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Metabolic reprogramming is a novel method for the treatment of malignant tumors. The
exploration of metabolism procedures between radiosensitive and radioresistant tumors
may provide novel perspectives for lung adenocarcinoma (LUAD) patients after radiation
therapy. In our study, metabolic reprogramming and immune response changes were
found between radioresistant cell line (A549RR) and its parent cells (A549) using gene
ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis.
Nucleotide/amino acid, lipid, and glucose metabolic process, including Alanine, aspartate
and glutamate metabolism, Tryptophan/Tyrosine metabolism, Butanoate metabolism,
Purine/Pyrimidine metabolism, were screened out. Then molecular signatures database
and The Cancer Genome Atlas Program (TCGA) lung adenocarcinoma datasets were
used to identify metabolism-related genes (MRGs) between radiosensitive and
radioresistant lung adenocarcinoma (LUAD) cells. A metabolism-based prognostic
model, receiver operating characteristic (ROC) curve and nomogram were constructed
using Metabolism Score calculated by 14 metabolism-related genes (MRGs). Three
independent public datasets, (GSE72094, GSE3141, GSE8894) and one
immunotherapy cohort (IMvigor210) were used as external validation cohorts.
Expression of 14 hub genes in cells, normal and LUAD specimens were explored by
Human Protein Atlas, TIMER2.0 and RT-qPCR. Patients with low-Metabolism Scores
were correlated with longer survival times, higher response rates to immune checkpoint
inhibitors (ICIs), different immune cell infiltrations and drug vulnerability. Our study
demonstrated a comprehensive landscape between radiosensitive and radioresistant
LUAD, and provide novel targets for NSCLC, especially those patients received radiation
therapy. Moreover, this metabolism-based prognostic model may help to investigate
connections between radiosensitivity, immune response, metabolic reprogramming, and
patients’ prognosis.
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INTRODUCTION

As an important local treatment technique, radiation therapy
(RT) is recommended as a standard treatment (1, 2) for locally
advanced unresectable recurring and metastatic non-small lung
cancer (NSCLC) (3, 4). Unfortunately, not all patients could
achieve complete response after standard first-line treatment,
especially those with local advanced and metastatic NSCLC (5,
6). Owing to the emergence of radiation resistance and the
tolerant dose range of normal tissue, re-radiation for residual
and relapsed tumors that have received RT before is cautiously.
Therefore, choosing an appropriate treatment scheme for
NSCLC patients after RT is a practical clinical problem.
Despite a series of pre-clinical research and clinical trials have
been develop to explore novel strategies for NSCLC, there has
been a lack of illustration on metabolic changes before and
after radiation.

During the process of tumorigenesis and development,
heterogeneous metabolic phenotypes develop in tumor cells to
withstand complex challenges (7). Therefore, metabolic
reprogramming has been found to provide novel insights for the
treatment of malignant tumors (8). As a key enzyme in the uronic
acid pathway, Uridine diphosphate (UDP)-glucose 6-
dehydrogenase (9) has been reported to promote metastasis of
lung cancer through converting UDP-glucose to UDP-glucuronic
acid. Glycolysis flux becomes an important therapeutic target for
those glucose-dependent cancers (10). Meanwhile, increasing
dependence on glutamine was found to promote growth and
progression of normal airway epithelial cells and non-small cell
lung cancer (NSCLC) (11, 12). Those studies indicates that there is a
close relationship between metabolism reprograming and
malignant biological behavior of tumors. Previous studies have
shown that targeting glucose and hydroperoxide metabolism (13)
were important strategies to improve radiation response of cancer
cells. Meanwhile, lipid oxidation and ferroptosis (14) were reported
to involved in radiotherapy efficacy. Our study found that there are
great differences in DNA binding transcription, metabolic process,
and immune response between radiosensitive and radioresistant
lung adenocarcinoma (LUAD) cells. Moreover, we constructed a
protein-protein interaction regulator network to visualize the
regulator network. These findings may illustrate a comprehensive
molecular landscape between radiosensitive and radioresistant
LUAD, and may provide a series of molecules and pathways for
the treatment of NSCLC, especially for those recurrence and
metastatic LUAD after radiation therapy.

