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The Anatomical Therapeutic Chemical (ATC) classification system is a drug classification
scheme proposed by the World Health Organization, which is widely used for drug
screening, repositioning, and similarity research. The ATC system assigns different
ATC codes to drugs based on their anatomy, pharmacological, therapeutics and
chemical properties. Predicting the ATC code of a given drug helps to understand the
indication and potential toxicity of the drug, thus promoting its use in the therapeutic phase
and accelerating its development. In this article, we propose an end-to-end model
DACPGTN to predict the ATC code for the given drug. DACPGTN constructs
composite features of drugs, diseases and targets by applying diverse biomedical
information. Inspired by the application of Graph Transformer Network, we learn
potential novel interactions among drugs diseases and targets from the known
interactions to construct drug-target-disease heterogeneous networks containing
comprehensive interaction information. Based on the constructed composite features
and learned heterogeneous networks, we employ graph convolution network to generate
the embedding of drug nodes, which are further used for the multi-label learning tasks in
drug discovery. Experiments on the benchmark datasets demonstrate that the proposed
DACPGTN model can achieve better prediction performance than the existing methods.
The source codes of our method are available at https://github.com/Szhgege/DACPGTN.

Keywords: drug ATC code, multi-label classification, interaction information, drug discovery, graph transformer
network

1 INTRODUCTION

Drug research and development is time-consuming and costly. A new drug, from development to
launch, takes decades of research and hundreds of millions of dollars. How to find new indications
from existing approved drugs and reduce the cost of research discovery is a hot field in bioinformatics
(Pushpakom et al., 2019; Jarada et al., 2020). The World Health Organization has established a
complete drug classification system, Anatomical Therapeutic Chemical (ATC) (MacDonald and
Potvin, 2004). Specifically, the standard ATC code in the ATC system can be used to represent drug
class information, which facilitates the use of drugs during the treatment phase. When the ATC code
of a drug compound is known, can be inferred its active ingredient, therapeutic, pharmacological,
and chemical properties. Therefore, predicting the ATC code of a drug helps to use the drug correctly
or identify novel potential indications, and speed up the drug development process, which is a
common idea for drug repositioning research. (Hutchinson et al., 2004). The ATC code system
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divides drugs into five levels, based on the first-level of ATC
codes, drugs are classified into 14 anatomical classes including
Alimentary tract and metabolism, Blood and blood forming
organs, Cardiovascular system, Dermatologicals, Genitourinary
system and sex hormones, Systemic hormonal preparations,
excluding sex hormones and insulins, Anti-infectives for
systemic use, Antineoplastic and immunomodulating agents,
Musculoskeletal system, Nervous system, Antiparasitic
products, insecticides and repellents, Respiratory system,
Sensory organs, Various. For a drug, it may belong to more
than one class in first-level at the same time.

There are a large number of drugs without ATC codes in
widely used drug information databases. ATC code prediction of
new or existing drugs using traditional experimental methods is
cumbersome and time-consuming. The development and
application of machine learning provide the possibility to
realize the rapid classification of drugs ATC code (Dunkel
et al., 2008; Wu et al., 2013). In recent years, some multi-label
classification methods have been proposed for drug ATC Code
prediction. Chen et al. (2012), firstly proposed a method to
classify drug ATC code by integrating drug chemistry-
chemistry interaction information and chemistry-chemistry
similarity information, and constructed benchmark dataset for
the first-level code prediction of drug ATC code. Based on this
benchmark dataset, some classification methods integrating
multiple drug information to predict drug ATC codes are
proposed. Cheng et al. (2017b) proposed a multi-label
Gaussian kernel regression classifier named iATC-mISF. Based
on medicinal chemical–chemical interaction, structure, and
fingerprint similarity, assign the first-level ATC code to drugs.
After that, Cheng et al. (2017a) improved the classifier’s
performance by further integrating the predictor iATC-mDO
based on the drug ontology information (Degtyarenko et al.,
2007). Based on this, iATC-mISF has been upgraded to iATC-
mHyb. Nanni and Brahnam (2017) developed a multi-label
classifier EnsLIF based on gradient histogram algorithm, which
constructs the one-dimensional feature vector of drug
compounds into a two-dimensional matrix. Zhou et al.
(2020a) constructed multiple drug interaction networks,
extracted the drug features in the network through the
network embedding algorithm Mashup (Cho et al., 2016), and
transformed the original multi-label classification problem into
multiple binary classification problems by using Random
k-labelsets (RAKEL) algorithm (Tsoumakas and Vlahavas,
2007). In the classification stage, the classical machine learning
algorithm support vector machine (SVM) (Cortes and Vapnik,
1995) is used to construct the classifier iATC-NRAKEL, which
has achieved good results. Based on the iATC-NRAKEL classifier,
Zhou et al. (2020b) proposed a multi-label classifier iATC-
FRAKEL only used the fingerprints of drugs as feature. In
addition, web services are provided. By integrating drug-drug
interaction information, structural similarity, and fingerprint
similarity, and using the NLSP method (Szymański et al.,
2016) to explore the correlation between labels. Wang et al.
(2019b) proposed a method ATC-NLSP, to predict the first-
level ATC code of drugs, which uses a machine learning
framework to provide better prediction results.

With the successful application of deep learning technology in
many fields, Nanni et al. (2020) proposed a first-level ATC code
multi-label classifier system (FUS3) by integrating multiple deep
learning methods. The model used convolutional neural network
(CNN) and Long-Short-Term Memory network (LSTM)
(Hochreiter and Schmidhuber, 1997) to extract implicit
features, then train two calssifiers to identify the ATC codes of
drugs using extracted features. In the latest study, Zhao et al.
(2021) proposed a new drug ATC code end-to-end prediction
model CGATCPred, which utilized a multi-layer Convolutional
Neural Network (CNN) to extract composite features from
multiple types of drug features. The association graph
structure of ATC code labels is established and combined with
the word embedding information, the GCN (Kipf and Welling,
2016) network is applied to extract the label information. New
features were obtained based on composite features and the
generated label information. The generated features were
spliced with the composite features extracted from the CNN
layer, and then were input to the fully connected neural network
layer to predict the ATC code of the drugs.

