction
of the content of polar phases. This β/γ-to-α phase transition is correlated to the higher
contraction of the PVDF chains in the blend promoting the trans-gauche conformation of the
thermodynamically more stable α-phase [48]. Furthermore, the polarity of the nucleating
agent also plays an important role in the phase composition [50,51]. Based on the large
increase in the content of the α phase when PVDF is dissolved in a DMF:EtOH mixture of
1:1, it can be assumed that, under the studied conditions, ethanol promotes the nucleation
of α-PVDF crystals.
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On the other hand, the enhanced nucleation of the PVDF solutions by the effect of
ethanol leads to being able to obtain lower-density and higher-porosity PVDF aerogels
(ρb= 0.077 g cm−3, and 95%, for the 5 wt.% aerogel; see Supplementary Table S2) in com-
parison with the samples obtained in pure DMF, where the lowest achieved values were
ρb = 0.093 g cm−3 and 93% of porosity for the aerogel with 9 wt.% PVDF (Table 1). However,
the P12 and P9 samples have a higher specific surface area, 145 and 168 m2 g−1, respec-
tively, in comparison with the prepared with ethanol of 113 and 136 m2 g−1 for P12E0.2
and P9E0.2, respectively; these variations could be related to changes in the particles’
morphologies. In general, the obtained specific surface areas in this work are comparable
with the ones reported in the literature of around 100 m2 g−1 [16,32,52]; nevertheless, some
authors reported PVDF–graphene composite aerogels with specific surface areas as high as
200 m2 g−1, which is attributed to the intrinsic graphene surface area [33].

Addition of water as a secondary nucleation agent. Considering ethanol to be a nucleation
agent greatly favors the gel transition and the formation of the non-polar α phase, a
secondary nucleation compound, such as water, was carefully added to the mixture. To
investigate a possible correlation between the water and the phase composition of the
PVDF aerogels, a new series of samples was prepared. For this study, 5–12 wt.% of PVDF
was dissolved in a fixed solvent blend of DMF with xEtOH = 0.2 at 80 ◦C. Upon complete
polymer dissolution, different PVDF/H2O ratios were added, and the solution was left to
stand for gelation; finally, supercritical drying was performed to obtain the aerogels.

Figure 5 shows representative FTIR spectra of crystallized PVDF aerogels with water
as a secondary nucleation agent at different concentrations. The bands at 614, 761, 795,
and 975 cm−1, characteristic for the α phase, are observed in the P12E0.2H0.75 (H0.75
corresponds to a PVDF/H20 ratio of 0.75), corresponding to the aerogel with the highest
water content. The peaks at 1275 and 840 cm−1 indicate the presence of the β phase, and
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the peak at 1232 cm−1 is representative of the γ phase. Figure 5a shows that the content of
the α phase is gradually decreasing from 47% proportionally to the water content until no
evidence of a phase is present with a PVDF/H2O ratio of 1.5. Parallelly, the β-phase and
γ-phase associated bands located at 840, and 1232 cm−1 replace the α bands, which gain
intensity, and become sharper as the water content decreases, indicating a change in the
chain conformation. This α-free aerogel is also achieved when a PVDF/H2O ratio of 3.0
is used, thus indicating that, under such conditions, it is possible to obtain a monolithic
PVDF aerogel with solely β, and γ phases using a blend of xDMF = 0.8, and xEtOH = 0.2,
with H2O as a phase control agent in a PVDF/H2O ratio between 1.5 and 3.0.
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These results suggest that water hinders the presence of the α phase and there-
fore has a stabilizing effect on the β and γ phases; however, this is valid until a critical
PVDF/H2O ratio of 3.0 since, above this ratio, the α-phase abruptly grows (P12E0.2H6.0
with a PVDF/H2O ratio of 6.0), since the content of water is not high enough, and the
stabilization is diminished, resulting in up to 70% of α phase formation (brown pattern in
Figure 5a,b).