Alterations in the tumor environmental metabolic characteristics
also affect treatment outcomes (15). The determination of the
abscopal effect helps pave the way for combinations of RT with
immunotherapy (16). Adequate metabolic alterations between
tumor and the microenvironment were reported to format a
reciprocal regulator model involving host immune cells and
microbiota (17). Therefore, clarifying potential connection
between tumor and environment may also provide novel insights
for treatments of NSCLC. In our study, we explored potential
connections between metabolism reprogramming, immune cell
infiltrations, immune checkpoint inhibitors (ICIs) response, drug
vulnerability and radiosensitivity, and provide a metabolism-based
Frontiers in Immunology | www.frontiersin.org 2
prognostic model and novel targets for NSCLC from the perspective
of metabolism reprogramming.
METHODS

Construction of Radioresistant Cells and
Cell Culture
A549 cells were intermittently exposed to 6 Gy X-ray to establish
radioresistant cells A549RR according to the method previously
described (18). A radioresistant cell line (A549RR) and its parent
cell (A549) were cultured in RPMI-1640 medium supplemented
with 10% foetal bovine serum (FBS; Gibco, NY, USA) in a
standard environment as described previously (19).

Bioinformatics Mining Between
Radiosensitive and Radioresistant Lung
Adenocarcinoma Cells
A549 and A549RR cells were collected and determined by RNA
sequencing to obtain gene expression profiling at the level of the
transcriptome (Shanghai Genechem Co., Ltd., China). Then,
differentially expressed genes (DEGs) between radioresistant
(A549RR) and parent cells(A549) were identified as found in
Supplementary Table S1 (log2FC ≥ 1, and p < 0.05). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways analysis
of DEGs was performed with the cluster Profiler R package (20)
(http://bioconductor.org/packages/release/bioc/html/
clusterProfiler.html), and metabolic pathway was the top
pathway with 294 DEGs enriched (Supplementary Table S2,
p < 0.05). To further explore the metabolic changes, the above
294 DEGs were further performed by KEGG pathways analysis,
and significant pathway were divided and mapped according to
nucleotide, amino acid, lipid, and glucose metabolism.

Gene ontology (GO) and immune system process were analyzed
and visualized with Cytoscape ClueGO (Supplementary Table S3,
two-sided hypergeometric test, adjusted p-value < 0.05 corrected
with the Benjamini-Hochberg procedure) and R package circlize. In
addition, a protein-protein interaction (PPI) network (21) was
constructed with STRING database analysis (22) to evaluate
interactive associations among all the DEGs (Supplementary
Table S4, Supplementary Figure S1).

Construction of Metabolism-Based
Prognostic Model and Metabolism Score
The list of 944 metabolism-related genes (MRGs) was downloaded
from the Molecular Signatures Database (https://www.gsea-msigdb.
org/gsea/msigdb/index.jsp). And 192 common genes were screened
out based on the overlap between ‘MRGs’ and ‘DEGs’
(Supplementary Table S5). Then univariate Cox regression
model was further used to identify 53 survival-related MRGs (p <
0.05, Supplementary Table S6) based on 502 lung adenocarcinoma
(LUAD) expression profiles with clinical characteristics (TCGA
database, https://portal.gdc.cancer.gov/). In addition, lasso
regression was used to construct a prognostic model to calculate
risk score based on the above survival-related MRGs (HR < 0.75 or
HR > 1.25 and p < 0.05), and the risk score was named as
June 2022 | Volume 13 | Article 872910
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Metabolism Score. In this study, 14 hub gene were involved, and
Metabolism Score = mRNAgene1 × coefficientsgene1 + mRNAgene2 ×
coefficientsgene2 + mRNAgene3 × coefficientsgene3 +…+ mRNAgene14

× coefficientsgene14.
502 LUAD patients were divided into two groups according

to the median value of Metabolism Score (Supplementary Table
S7), and Kaplan-Meier method was used to evaluate the
availability of this prognostic model. The receiver operating
characteristic (ROC) curve was used to test the measurement
of classifications, and clinic correlations were analysed using the
pheatmap R package (http://bioconductor.org/packages/release/
bioc/html/heatmaps.html; Supplementary Table S8 ;
Supplementary Figure S2). A Metabolism Score assessment
nomogram was also established to evaluate prognosis in LUAD
patients (1-, 3- and 5-year survival rates).