For the ATC code prediction problem, most of the existing
classification methods generally consider the information of the
drug itself or the relationships between the ATC code and drugs.
These approaches ignore the potential importance of other
relevant information in drug ATC code prediction, such as
target protein and disease information associated with drugs.
Several studies have demonstrated that similar drugs have similar
in chemical properties, indications, etc (Chiang and Butte, 2009;
Li and Lu, 2012). Based on this property, the general hypothesis is
that when two drugs act on the same target protein or disease, or
they have multiple interactions between two drugs and target
protein or disease, they may have the same ATC code labels.

In this article, to improve the performance of drug ATC code
identification, we proposed a novel drug ATC code prediction
method based on the Graph Transformer Network (Yun et al.,
2019). Traditional deep learning frameworks have some
limitations (Zhang et al., 2018; Wang et al., 2019a). For
example, it cannot effectively exploit the interaction information
in heterogeneous networks or requires predefined fixed
interactions between nodes. GTN model is a self-learning
method for heterogeneous graphs. It uses graph transformer
layer to learn potential interactions information between
different nodes from multiple heterogeneous graphs (Shi et al.,
2016) and apply learned information to node classification tasks.
The crucial idea of GTN is heterogeneous network representation
learning, which is suitable for exploring the interaction between
different types of nodes is helpful for the performance
improvement of classification tasks. For drug ATC code
prediction, we integrate drugs and drug-related biomedical
entities including targets and diseases. Then, we use the known
interactions information to construct a set of heterogeneous
networks, which contains information about different nodes.
GTN model can be used to find potential interactions between
different entities from these constructed heterogeneous networks,
and these potential interactions can help to predict the ATC code
of drugs. Therefore, a new first-level drug ATC code prediction
model DACPGTN is proposed based on GTN.
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DACPGTN predicts the first-level ATC code for a given drug
by applying biomedial features and interactions of drugs, diseases
and targets. In the study, drug-drug similarity information was
obtained by integrating different types of compound interactions.
Meanwhile, the similarity information of drug-related target
proteins and diseases is calculated based on the known
interactions between biomedical entities. The similarity
information was used to construct a composite feature matrix.
Next, we consider the introduction of drug-target protein, drug-
disease and target protein-disease interactions information. Based
on the known interactions information, a set of interaction
heterogeneous networks between different biomedical entities
are constructed. Then, the graph structure of the potential
interactions information between drug-target protein-disease
can be obtained by using the graph transformer layer. Finally,
the composite feature matrix and the learned potential
interactions information networks are fed into the prediction
module for learning. According to the above steps, we can obtain
the final prediction of the drug ATC code. Experiments on the
benchmark datasets demonstrate that the DACPGTN model can
achieve better prediction performance than the existing methods.

The main contributions of this article are as follows:

1) For the drug ATC code prediction task, the DACPGTNmodel
considers the impact of integration drug-related biomedical
entity information including target proteins and diseases on
drug ATC code prediction performance.

2) By utilizing graph transformer network and multiple
heterogeneous networks, DACPGTN learns potential
valuable interactions information for identifying ATC code
for drugs.

3) In this study, the GTN model is improved to address the
problem of drug ATC code prediction. The previous research
transformed the drug ATC code prediction problem into
multiple independent binary classification problems
(Kumari and Srivastava, 2017). By using cross-entropy loss
function and softmax function, we improved the GTN model
and solved the class-imbalance and complex parameter
settings for model training. Moreover, prediction
performance can be improved by using linear layers and
adding Dropout layers between layers.

2 MATERIALS

2.1 Dataset
2.1.1 Drugs and Anatomical Therapeutic Chemical
Codes
For the ATC Code prediction problem, Chen et al. (2012)
constructed benchmark dataset to facilitate comparison of
models at the first-level of the ATC code. The benchmark
dataset contains 3,883 drugs with one or more first-level
classes of the ATC code. Moreover, we have collected drug
related target proteins and diseases from the KEGG (Kanehisa
and Goto, 2000) and Drugbank (Wishart et al., 2008), which are
publicly available databases involving substantial data describing
drugs, diseases, target proteins and interactions among them.

Filtering the collected data revealed that 1,749 out of 3,883 drugs
have target or disease information. Then, these 1,749 drugs were
used as the benchmark dataset in our experiments. In this study,
the prediction of a drug’s first-level ATC code is formulated as a
multi-label problem (Tsoumakas and Katakis, 2007). For each
given drug, it may have two or more labels to annotate its
classification. The statistics for ATC code label information of
all drugs in our dataset is shown in Figure 1.

Meanwhile, the dataset can be represented as a set of elements
as: S = S1 ∪ S2 ∪ S3/ ∪ S13 ∪ S14, where Si represents drugs in the
ith class. Let Di represents the ith drug, and j ∈ 1, 2, / , 14{ }
represents the label of drug-class. The 1,749 drug compounds in
the dataset can be classified into 14 ATC classes, as shown in
Table 1. The ATC code labels for each given drug can be
represented by a 14-bit binary vector defined as Lable(Di) �
[Li1, Li2, Li3, / , Li13, Li14] (i � 1, 2, 3, . . . , 1749). Where Lij
represents the relationship between drug Di and first-level ATC
code class j. The value of Lij is defined as follows:

Lij � 1 if Drug i belongs to class j
0 else

{

2.1.2 Drug Targets and Indications
As mentioned above, the target proteins and diseases associated
with 1749 drugs in the experiment were extracted from KEGG
(Kanehisa and Goto, 2000) and Drugbank (Wishart et al., 2008),
the two most widely used drug information databases.
Specifically, the drug-related target proteins in the experiment
were obtained from Drugbank, and we pre-processed the
available information using the conversion tool provided on
the Uniprot website to obtain 982 targets associated with the
1,749 drugs. Then, the drug-related diseases in the experiment
were obtained from the KEGG database, and based on the known
interactions information, a total of 355 related diseases were
obtained. Table 2 summarizes the dataset in terms of numbers of
drugs, target proteins, and diseases, as well as the interactions
among them.