Different phenomena can simultaneously occur during the crystallization of the PVDF
aerogels when water is added. Firstly, the disparity of the electronegativity values between
the fluorine and carbon atoms (4 and 2.5, respectively) generates highly polarized C-F
bonds with a strong electric moment of 7 × 10−30 Cm [53]. Thus, the strong dipoles of the
C-F bonds are easy to align around the C-C backbone by the polar H2O molecules, and a
more expanded chain coil is twisted. At this stage, triggered by electrostatic attractions, the
negatively charged fluorine atoms interact with the positively charged hydrogen atoms of
water [50], resulting in a reduction of the critical energy of β, and γ crystal formation [7].

In comparison, water has a slightly larger dipole moment (1.85 D) than ethanol
(1.66 D), and considering a very sensitive system, this fine difference provokes a better
affinity toward water molecules than the ones of ethanol. These external polar moieties are
critical for influencing the formation of the polar crystal phases, as reported when an ionic
liquid is used [16]. At such conditions, it can be proposed that the crystallization-induced
gelation of PVDF aerogels takes place in three stages: (1) expansion of the polymer chains
in the solvent mixture, which leads to (2) the next stage of nucleation where, although the
majority of the nuclei formed by the effect of the amount of ethanol is α, there is also a
considerable amount of β and γ crystals present; and (3) in the stabilization stage, the water
acts as a “stabilizer” of the polar phases, which causes the β and γ phases to be retained.
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Interestingly, in the sample with the lowest water content (P12E0.2H6.0, PVDF/H2O
ratio of 6.0), a variable behavior was observed during the Raman analyses since the detected
phases varied with the measuring spot, as demonstrated in Figure 6a, where, in a first
measurement, the corresponding band of the α-phase is not detected, whereas in a second
measurement, the band sharply appears [54–56]. This might be a sign of a non-homogeneity
attributed to the lack of available water to produce the β- and γ-phase stabilization. Fur-
ther Synchrotron Radiation Computed micro-Tomography (SR-µCT) measurements were
performed on selected samples, as depicted in Figure 6b and Supplementary Figure S1 as
axial maximum intensity projections (MIPs). As it can be observed, there is an evident
phase-composition change displayed by the predominant presence of dark gray matter
observed at a high content of water (from PVDF/H2O 0.80 to 1.0, predominant α-phase),
whereas practically no dark gray matter can be observed in the samples with a predomi-
nance of the β and γ phases (with a PVDF/H2O 1.5 to 3.0 ratio), and the small dark voids
are porosity-related features, as these are α-free aerogels, as demonstrated by the FTIR
and Raman analyses. However, for the MIP µCT slice of the P12E0.2H6.0 aerogel with a
predominant α-phase, a considerable dark gray and light gray matter mixture is observed,
which we can infer is not only related to the phase composition but is also correlated to
the leaf-like particles (dark gray) to the α conformation and the spherulitic microstructure
(light gray) to the β/γ conformation.
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Figure 6. (a) Raman spectra of the aerogels prepared with 12 wt.% PVDF, xEtOH = 0.2, and variable
PVDF/H2O ratio from 0.80 to 6.0. (b) Selected axial maximum intensity projections (MIP) of the
aerogels prepared with 12 wt.% PVDF, xEtOH = 0.2, and variable PVDF/H2O ratio from 0.80 to 6.0.
The remaining MIP µCT slices are in the SI.

This is consistent with the morphological features of aerogels containing a considerable
amount of α-phase presenting mostly leaf-like particles (e.g., P12E0.4; see Figure 3), and
the water-stabilized ones with either α, β, and γ phases (e.g., P12E0.2H0.86 with bimodal
leaf-like and spherulitic particles; see Supplementary Figure S2) or pure β/γ aerogels, such
as the P12E0.2H1.5 (Supplementary Figure S2), with solely spherulitic morphology.