The Validation of Metabolism-Based
Prognostic Model and Metabolism Score
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/)
was used to download the clinical information and gene
expression data of three public lung cancer datasets (GSE72094,
GSE3141 and GSE8894). Metabolism Score of specimens were
calculated by metabolism-based prognostic model, and Kaplan-
Meier and Chi-squared analysis were used to evaluate survival and
immune response status. Two public websites, Human Protein Atlas
(https://www.proteinatlas.org/) and TIMER2.0 (http://timer.
cistrome.org/), were used to analyzed expression of 14 hub genes
in normal and LUAD tissues.

Evaluation of the Immune
Microenvironment Based on
Metabolism Score
CIBERSORT and ssGSEA algorithm were used to discriminate
immune cell phenotypes in LUAD. The corrplot and ggplot R
packages were used tomap the distribution of immune cells (https://
stackoverflow.com/questions/14753344/corrplot-parameters-in-r,
Supplementary Table S9). ESTIMATE scores were calculated to
estimate stromal and immune cells by tumor purity score and
immune score (https://bioinformatics.mdanderson.org/estimate/
rpackage.html, Supplementary Table S10), and a higher score
reflected a larger ratio of the corresponding component in the
tumor microenvironment. The correlation between ESTIMATE
and Metabolism Scores was evaluated by Spearman’s analysis (p <
0.05). Tumor Immune Dysfunction and Exclusion (TIDE) (http://
tide.dfci.harvard.edu/) and urothelial cancer (mUC) immune
checkpoint cohort (IMvigor210) were used to evaluate response
to immunotherapy (Supplementary Table S11). The genomic,
transcriptomic, with matched clinical information of IMvigor210
cohort were downloaded under the Creative Commons 3.0 license
(http://research-pub.gene.com/IMvigor210CoreBiologies). Chi-
squared analysis was used to analyzed the difference between the
high- and low-Metabolism Score groups. Statistical significance was
set as p < 0.05.

To explore differences of tumor environment between high-
and low-Metabolism Score groups, immune-related genes (IRGs)
(https://www.immport.org/shared/home) were downloaded
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from the ImmPort database, and the limma package (http://
bioconductor.org/packages/release/bioc/html/limma.html) was
used for the extraction of differently expressed immune-related
genes (DEIRGs). False discovery rate (FDR), p-value < 0.05, filter
of 0.05 and log (fold change) filter ≥ 0.58 were applied as the
threshold to select DEIRGs (Supplementary Table S12). Finally,
DEIRGs were drawn with ggpubr (https://www.rdocumentation.
org/packages/ggpubr/versions/0.1.4).

Associations Between Metabolism Score
and Drug Sensitivity
CellMiner (https://discover.nci.nih.gov/cellminer/) was used to
explore transcript and drug patterns in the NCI-60 cell line set
developed by the Developmental Therapeutics Program of the
US National Cancer Institute. The associations between gene
expressions and drug susceptibility were determined using the
corrplot R package with Spearman’s method (p < 0.05,
Supplementary Table S13, https://stackoverflow.com/
questions/14753344/corrplot-parameters-in-r).

Western Blot and Quantitative
Real-Time PCR
Extraction of total protein and RNA were performed according
to standard protocols (19, 23). The primary antibodies used in
this study included CPS1 (Proteintech, #18703-1-AP), AOX1
(Proteintech, # 19495-1-AP), OXCT1 (Proteintech, #12175-1-
AP), NME4 (Bioworld, #BS71176) and b-Actin (CST, #4967).
Oligonucleotide primers used for detection of human-TRDMT1,
SMS, UAP1, WARS2, PLOR3G, NNT, GAPDH (21) were
described in Supplementary Figure S3. Cycle threshold (Ct)
values of target gene cDNA were normalized to GAPDH using
the −2DDCt method. All the reactions were performed in
triplicate for each sample.