2.2 Construction of Similarity Matrix and
Heterogeneous Networks
2.2.1 Drug, Target, and Disease Similarity Matrix
In this study, seven types of drug-drug similarity information for
1749 drugs extracted from the previous literature (Zhao et al.,
2021). SMSim, SMExp, SMDat, SMTex, SMCom were obtained from
the interaction information of “similarity”, “experimental”,
“database”, “text mining” and “Combined score” between drug
pairs. SMcp and SMsub were obtained using the compound
similarity calculation tools SIMCOMP and SUBCOMP
provided by the KEGG dataset. A single data source may be
incomplete or limited, and it is extremely important to integrate
various biomedical data from multiple sources in practice (Luo
et al., 2021). Data integration helps to improve the accuracy of the
data and the performance of drug repositioning, and we used
averaging operations on the seven similarity matrices to obtain
the final drug-drug similarity score matrix MRR.
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For the 982 target proteins used in the experiments, combined
score between proteins were obtained from the String library
(Szklarczyk et al., 2019) to construct a protein-protein interaction

score matrix. The combined score represents interaction strength
between the two proteins. The larger the combined score, the
stronger the interaction between the two proteins. After
processing with the min-max normalization method, protein-
protein similarity scores matrix MTT is obtained.

Based on the hypothesis that similar drugs may treat similar
diseases, we integrated disease similarity information for
identifying the key features of drugs to assist the ATC code
prediction in our study. Disease similarity is calculated by
utilizing known interaction information between diseases and
drugs (Luo et al., 2016). Specifically, for the 355 diseases in our

FIGURE 1 | Benchmark dataset label information analysis.

TABLE 1 | The 1749 drug compounds in the benchmark dataset are broken down into 14 ATC classes.

Subset Name Number of Drugs

S1 Alimentary tract and metabolism 221
S2 Blood and blood forming organs 44
S3 Cardiovascular system 287
S4 Dermatologicals 182
S5 Genitourinary system and sex hormones 127
S6 Systemic hormonal preparations, excluding sex hormones and insulins 68
S7 Anti-infectives for systemic use 273
S8 Antineoplastic and immunomodulating agents 129
S9 Musculo-skeletal system 91
S10 Nervous system 382
S11 Antiparasitic products, insecticides and repellents 48
S12 Respiratory system 189
S13 Sensory organs 222
S14 Various 45
Number of total virtual drugs 2308a

Number of total structural different drugs 1749

aThe number of virtual drugs is calculated as follows: when a drug belongs to two different classes at the same time, it is counted as two virtual drugs. If a drug belongs to three different
classes at the same time, it is counted as three virtual drugs, and so on.

TABLE 2 | Statistics of the Benchmark standard dataset used in this study.

Dataset Drugs Targets Diseases

1749 982 355
Interactions Drug-Target Drug-Disease Target-Disease

6,370 1,285 288
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experiments, we construct a drug-disease interactions matrix by
using all drugs in the Chen et al. (2012) benchmark dataset. As for
this drug-disease interactions matrix, if there exists an interaction
between drug Ri and disease Dj, the edge weight of Ri and Dj is
initially assigned as 1 and otherwise 0. Finally, the Pearson
correlation coefficient (Benesty et al., 2009) of the matrix is
calculated to obtain the disease-disease similarity matrix MDD.

2.2.2 Drug-Target-Disease Heterogeneous Networks
We collected the known interactions information of the three
biomedical entity nodes of drugs, target proteins, and diseases in
the KEGG and Drugbank databases. The known interactions
information is used to construct the corresponding
heterogeneous network.

More specifically, we let R � R1, R2,/ , Rm{ } denotes m
drugs, T � T1, T2,/ , Tq{ } denotes the q targets and D �
D1, D2,/ , Dn{ } denotes the n disease. The drug-target
network contains m drugs and q targets, if there exists an
interaction between drug Ri and target Tj, the edge weight of
Ri and Tj is initially assigned as 1 and otherwise 0. Likewise, the
drug-disease network includes m drugs and n diseases, if there
exists an interaction between drug Ri and disease Dj, the edge
weight of Ri and Dj is initially assigned as 1 and otherwise 0.
Meanwhile, the target-disease network consists of q targets and n

diseases, if there exists an interaction between target Ti and
disease Dj, the edge weight of Ti and Dj is initially assigned as
1 and otherwise 0. HRT, HDD and HTD are defined as the
interaction matrices of drug-target network, drug-disease
network and target-disease network, respectively.