Phase-growth conformation by in situ FTIR. During the gel transition of the PVDF solu-
tions, the nucleation and growth of crystals take place; hence, significant conformational
changes of the PVDF chains may occur during the cooling process. In this regard, in
situ FTIR analyses were carried out during the cooling process on two freshly prepared
solutions: (1) P12E0.2H1.5 (pure β and γ) and (2) P12E0.2H0.86 (high content α). As dis-



Gels 2022, 8, 727 10 of 17

played in Figure 7, at the beginning of the cooling process (green patterns) of the solution
P12E0.2H1.5, most of the detected bands located at 1437, 1406, 1387, 1255, and 1060 cm−1

are consistent with the DMF [57]. Exceptionally intense and clearly defined bands emerge
at 1402 and 1070 cm−1, and these are associated with the wCH2-va(C-C) and va(C-C) vi-
brational modes, respectively [58]. Likewise, the vs(C-C) + vs(CF2) band at 881 cm−1 and
the duplet bands located at 480 and 510 cm−1, correlated to the δ(C-F2), and δ(C-F2) +
w(C-F2) [58,59], respectively, are present from the beginning of the cooling process. How-
ever, some authors ascribe these bands to any of the phases [41], or they see them as being
simply common to the PVDF chain [41]. According to our results, these bands could be
exclusively correlated to the polymer and not evidence any crystalline phase, as they are
present from the beginning of the nucleation process without evidence of individual chain
conformations or possible structural variations recognized by the most unique α, β, or
γ bands (761, 1273, and 1232 cm−1, respectively). However, broad and poorly defined β
and γ bands start to develop with time (green-black patterns). Concretely, the exclusive β
band was detected after 50 s at 1275 cm−1, with a gradual absorbance intensity increase
indicating the progress of the crystalline phase, as it does the strong band at 840 cm−1. On
the other hand, the γ phase (1232 cm−1) is present spontaneously after approximately 50 s,
and the absorbance of the band steadily intensifies until its stabilization with no apparent
changes after approximately 30 min.
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Interestingly, as the crystallization of the PVDF proceeds, the initial band at 881 cm−1

continues narrowing along with an evident shifting to 876 cm−1, as shown in Figure 8.
Similarly, this shifting exists in the new band displayed as a broad band at 1177 cm−1

within the first 50 s that grows and stabilizes at 1170 cm−1 corresponding to the vs(CF2) +
t(CH2) vibrational mode. These two bands exhibiting a displacement are characteristic of
the polymeric chain and not of a particular phase [58–60].
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Likewise, the typical bands of the α, β, and γ phases appear after a few seconds,
accompanied by a constant absorbance intensification proportional to the time. However,
they do not present changes concerning their position in the spectrum during the entire
crystallization process. Therefore, it is proven that certain segments of the polymer show
variations as crystallization advances (such as chain orientation, surface scattering, inter-
molecular interactions, etc. [61]), and the exclusive segments of the crystalline phases do
not rearrange at the given conditions. On the other hand, in the sample with high content of
the non-polar α-phase, all the polymer and phase-related peaks appear spontaneously since
the beginning of the crystallization process without evidenced preference for a polymer
segment. Unlike a peak shifting of the band at 881 cm−1, as evidenced when β and γ are
present as in the P12E0.2H1.5 sample, the P12E0.2E0.86 displayed a broad band in such a
range without shifting, as evidenced in Figure 9.

This is an indication of how the complex nucleation, growth, crystallinity, and even-
tually the final phase composition can be affected by the sample processing. In other
words, such variations in certain polymer chain segments could be attributed to intermolec-
ular changes prompted by changes in chain orientation, molecular interactions, or the
PVDF order–disorder transition throughout the time toward gel transition. Particularly,
the evidence of this disorder-to-order transition being inherent in the phase composition
(P12E0.2H1.5: high polar phases content) comes from the shifting and narrowing of differ-
ent bands, whereas other reports indicate different transitions as a function of the sample
processing [59,62].
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3. Conclusions