Statistical Analysis
For between-group comparisons, the p-value was calculated with
unpaired Student’s t-tests. And for non-normally distributed
variables, the p-value was calculated with Mann-Whitney U
tests. Statistical significance was set as p < 0.05. FDR, and
Benjamini-Hochberg were used for multiple tests to correct the
p-value in DEGs, KEGG and GO analysis. The Kaplan-Meier
method was used for generation of survival curves, while the log-
rank (Mantel-Cox) test was used to evaluate differences;
statistical significance was determined to be p < 0.05. The
predicted response to immunotherapy was statistically analysed
with Chi-squared test between high- and low-Metabolism Score
groups (p < 0.05).
RESULTS

Metabolism Reprogramming
Characterisation in Radioresistant Lung
Adenocarcinoma Cells
To evaluate differences before and after radiation, A549 cells were
exposed to radiation intermittently to establish the radio-resistant
June 2022 | Volume 13 | Article 872910
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cell A549RR, according to the method previously described (18).
Then A549RR and its parent cells, A549, were collected and
measured using RNA sequencing to clarify the differences
between radioresistant and radiosensitive NSCLC cells. As shown
in Supplementary Table S1, a total of 3694 DEGs between A549
and A549RR cells were identified with log2FC ≥ 1 and FDR < 0.05.
Then, KEGG pathway analysis was performed to explore changes in
signal pathways (Supplementary Table S2), and 294 DEGs were
closely associated with the TOP1 metabolic pathway (Figure 1A).
To further explore the metabolic process in detail, 294 DEGs were
performed by KEGG analysis, and a series of nucleotide, amino acid,
lipid, glucose metabolic pathways were screened out (Figure 1B). In
addition, we further detected expression of rate limiting enzymes
(CPS1, AOX1, OXCT1, NME4) that enriched in Alanine, aspartate
and glutamate metabolism, Tryptophan/Tyrosine metabolism,
Butanoate metabolism, Purine/Pyrimidine metabolism in A549
and A549RR cells by western blot (Figure 1C). Those results
indicate metabolism reprogramming in LUAD cells after acquire
radiation resistance.

Meanwhile, a series of DEGs were enriched in cancer-related
pathways (Wnt pathway, NF-kappa B pathway, ECM-receptor
interaction, PPAR pathway, etc.) (Figure 1A). Transcription
factors (NF-kappa B) (24) was found to be activated by
A B

D

F G

FIGURE 1 | The function enrichment of differentially expressed genes (DEGs) betwee
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment (p < 0.05). The c
shown with greater node size. (C) Expression of metabolic-related protein in A549 an
including biological process (BP), molecular function (MF), and cellular component (C
representative term and lag were highlighted by different colors. (G) Differences immu
The representative term and lag were highlighted by different colors. (p < 0.05).
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ionizing radiation (IR) and may promote resistance to RT.
Wnt pathway (25) was found to be involved in radio-resistance
by promoting DNA damage repair. Furthermore, the crosstalk
(26) between PPAR and canonical WNT/b-catenin pathway has
been deeply clarified during the process of carcinogenesis. Those
results indicated potential radioresistant mechanism of
A549RR cells.

Comprehensive Molecular
Characterisation of Radioresistant LUAD
Based on Gene Ontology Enrichment
Analysis and Protein-Protein Interaction
Regulator Network
To explore the relationship between DEGs and the malignant
phenotype of LUAD, GO enrichment analysis and PPI network
were performed. As shown in Figures 1D-F and Supplementary
Table S3, DEGs are mainly distributed in nucleic acids
transcriptional regulation and immune response process
according to BP enrichment analysis. Furthermore, the results
of the cellular component (CC) screened out a series of DEGs
related to the intrinsic component of the plasma membrane,
plasma membrane-bounded cell projection, and extracellular
space. Moreover, DEGs distributed in RNA binding, CoA-
E

C

n radioresistant (A549RR) and its parent cells (A549). (A, B) Results of Kyoto
olor of the node was counted by p-value, and more significant enrichment was
d A549RR cells measured by western blot. (D–F) Results of gene ontology,
C) were mapped using R package circlize (p < 0.05). Among the groups, the
ne system process and related genes were mapped using R package circlize.
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transferase activity, cadherin binding, transmembrane pathway
receptor activity, and DNA-binding activity were found through
MF analysis.

Among the above GO results, DEGs involved in immune
response processes were frequently screened out, indicating
potential immune-related changes between A549 and A549RR
cells. Therefore, the immune system process was investigated and
mapped, including humoral immune response, Fc receptor-
mediated stimulatory signalling pathway, negative regulation of
leukocyte chemotaxis, immune response-activating signal
transduction, B cell-mediated immunity and immunoglobulin-
mediated immune response (Figure 1G). These results indicated
a different immune status of NSCLC after acquired radio-resistance.