3 DRUG ANATOMICAL THERAPEUTIC
CHEMICAL CODE PREDICTION MODEL
BASED ON GTN
In this study, we have proposed a DACPGTN model for multi-
label prediction of drug ATC code based on the GTN model. We
first integrate the drugs and their associated target proteins and
diseases, and construct a composite feature matrix by using the
similarity information of the three biomedical entities as features.
Meanwhile, a set of heterogeneous networks are constructed
based on the known interactions information between
different biomedical entities. Based on the Graph Transformer
Network (Yun et al., 2019), the potential interactions information
between drug-target-disease is obtained from these
heterogeneous networks, which has an impact on the
prediction of drug ATC code. Then, the constructed
composite feature matrix and the learned potential interactions

FIGURE 2 | Overall framework of DACPGTN. The feature information of different biomedical entities is integrated to construct a composite feature matrix as the
node feature input of the prediction module (Part A). The graph transformer layer is used to obtain the potential interactions information between different biomedical
entities from heterogeneous networks set (Part B). The prediction stage uses the composite feature matrix and the learned Potential Interactions Information Networks to
obtain prediction results (Part C).
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information between biomedical entities are fed into the end-to-
end prediction module to obtain the ATC code prediction results
for a given drug. The overall framework of the DACPGTNmodel
is shown in Figure 2.

3.1 Construction of Composite Feature
Matrix
The similarity information of the three biomedical entities
including drugs, targets and diseases is used to construct
similarity matrix representing their features. Principal
component analysis (PCA) (Abdi and Williams, 2010),
commonly used technique for dimension reduction, is used to
project drugs, targets and diseases into a low-dimensional space.
Then, these low-dimensional matrices are unified to obtain the
corresponding feature matrix. Using PCA can remove the noise
data to a certain extent, maximize the retention features at the
same time, provide valuable information for drug ATC code
prediction. It is verified experimentally that the model has the
best training effect when the dimension is 300. After unifying the
feature dimensions, the feature matrices of the three biomedical
entities are spliced to obtain the final node composite feature
matrix Feature_A � [MRR;MTT;MDD] (Part A of Figure 2).

3.2 Learning Potential Interactions Between
Entities Based on Graph Transformer Layer
In this study, the graph transformermodel is applied to learn valuable
interactions information between drugs, targets and diseases from the
heterogeneous networks constructed above. The constructed drug-
target heterogeneous network, drug-disease heterogeneous network,
and target-disease heterogeneous network are sequentially transposed
and the dimensions are unified. Then, the set of heterogeneous
networks A � HRT,HDD,HTD,HRT

T,HDD
T,HTD

T{ } is obtained.
The graph transformer layer is used for set A to obtain networks of
potential interactions information between three biomedical entities:
drugs, target proteins and diseases. The transfer of interaction
information between nodes is achieved by multiplication
operations between different associated heterogeneous networks
(Wang et al., 2019a) (Part B of Figure 2).

Specifically, the graph transformer layer is used to perform a
soft selection of different edge types and composite relations
(Chen et al., 2018) to find new graph structures from multiple
candidate heterogeneous networks. The graph transformer layer
is implemented as formula (1):

Q � F A;Wϕ( ) � ϕ A; softmax Wϕ( )( ) (1)
Where ϕ is the convolution layer and Wϕ ∈ R1×1×K is the
parameter of the convolution layer ϕ.

The graph transformer layer selects different types of interaction
matrices from the set A. Then, a new graph structure is learned by
matrix multiplication of the selected interaction matricesQ1 andQ2.
The soft selection of the interaction matrix refers to obtaining non-
negative weights from softmax(Wφ), and perform 1 × 1
convolution weighted summation over the candidate matrices in
the heterogeneous network setA. In the implementation process, the

constructed interaction matrix is operated on graph transformer

layer by Eq. 2–4, each Q1 can be expressed as Qi � ∑
t∈T e

α(l)t At, T e

represents the set of networks, l represents the l-th graph transformer
layer, and α(l)t represents the weight of the current networkmatrix in
the lth layer. The connection between different nodes is obtained by
multiplication of different types of interaction matrices. For A, the
graph transformer layer is used to learn potential interactions
information between the three biomedical entities to obtain a
new graph information matrix.

When the weight-based graph structure is obtained, the
multiplication operation between the new graph structures is
performed. To improve numerical stability, the interaction matrix
obtained for each layer is normalized by its degree matrix D−1.

Q1 � F A;Wϕ( ) � ϕ A; softmax W1
φ( )( ) (2)

Q2 � F A;Wϕ( ) � ϕ A; softmax W2
φ( )( ) (3)

A l( ) � D−1Q1Q2 (4)
The graph transformer layer can also learn a variety of connection

relationships between different node types. To learnmultiple potential
interaction information networks between biomedical entities
simultaneously, we use C channels in parallel to accomplish this
operation and add the identity matrix I to A for learning variable-
length interaction information. By setting the output channels of the
1 × 1 convolution in the graph transformer layer to multi-channel C,
the adjacency matrices Q1, Q2 become adjacency tensor
Q

(l)
1 ,Q(l)

2 ∈ RN×N×C. After stacking l graph transformer layers, the
tensor A(l) ∈ RN×N×C is obtained.

In order to discover potential interactions between different
nodes to inform the label prediction of drug nodes, the graph
transformation layer is applied to the heterogeneous network sets
A to learn the node interactions information in each associated
heterogeneous network. For example, according to the
relationship of drug-target protein, target protein-disease, etc.,
we can learn the interactions between the drug and potential
disease, such as (Drug→D_T

Target→T_DDisease), etc.

3.3 Realization of End-To-End Prediction of
DACPGTN Model
For the predictionmodule of the DACPGTNmodel, we use GCN as
the feature extractor of the end-to-end module, and then take the
node composite featurematrix and the learned potential interactions
information as the input of the end-to-end prediction module.
Embeddings of drug nodes are extracted through GCN, multiple
linear layers and Dropout (Srivastava et al., 2014) layers are
combined to predict the final drug ATC code. A novel loss
function is introduced to complete the training of the model in
this experiment. The detailed implementation process of the end-to-
end prediction module is shown in Part C of Figure 2.