In this work, the feasibility of obtaining PVDF aerogels with adjustable morphology
and phase composition was demonstrated. It was found that the ethanol content in the
solvent mixture plays a significant role in the development of the microstructure of the
aerogel samples since, at low ethanol content, spherulitic particles are obtained, while
an increased ethanol content promotes leaf-like particles. Additionally, ethanol as a non-
solvent considerably enhances the nucleation and therefore facilitates the gel transition;
however, it develops the α phase. Remarkably, the addition of water as a second non-
solvent to the mixture greatly improves the customization of aerogels’ phase composition.
Following an adequately controlled synthetic protocol, PVDF aerogels with purely polar
β and γ crystalline phases can be obtained. According to the obtained findings, in the
mixture PVDF/DMF/ethanol/water, ethanol acts as a nucleation agent, whereas water is
a phase-stabilizer compound. In this regard, the studied approach is a useful method to
synthesize PVDF aerogels with varied physicochemical properties and is believed to be
possible to replicate in different PVDF systems.

4. Materials and Methods

Materials. Polyvinylidene fluoride (PVDF) (MW: ~180,000, MN: 71,000) was purchased
from Sigma-Aldrich (Germany). Before use, the PVDF pellets were dried at 80 ◦C for 24 h.
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N,N-Dimethylformamide (DMF) AR and absolute ethanol (EtOH) were purchased from
VWR (Germany).

Synthesis of the aerogels. PVDF gels were prepared by dissolving the polymer in DMF
at 80 ◦C, under vigorous stirring, for 30 min, at concentrations ranging from 5 to 12 wt.%;
when required, the PVDF was dissolved in a DMF/EtOH mixture, followed by the addition
of H2O, and kept stirring for 30 min. Then the solution was poured into sealed plastic
containers and left to stand, allowing crystallization-induced gelation for 24 h. The aged
gels were submerged in ethanol to remove residual reagents and cycled three times every
24 h. Finally, the gels were dried under supercritical conditions of CO2 at 60 ◦C and
100 bars. Sample labeling is based on the following format: PXEY, where P was selected
for the polymer; the subsequent number, X, is the concentration of PVDF in wt.%; E is
for ethanol; and the number next to it (Y) represents the ethanol fraction (i.e., P12E0.2 is a
sample of 12% wt. PVDF and a xEtOH = 0.2; the rest is DMF content). When referring to a
series of samples with varied content of H2O, the polymer/H2O ratio is defined as H being
the number of the PVDF/H2O ratio (i.e., P12E0.2H0.86). The complete sample description
is given in Supplementary Table S1.

Characterization. The microstructure of the aerogels was studied by using a scanning
electron microscope (SEM), Zeiss Ultra Plus. Samples for the SEM studies were placed onto
a conductive carbon tape, followed by sputtering of a thin gold layer. The textural properties
of the aerogels were determined by nitrogen adsorption–desorption measurements, using
a Sy-Lab Micrometrics ASAP 2420 sorption analyzer at 77 K. The samples were degassed
at 80 ◦C for 24 h. MicroActive 5.0 software was used for all calculations based on the
obtained isotherms. The specific surface area (SBET) was calculated by using the Brunauer–
Emmett–Teller (BET) method [63] (using 5 points) in a linear range of 0.05 ≤ p/p0 ≤ 0.3.
Pore size distributions and pore volumes were derived from the desorption branches of the
isotherms, using the Barett–Joyner–Halenda (BJH) method.

The bulk density (ρb) of the aerogel monoliths was obtained by using the following
equation:

ρb =
m
v

(4)

where m is the mass in grams; and v is the volume, in mL, calculated from the dimensions
of the aerogel. The skeletal density (ρs) was obtained by using a helium pycnometer,
ULTRAPYC 1200e Quantachrome. The overall porosity (θ) of the selected samples was
calculated according to the following equation:

θ = 1 − ρb
ρs

(5)

Fourier-Transform Infrared Spectroscopy (FTIR) patterns were acquired directly from
the as-prepared aerogels. The spectra were taken in a Vertex 70 Bruker spectrometer, from
400 to 1500 cm−1. A detailed description of the quantitative analyses is shown in the
Supplementary Materials.