To further explore the potential molecular regulator network in
radioresistant LUAD cells, DEGs were uploaded to STRING (22) to
establish the PPI network (Supplementary Table S4 and
Supplementary Figure S1). Among the regulator network, a
series of DEGs containing high experimentally determined
interaction scores (> 0.9) with high combined scores (> 0.9) and
high co-expression coefficients (> 0.9) were screened out, including
PSMA1 and PSMA2, RPL9 and RPS26, RPL9 and RPS28, BYSL and
PNO1, POLA1 and PRIM2, RPS26 and RPS28, RPL9 and RPS10,
RPS10 and RPS26, FGA and FGB, PSMB8 and PSMB9, RPS10 and
RPS28, UTP15 and WDR43 as well as NDUFB8 and NDUFS7.
These protein molecules with high interaction scores could provide
target candidates for radioresistant NSCLC, especially for recurrent
and metastatic NSCLC after received RT.

Optimisation of the Metabolism-Based
Prognostic Model for LUAD
Previous studies (7) have shown that metabolism reprogramming
could promote malignant phenotypes of tumor cells. However, only
a few studies explored the differences between radiosensitive and
radioresistant lung cancers. Metabolic changes in radioresistant lung
cancers remain to be clarified. Since metabolic pathways have been
screened out in previous results (Figures 1A-C), we established a
metabolic signature-based prognostic model to explore the
connection between metabolic reprogramming and prognosis
of NSCLC.

A total of 944 MRGs were downloaded from the molecular
signatures database, and 192 genes were obtained based on the
overlap of MRGs and previously identified DEGs (Supplementary
Tables S5; Figure 2A). Then, univariate Cox regression analysis was
used (Supplementary Tables S6), and 18 MRGs were selected with
a threshold of HR < 0.75 or HR > 1.25 for further study. Finally,
lasso regression analysis indicated that best prognostic model was
contributed when log (lambda) was between -4 and -5, and the
Metabolism Score was calculated based on 14 hub genes (DTYMK,
GCDH, HEMK1, JMJD7.PLA2G4B, NEU1, NNT, NT5C3A,
POLR3G, PPOX, SMS, TKFC, TRDMT1, UAP1 and WARS2)
(Supplementary Table S7; Figures 2B, C).

Metabolism Score Possibly Acts as an
Independent Risk Factor in LUAD
Using the above 14 MRG-based prognostic model, LUAD
specimens were divided into high- and low-Metabolism Score
Frontiers in Immunology | www.frontiersin.org 5
groups (Supplementary Table S7). As shown in Figure 2D,
patients with high-Metabolism Scores seemed to have shorter
overall survival times than those with low-Metabolism Scores. In
subgroup of patients who received radiation therapy, similar
results were found in Supplementary Figure S2A. Additionally,
ROC curve was calculated with area under the curve (AUC) =
0.72 in 1-3 years (Figure 2E; Supplementary Figure S2B). The
risk score map of LUAD patients including Metabolic Score and
expression of 14 hub genes (DTYMK, GCDH, HEMK1,
JMJD7.PLA2G4B, NEU1, NNT, NT5C3A, POLR3G, PPOX,
SMS, TKFC, TRDMT1, UAP1 and WARS2) was showed
in Figure 2F.

To test the accuracy and universality of this metabolic-based
model, three public datasets (GSE72094, lung adenocarcinoma,
N=398; GSE3141, lung cancer, N=110; GSE8894, lung cancer,
N=138) were performed as validation cohorts. As shown in
Figures 3A-F, the survival curve, status risk and heatmap of
patients with low- and high- Metabolism Score were mapped.
Patients with high Metabolism Scores seems to have shorter
survival time and higher survival risk than those with low
Metabolism Scores (Figures 3A-F). These results indicated the
successful establishment of a stable predictive model with a
metabolic signature and good accuracy.