3.3.1 Graph Convolutional Neural Network Learning on
Composite Feature Matrix and New Graph Structure
Graph Convolutional Neural Network (GCN) (Kipf and Welling,
2016) is a semi-supervised learning algorithm, which is used for
the convolutional operation of the associated information graph
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structure and the composite feature matrix. For the GCN
network, layer-to-layer propagation is performed according to
formula (5):

H l+1( ) � σ ~D
−1
2 ~A ~D

−1
2H l( )W l( )( ) (5)

Where ~A is a new graph matrix generated by graph transformer
layer, ~D is the degree matrix of ~A, H is the input feature of the
current GCN network layer, that is, the constructed node feature
matrix, W(l) ∈ Rd×d is a trainable weight matrix, H(l+1) is the
output of the feature matrix of the GCN network layer, and σ
represents the activation function Relu. When the output channel
of the graph transformer layer 1 × 1 convolution is set to multi-
channel C, the GCN layer is applied to each channel of the tensor,
and the multi-channel operation is performed through
formula (6).

Z � ‖Ci�1σ ~D
−1
i
~A

l( )
i XW( ) (6)

Where ‖ represents the connection operator, C represents the
number of output channels, ~A

(l)
i � A(l)

i + I represents the ith
adjacency matrix of the tensor A(l) add the identity matrix I, ~Di

represents the degree matrix of A(l)
i , W ∈ Rd×d represents the

trainable cross-channel shared weight matrix, X ∈ RN×d

represents the feature matrix Feature_A, N and d represent the
number of biomedical entity nodes and the node features
dimension in Feature_A, respectively.

The GCN network obtain dimension-specific drug node
embeddings after a convolution operation on the node
feature matrix Feature_A and the adjacency tensors A(l). For
the case of networks with few nodes, it has been shown in the
literature that if a GCN network is stacked with multiple layers,
the output features may be over-smoothed and vertices from
different clusters may become indistinguishable (Li et al., 2018;
Li et al., 2019). In this study, limited by few nodes, the GCN
network used in the feature extraction module has only one
layer. The drug nodes embedding extracted by the GCN
network is used as the input information for the next part of
the linear layers.

3.3.2 Transformation of Multi-Label Problem
As amulti-label classification problem, drug ATC code prediction
differs from the traditional single-label multi-classification task. It
requires that the prediction output of the model is not a fixed
value. For a given drug, it may have one or more labels
representing its classification information at the same time,
which further increases the requirements of the classifier. For
this problem, the common idea of previous research is to
transform the multi-label classification problem into multiple
independent binary classification problems. Each binary
classification problem corresponds to a label in the label
vector and determines the drug’s ATC code. For multiple
independent binary classification problems, the sigmoid
activation function with binary classification cross-entropy loss
(BCEloss) is used to average the loss of all binary classifications,
which is applied to model training to obtain the final prediction
result. When the real class of the sample is far less than the

number of all classes of the problem, there will be a class-
imbalance problem, and some balance strategies are generally
used to solve this problem. For example, setting a threshold for
each binary classification problem or manually adjusting the
weights of positive and negative samples, etc. To simplify the
complex series of operations after transforming a multi-label
problem into multiple independent binary classification
problems, we refer to Su’s use of Circle loss (Su, 2020; Sun
et al., 2020). The softmax activation function is combined with
the Cross-Entropy Loss function for multi-label classification
problems. The implementation is as follows:

In a single-label classification problem, assuming that the
scores of each class are S1, S2, . . . , Sn−1, Sn{ }, and the target
class is t ∈ {1, 2, . . . , n}, its cross-entropy loss function is
defined as formula (7):

−log eSt∑n
i�1eSi

� −log 1∑n
i�1eSi−St

� log∑n
i�1

eSi−St

� log 1 + ∑n
i�1,i≠t

eSi−St⎛⎝ ⎞⎠ (7)

It can be derived as an approximation of the max function as
shown in formula (8):

log 1 + ∑n
i�1,i≠t

eSi−St⎛⎝ ⎞⎠ ≈ max

0
s1 − st

..

.

st−1 − st
st+1 − st

..

.

sn − st

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8)

In this loss, all non-target class scores
S1,/ , St−1, St+1,/ , Sn{ } are compared with target class scores
St and their maximum difference should be less than zero, thus
ensuring that target class score is greater than each non-target
class score. In the multi-label classification problem, we also want
each target class score to be no less than the score of each non-
target class, and the generalization of Loss is obtained according
to the same principle (Sun et al., 2020), as formula (9):

log 1 + ∑
i∈Ωneg,j∈Ωpos

esi−sj⎛⎝ ⎞⎠ � log 1 + ∑
i∈Ωneg

esi ∑
j∈Ωpos

e−sj⎛⎝ ⎞⎠ (9)

Where Ωpos and Ωneg are the set of target and non-target classes
for a given sample in the multi-label problem, respectively.

When the samples have a fixed number of labels k in a multi-
label classification problem, the above formula can be used
directly to output the k classes with the top score in the
prediction stage. In the actual multi-label prediction problem,
the number of labels k owned by the sample is a constant with
non-fixed value, and a threshold is needed to determine all classes
of the sample. To this end, an additional class of S0 is introduced,
and it is desired that all scores of the target class are greater than
S0 and all scores of the non-target class are less than S0, which is
obtained as formula (10):
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log 1 + ∑
i∈Ωneg,j∈Ωpos

esi−sj + ∑
i∈Ωneg

esi−s0 + ∑
j∈Ωpos

es0−sj⎛⎝ ⎞⎠

� log eS0 + ∑
i∈Ωneg

esi⎛⎝ ⎞⎠ + log e−s0 + ∑
j∈Ωpos

e−sj⎛⎝ ⎞⎠ (10)

Setting the threshold S0 to the default value of 0, we can get the
simplified formula (10) of formula (11):

log 1 + ∑
i∈Ωneg

esi⎛⎝ ⎞⎠ + log 1 + ∑
j∈Ωpos

e−sj⎛⎝ ⎞⎠ (11)