Synchrotron Radiation Computed micro-Tomography. Synchrotron Radiation Computed
micro-Tomography (SR-µCT) acquisitions were performed at SYRMEP beamline, Elettra-
Sincrotrone Trieste [64]. Experiments employed the white-beam configuration and the
electron storage ring, operating at 2.0 GeV, with a beam current of 308.1 mA. Two filters
(1.5 mm Si and 1.0 mm Al) were added to obtain an average energy spectrum of 23.4 keV.
To exploit the propagation-based imaging modality, the sample was placed 15 cm from
the detector, an Orca Flash 4.0 SCMOS coupled with a 17 µm GGG scintillator. The pixel
size was set at 0.9 µm. For each scan, 1800 projections were acquired for 100 ms exposure
time per projection during the sample rotation over 180◦. SR-µCT slices were reconstructed
by using SYRMEP Tomo Project (STP) software [65]. Projections were preprocessed by
a phase-retrieval algorithm [66], and then a Filtered Back Projection (FBP) reconstruc-
tion algorithm with a ram-lak filter was applied. For every stack, a set of 30 SR-µCT
slices were postprocessed by obtaining a 27 µm–thickness Maximum Intensity Projections
(MIP) image.
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Raman spectroscopy. Raman measurements were carried out at the IUVS beamline in
Elettra Sincrotrone Trieste [67]. A 266 nm laser was used as the excitation source, and the
beam power was 130 µW, with a spot size on the sample around 100 µm. The scattered light
was collected through a backscattering configuration. A single-stage 750 mm Czery-Turner
spectrometer (Andor SR-750-A) equipped with 1800 grooves/mm holographic grating and
a Peltier-cooled CCD (Andor DU420A-BU2) was used to obtain the Raman spectra. The
final spectra were obtained by averaging 24 spectra, each with a 5 min integration time, for
a total acquisition time of 2 h per sample. A small subsample of each type of the aerogels
(P12E0.2H0.8- P12E0.2H6.0) was placed under the beam to be measured.

In situ Attenuated Total Reflectance Fourier-Transform InfraRed (ATR–FTIR) spectroscopy.
Experiments were carried out at the SISSI-Bio beamline at Elettra-Sincrotrone Trieste [68].
Spectra were acquired by using a Bruker Vertex70v interferometer, coupled to a Wide range
FIR MIR beamsplitter and DTGS detector with a Bruker Platinum monolithic diamond
ATR setup. A spectrum was acquired every 25 s, with 16 scans, at a spectral resolution of
2 cm−1, with a spectral range of 6000–300 cm−1. Samples P12E0.2H1.5 and P12E0.2H0.86
were prepared next to the instrument at a constant temperature of 80 ◦C, a drop of 3 µL
was placed onto the ATR crystal, and the measurement started. Crystallization started
when it was placed in the ATR crystal because of the decrease in temperature. Spectra were
acquired continuously for more than 30 min until they were not showing any changes. The
ATR crystal was kept at a constant temperature of 28 ◦C.

ATR–FTIR spectroscopy of aerogels: Experiments were carried out at the SISSI-Bio
beamline at Elettra-Sincrotrone Trieste, and spectra were acquired by using a Bruker Vertex
70 interferometer coupled to a DTGS detector, with a single reflection diamond ATR setup
GLADI-ATR (Pike Inc). Spectra with 128 scans were recorded with a spectral range of
5000–600 cm−1, with a spectral resolution of 4 cm−1. Spectra were area normalized over
the whole range. A small piece of the aerogel was placed onto the ATR plate and pressed
to have better contact.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/gels8110727/s1. Figure S1: Axial maximum intensity projections.
Figure S2: SEM micrographs of the PVDF aerogels containing different particles morphologies. Table
S1: Details of the prepared samples. Table S2: Textural properties of the PVDF aerogels prepared by
using ethanol as nucleating agent [22,69].
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