The Association Between Metabolism
Score and Clinical Characteristics
Since the Metabolism Score was calculated by expression level of
14 hub genes (DTYMK, GCDH, HEMK1, JMJD7.PLA2G4B,
NEU1, NNT, NT5C3A, POLR3G, PPOX, SMS, TKFC,
TRDMT1, UAP1 and WARS2), we further evaluated
expression level and localization of the above 14 genes using
two public websites, Human Protein Atlas, TIMER 2.0
(Figures 4A, B). As shown in Figure 4B, TRDMT1 and
JMJD7.PLA2G4B genes were downregulated, while the other
10 genes were s ignificant ly overexpressed in lung
adenocarcinomas compared with normal tissues. Meanwhile,
TRDMT1 were upregulated in A549RR cells, while SMS,
UAP1, WARS2, PLOR2G and NNT expression were decreased
measured by RT-qPCR (Supplementary Figure S3).

To further explore the relationship between Metabolism
Score, clinical characters, and survival risk of LUAD patients,
heatmap were performed in Figure 5. And the results of
univariate and multivariate cox regression indicated that
follow-up, pathologic N, pathologic T, pathologic stage, cancer
status, radiation therapy andMetabolism Score were significantly
correlated with overall survival of LUAD patients (Figures 6A,
B), which indicates that Metabolism Score may act as
independent risk factors for LUAD. In addition, a nomogram
was made to provide a simple and convenient method for clinical
application in the treatment of NSCLC (Figure 6C).

Exploration Between Metabolism Score
and Immune Microenvironment
Since we found a close connection between metabolic changes
and immune response processes (Figures 1D, G), we further
explored differences of immune microenvironment between
June 2022 | Volume 13 | Article 872910
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LUAD patients with low and high Metabolism Score. Different
distribution of immune cells was found between high- and low-
Metabolism Score groups neither using either CIBERSORT and
ssGSEA algorithm (Figure 7A; Supplementary Figure S4). And
immune subtypes with significant difference including B cell
memory, T cell CD4 memory activation, macrophage M0,
macrophage M1, dendritic cell resting, dendritic cell activation,
mast cell resting and neutrophils based on CIBERSORT
algorithm (Figure 7A). The interactions between the above
immune cells were carried out using corrplot R in Figure 7B.
And positive correlations were found in the infiltration of M1
macrophage and CD4+ memory T cells (Cor = 0.28, p = 0.043).
Frontiers in Immunology | www.frontiersin.org 6
However, a negative correlation was found between M1
macrophage and activated dendritic cell (Cor = -0.44, p =
0.033), as well as M0 macrophages and resting dendritic cell
(Cor = -0.58, p = 0.011). ESTIMATE scores were performed to
estimate tumor components in tissues, and specimens with
higher Metabolism Scores seemed to have higher tumor purity
scores (p = 0.0002) and lower immune scores (p < 0.0001)
(Figures 7C, D). These results highly suggest significant
differences in the immune microenvironment between LUAD
with low- and high-Metabolism Scores.

Nowadays, immune checkpoint inhibitors (ICIs) (27, 28) have
been demonstrated as promising treatments aimed at
A B

D

E

F

C

FIGURE 2 | Construction and verification of Lasso regression based on metabolic-related DEGs (MRGs). (A-C) construction process based on lasso regression.
192 common genes in DEGs and MRGs were mapped by Venn plot, and 18 genes were screened out using Cox regression based on the TCGA database (lung
adenocarcinoma, LUAD). Then lasso regression complexity was controlled by lambda using the glmnet R package, and a metabolic-related prognostic model was
constructed to calculate Metabolism Scores of tumors based on expression level of 14 hub genes. (D) Overall survival status of LUAD patients (N=502) with high and
low Metabolism Score using Kaplan–Meier plotter analysis. (E) ROC curve based on Metabolism Score using metabolic-related prognostic model. (F) LUAD patients
with survival status (middle) were ranked according to Metabolic Score (top), and expression levels genes were plotted with a heat map (below).
June 2022 | Volume 13 | Article 872910

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Peng et al. Metabolism Score for LUAD
A

B D

E

F

C

FIGURE 3 | Validation of metabolic-related prognostic model. (A-F) Survival status, risk and heatmap of NSCLC patients in low- and high- Metabolism Score
subgroups based on 3 independent public datasets, three public datasets (GSE72094, lung adenocarcinoma, N=398; GSE3141, lung cancer, N=110; GSE8894,
lung cancer, N=138).
A