The final Loss is obtained as a generalization of the softmax
activation function with the cross-entropy loss function on the
multi-label classification problem, as formula (12):

loss ytrue, ypred( ) � logsumexp ypred−neg, 0( )
+ logsumexp ypred−pos, 0( ) (12)

In this experiment, formula(12) is used to calculate the loss.
Once the loss is obtained, backpropagation is performed to train
the model. In the prediction stage of the model, classes with target
scores greater than 0 are output. Compared with the methods in
previous ATC code prediction studies, the multi-label problem is
no longer transformed into multiple binary classifications, but
into the comparison of target class scores and non-target class
scores. In the optimization process, the logsumexp function
(Blanchard et al., 2019) automatically takes part with the
largest loss for learning. The logsumexp function will reduce
the weight of the items that have been optimized well, and
highlight the items with larger errors, and the class-imbalance
problem is solved to some extent.

3.3.3 Predicting Drug Anatomical Therapeutic
Chemical Code
After extracting the feature embedding of nodes through the
GCN(Kipf and Welling, 2016) network, we further process the
embedding of drug nodes using linear layers and Dropout
(Srivastava et al., 2014) layers to obtain better drug ATC code
prediction performance. Specifically, the drug nodes embedding

extracted by the GCN module is used as the input of the first
linear layer. The output dimension of the last linear layer is the
same as the dimension of the drug ATC label vector, which is used
as the prediction result of the drug ATC code, and the model is
optimized using the loss function introduced above. To solve the
problem of multi-layer network stacking, a Relu activation
function (Agarap, 2018) is used after the first linear layer, and
Dropout layers are added between subsequent linear layers. The
Dropout layer removes the neuron nodes from the network with a
certain probability. In random gradient descent, the randomly
removed neurons can make each iteration train a different
network and increase the diversification of the network, thus
improving the generalization ability of the model.

4 EXPERIMENTS AND RESULTS

In this section, our experiments are performed on the benchmark
dataset. First, the evaluation metrics used in this study are
introduced. Then, the performance of DACPGTN is evaluated
in comparison with several state-of-the-art drug ATC code
prediction methods. Next, the effects of parameters and
multiple sources of information on the DACPGTN model are
analyzed through experiments.

4.1 Evaluation Metrics
For multi-label classification problems, since the samples have
one or more labels at the same time, traditional single-label
evaluation metrics are not applicable here. Compared with the
traditional single-label evaluation metrics, the evaluation metrics
for multi-label problems are more complex and complete. Five
evaluation metrics for evaluating the performance of multi-label
classifiers are defined in the literature published by Chou (Chou,
2013), and previous studies of the drug ATC label classification
problem have used this evaluation criterion for comparison. To
ensure the fairness of the experiments, we also use this evaluation
criterion in our experiments. The definitions of the evaluation
metrics are given in Equation (13–17):

Aiming � 1
N

∑N
i�1

Yi ∩ Yi′
Yp

i

∣∣∣∣ ∣∣∣∣( ) (13)

Coverage � 1
N

∑N
i�1

Yi ∩ Yp
i

Yi| |( ) (14)

Accuracy � 1
N

∑N
i�1

Yi ∩ Yp
i

∣∣∣∣ ∣∣∣∣
Yi ∪ Yp

i

∣∣∣∣ ∣∣∣∣( ) (15)

Absolute − True � 1
N

∑N
i�1

K Yi, Y
p
i( ) (16)

Absolute − False � 1
N

∑N
i�1

Yi ∪ Yp
i

∣∣∣∣ ∣∣∣∣ − Y i ∩ Yp
i

∣∣∣∣ ∣∣∣∣
M

( ) (17)

whereN is the total number of samples,M is the number of labels,
the operator | · | is used to calculate the number of elements in the
set, ∪/∩ represents the merge/intersection operation of the set, Yi

represents the true label vector of the current sample i, Yi′

TABLE 3 | DACPGTN model parameter settings.

Parameter Detailed Settings

Number of Graph Transformer Layer 1
Number of channels 2
Training epochs 250
Learning rate 0.005
Weight decay 0.001
Number of GCN 1
Feature Input dim 300
GCN Output dim 150
FC1 150
FC2 128
FC3 64
FC4 14
Dropout 0.2
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represents the predicted label vector of the current sample i after
the model, and K represents the function to determine whether
the two vectors are identical, through formula (18):

K Yi, Y
p
i( ) � 1

0
{ if Yp

i exactly the same as Yi

else
( ) (18)

For our experiments, we used the 10-fold cross-validation
(Refaeilzadeh et al., 2009) to evaluate the model’s performance.
K-fold cross-validation is a rigorous evaluation method. In each
fold, the dataset is divided into (training set: validation set): test
set = (9:1):1. The performance of the model is evaluated by taking
the average of 10 times repeated 10-fold cross-validations to
ensure that the error in the experimental results is as small as
possible.

4.2 DACPGTN Model Settings
This section lists the parameter settings of the experiment inTable 3.
The learning rate is adapted by Adam optimizer (Zhang, 2018). This
algorithm has an excellent performance in deep learning and has
significant advantages compared with other types of random
optimization algorithms. The model selection is based on the
performance of the validation sets. We set the model training
iterations for 250 epochs. Before each training, the performance
of the current model on the validation set is compared with the

TABLE 4 | Comparison with other ATC Code multi-label classifiers (10 × 10-fold CV).

Classfier Aiming Coverage Accuracy Absolute True Absolute False

DACPGTN 0.8543 0.8517 0.8320 0.7902 0.0241
CGATCPred 0.7864 0.8022 0.7711 0.7290 0.0338
iATC-NRAKEL 0.7744 0.8020 0.7550 0.6947 0.0376
iATC-mISF 0.7094 0.7127 0.7036 0.6306 0.0244
ML-KNN 0.7293 0.7071 0.6861 0.6300 0.0433
ML-RandomForest 0.6723 0.6533 0.6471 0.6187 0.0368

FIGURE 3 | Boxplot showing the absolute trues and accuracies of
DACPGTN with 10-fold cross-validation for 10 times.

FIGURE 4 | GCN network Output dimension selection.
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performance of the previous epoch. Finally, select the model that
achieves the best performance on the validation set to save. Setting of
model parameters, based on the GTN model. The GCN network
output dimensions that affect prediction performance are discussed
in detail in Section 4.4. The overall DACPGTN model was
implemented using the Python-based Pytorch 1.5.1 framework.
These experiments were implemented on Windows 10 using
python 3.6 and executed on a PC with a 2.90 GHz Intel Core i7-
10700 processor and 32.0 GB RAM.

4.3 Comparison With Other Anatomical
Therapeutic Chemical Code Multi-Label
Classifiers
In this section, the DACPGTN model was compared with some
of the state-of-the-art methods in drug ATC code prediction.
We compared three state-of-the-art methods, 1) CGATCPred
(Zhao et al., 2021), it uses a multi-layer convolutional neural
network (CNN) to extract composite features from multiple
types of drug-drug similarities, and uses a GCN network to
learn the information between ATC Code labels. All the
information learned is integrated and a neural network is
used to make the final prediction. 2) iATC-NRAKEL (Zhou
et al., 2020a), have constructed multiple drug-drug interaction
networks, extracted the drug features by the network
embedding algorithm Mashup. In the classification stage, the
classic machine learning algorithm support vector machine was
used. 3) iATC-mISF(Cheng et al., 2017b), a multi-label
Gaussian kernel regression classifier. The first-level ATC
Code for a given drug is predicted based on drug chemistry-
chemistry interactions, drug structure similarity and drug
fingerprint similarity. At the same time, in order to verify
that deep learning method can provide better prediction
performance than traditional multi-label classifiers, we also
compare two basic multi-label classification methods ML-
KNN(Szymanski and Kajdanowicz, 2017) and ML-
RandomForest (Szymanski and Kajdanowicz, 2017). The
parameter settings of all comparison models are the same as
the optimal parameters in the original article, and the
traditional classifier parameters are set as default. The

comparative experiments are carried out on the dataset we
constructed, and the results are shown in Table 4.

As shown in Table 4, our proposed DACPGTNmodel has the
best performance on the Benchmark dataset. Compared with the
optimal model CGATCPred in drug ATC Code prediction
problem, the improvement is 6.8% in Aiming,5% in
Coverage,6% in Accuracy, and 6.1% in Absolute true.
Accuracy and Absolute true are the most important among
the five evaluation metrics (Qiu et al., 2016), and our model
achieves a certain degree of improvement in these twometrics. To
clearly show the performance of DACPGTN with 10 times
repeated10-fold cross-validation, we illustrated a boxplot of
accuracy and absolute true in Figure 3. The two
measurements did not vary considerably, representing the
stability of DACPGTN under different divisions of drugs.
These results suggest that the DACPGTN model, which can
learn potential interactions information between different
biomedical entities from multiple heterogeneous graphs by
using graph transformer layer. DACPGTN integrated potential
interactions information and composite features between these
nodes, which can achieve better performance in drug ATC code
prediction.

4.4 The Effect of GCN Network Output
Dimension
In this experiment, the GCNnetwork as a feature extractor provides
classification information for the end-to-end prediction stage by
learning the composite feature matrix and the potential interactions
information matrix obtained from the graph transformer layer. In
order to verify the effect of the GCN network node feature output
size on the experimental results, the following experiments were
conducted. The results are shown in Figure 4.

For the results of the experiments, we compare the
performance of the GCN network in different output
dimensions on five evaluation metrics. As shown in Figure 4,
the model achieves the best prediction performance when the
output dimension of the GCN network is 150. Therefore, the
GCN network output dimension was set to 150, and all
experiments were performed on this parameter.

TABLE 5 | Experimental results of single-source interaction information.

Classfier Aiming Coverage Accuracy Absolute True Absolute False

DACPGTN-Disease 0.8442 0.8437 0.8231 0.7782 0.02516
DACPGTN-Target 0.8327 0.8307 0.8051 0.7536 0.02875

TABLE 6 | New drugs prediction experiment results.

Interactions Aiming Coverage Accuracy Absolute True Absolute False

None-Disease 0.8458 0.8443 0.8233 0.7802 0.0250
None-Target 0.8439 0.8423 0.8206 0.7764 0.0252
None-Target-Disease 0.8406 0.8376 0.8175 0.7747 0.0258
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4.5 The Effect of Multi-Source Interaction
Information
To obtain drug-target protein interaction information and drug-
disease interaction information on the impact of the drug ATC
prediction problem. We used the drug-target protein interaction
information and drug-disease interaction information as the
input of the heterogeneous network, respectively, and
reconstructed the feature matrix. The parameters of the
experiments are the same as those in Section 4.2, and the
results are shown in Table 5.

As shown in Table 5, the performance of the model degrades
when only drug-target protein interaction information or only
drug-disease interaction information is used as candidate
adjacency matrix for heterogeneous networks. Meanwhile, only
drug-target protein interaction information was used better than
only drug-disease interaction information, and the experiment
results were consistent with our expectation. Compared with
single interaction information, the DACPGTN model obtained
better prediction performance by considering multiple sources of
interactions information. It is fully demonstrated that the
DACPGTN model can extract useful information from multi-
source interaction information for prediction. That is, new graph
structures obtained by learning different heterogeneous graphs
can contribute to the drug ATC code prediction problem.

4.6 Predicting Anatomical Therapeutic
Chemical Code for New Drugs
To evaluate the capability of the DACPGTN model in predicting
ATC Code for new drugs, we have conducted the following series
of experiments. For a given new drug, it may not be possible to
obtain information on its known targets or disease interactions.
We consider three potential cases: 1) Drugs have interactions
with targets. 2) Drugs have only interactions with diseases. 3)
Drugs have no interactions with targets and diseases. For each
potential case, we sequentially masked the interactions
information for all drugs in the test set. The known
interaction information of drugs in the heterogeneous network
is removed, and the heterogeneous network set is reconstructed.
Specifically, we set all elements of the row in the drug
correspondence heterogeneous network to 0. When the known
interactions information is removed, the given drug thus becomes
a new drug with only drug-target interaction information or

drug-disease interaction information or without any known
interaction information. We performed the ten times repeated
10-fold cross-validation experiments for each case and took the
average value to ensure that the error was sufficiently small. The
experimental results are shown in Table 6. The experimental
results show that the performance of the DACPGTN model
decreases when the new drugs have different degrees of
missing interaction information, but the performance of the
model remains at a high level. This good performance may be
related to the principle of the GCN network. When the test node
learns fewer potential interactions by graph transformer layer or
only self-interaction information, the GCN network can still
transform the node features on the whole graph space. New
drugs prediction experiments have demonstrated that the
DACPGTN model has practical application. When a new drug
is given, its target or disease interaction information is missing, or
the interaction information between the new drug and these two
types of biomedical nodes is unknown. We can still integrate
existing heterogeneous networks to make well-performing ATC
code predictions for new drugs using only drug-drug similarity
information or partially known interactions information.

4.7 Case Studies
To further validate the reliability capability of DACPGTN, we
selected some representative drugs for detailed case studies. Due
to the early construction of the benchmark dataset and the limited
information on drugs ATC code included, the DACPGTNmodel
will give false positives of ATC code for some drugs in the
prediction phase. As drug discovery research progresses, the
pharmacological properties and ATC code of some drugs in
the experimental dataset will be newly validated and
supplemented. We have analyzed and validated some
representative drugs predicted by our model with false positive
ATC code through authoritative public databases, such as
DrugBank (Wishart et al., 2008), CTD (Davis et al., 2021) and
KEGG (Kanehisa and Goto, 2000). The predicted results and the
supporting evidences are summarized in Table 7. For example,
Brinzolamide (D00652) is a highly specific, non-competitive,
reversible carbonic anhydrase inhibitor. It is indicated in the
treatment of elevated intraocular pressure in patients with ocular
hypertension or open-angle glaucoma. This drug was originally
classified under the Sensory Organs, and new studies suggest it
has been added to the cardiovascular class of the KEGG database.
Carisoprodol (D00768) is a centrally acting skeletal muscle

TABLE 7 | Eight inferred drugs ATC class based on the DACPGTN model.

Drug ID Chemical Name Original ATC Class Inferred ATC Class Evidences

D00302 Dipyridamole S2 S3* KEGG/CTD
D02070 Homatropine methylbromide S13 S1* KEGG/DrugBank
D00768 Carisoprodol S9 S10* DrugBank/CTD
D00652 Brinzolamide S13 S3* KEGG
D00131 Disulfiram S10, S11 S1*, S14 KEGG/CTD
D01192 Olopatadine hydrochloride S12, S13 S3* CTD
D00314 Etidronate disodium S9 S10* CTD
D00525 Pilocarpine S10, S13 S1*, S4*, S12* CTD

*This symbol indicates that evidences can be found to support the chemical belonging to the ATC class.
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relaxant that does not act directly on skeletal muscle but acts
directly on the central nervous system (CNS). Overdose of
carisoprodol can depress the CNS and in severe cases induce
coma. In the Drugbank database, based on studies in animal
models, carisoprodol-induced muscle relaxation is associated
with changes in the activity of interneurons in the spinal cord
and descending reticulum located in the brain. Homatropine
methylbromide (D02070) is a quaternary ammonium muscarinic
acetylcholine receptor antagonist belonging to the group of
medicines called anti-muscarinics. Research in the DrugBank
database shows that it is used to treat duodenal or gastric ulcers or
intestinal problems and prevent nausea, vomiting, and motion
sickness. Meanwhile, Homatropine methylbromide is classed
explicitly as Alimentary tract and metabolism in the KEGG
database. These successful prediction result show that our
model can provide valuable information for drug discovery
and predict the potential pharmacological properties of drugs.

5 CONCLUSION

Considering drug ATC code identification can play an important
role in drug discovery and development, we proposed an end-to-
end model DACPGTN based on graph transformer network to
predict the ATC code for drugs effectively in this study.
DACPGTN formulated the ATC code prediction of drugs as a
multi-label classification problem. By applying transformer
network, DACPGTN learned comprehensive interactions
among drugs, diseases and targets to construct drug-target-
disease heterogeneous networks. Moreover, DACPGTN
integrated various biomedical information to obtain more
representative features of drugs, diseases and targets. Based on
the learned heterogeneous network and features, graph
convolution network was used to obtain network embedding
of drugs for drug ATC code multi-label classification task. For the

drug ATC codemulti-label prediction problem, we transformed it
into the calculation of the difference between the score of the
target class and the score of the non-target class, which solves the
class-imbalance problem to a certain extent. The results of cross-
validation experiments have demonstrated that DACPGTN is an
effective approach to identify the ATC code of drugs, which can
help the pharmacological discovery of drugs. In the future work,
more high-quality data and biomedical entities can be
incorporated to obtain more effective features of drugs. In
addition, the performance and usefulness of the DACPGTN
model can be further improved by utilizing attention-based
mechanisms.
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