B

FIGURE 4 | Expression of 14 hub genes in normal and lung adenocarcinoma tissues. (A) Protein expression level and localization of 14 hub genes in normal
bronchus tissue and lung adenocarcinoma specimens measured by IHC staining based on Human Protein Atlas (bars = 200 mm). (B) mRNA expression levels of 14
hub genes in normal (N=59) and lung adenocarcinoma (N=515) tissues were mapped with boxplots based on TIMER 20. and TCGA database. *p < 0.05, **p < 0.01
and ***p < 0.001.
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reconstructing immunosurveillance capabilities. Patients who
responded to ICIs were found to have significantly longer survival
times than those without a response. However, the lack of effective
biomarkers to predict response limits the efficacy and clinical
benefits of ICIs (27, 28). To explore the connection between
Metabolism Scores and ICIs response status, TIDE and immune
checkpoint cohort (IMvigor210) were used (Figures 7E, F;
Supplementary Table S11). The distribution of immune
responders, non-responders, CR/PR, and PD/SD were plotted in
Figures 7E, F, and patients with low-Metabolism Scores seemed to
have higher response rates than those with high-Metabolism Scores
(p = 0.0015).

Since significant difference of immune microenvironment
were found between low- and high-Metabolism Score groups
(Figures 7A-F), we further explore immune-related DEGs
between two groups. A total of 33 immune-related DEGs were
screened out, including ANGPT4, ANGPTL5, ANGPTL7, AZU1,
CCL16, CMA1, CMTM5, CNTFR, CRHR2, EDN3, ELANE,
FGF10, FGF17, FGF5, GAL, GDF7, GLP1R, HRG, HTR3C, IL2,
INSL4, LBP, LCNL1, NMBR, NR0B1, PAK7, PENK, RAET1L,
RXRG, S100A7, SLC10A2, SPINLW1 and VIP (Supplementary
Table S12; Figure 7G).

Associations Between MRGs, Metabolism
Score and Clinic Drug Vulnerability
The follow-up treatment of NSCLC patients after RT needs to be
carefully considered, especially for those who have undergone
multi-line treatments. Since we found that patients with low-
Metabolism Score seemed to have higher response rate to ICIs
Frontiers in Immunology | www.frontiersin.org 8
(Figures 7E, F), we further explored the connection between the
expression of 14 MRG, Metabolism Score and clinic drug
vulnerability. A public website (CellMiner) was used, and the
correlation between gene expression (GCDH, TKFC, DTYMK,
PPOX, NEU1, etc.) and drug sensitivity (cyclophosphamide,
oxaliplatin, olaparib, vorinostat, etc.) were mapped
(Figures 8A-F; Supplementary Table S13).

In addition, NSCLC cell lines with higher Metabolism Scores
were found to be vulnerable to the following drugs (Figure 8G):
platinum compounds (cisplatin), alkylating agent (dacarbazine),
cyanoaziridine derivative (imexon), PARP inhibitor (olaparib),
PI3K/mTOR inhibitors (rapamycin, temsirolimus, everolimus
and idelalisib) and hormone drugs (calusterone and
raloxifene). Meanwhile, NSCLC cell lines may be resistant to
topoisomerase inhibitors (pyrazoloacridine and amonafide) and
natural marine extracts (kahalide f). These findings show the
prognostic value of the metabolism-related model in improving
drug vulnerability, which could provide a practical tool for the
treatment of lung cancer, especially for those patients who have
received RT.
DISCUSSION

A series of prognostic models (28) have been constructed to
predict survival and prognosis of patients with malignant
tumors. In our study, a prognostic model with metabolic
signature was successfully established. Patients who received
radiation therapy with higher Metabolism Scores in tumor
tissues seem to have shorter survival rates than those with
lower Metabolism Scores (Figures 2D, 3A–D), which indicate
that this metabolic-based model could be specifically applied for
those LUAD acquired radio-resistance. More basic experiment
could help us to discover more valuable metabolism genes. And
combination of transcriptome, proteomics, and single cell
sequencing data from radiosensitive and radioresistant tissues
may help to further optimize this metabolic prognosis model.
Our study also found that most DEGs between radio-sensitive
and radio-resistant NSCLC cells were involved in metabolic
pathways, such as tryptophan metabolism, butanoate
metabolism, arginine biosynthesis.

L-tryptophan (Trp) (29) metabolism in the kynurenine
pathway (KP) was reported to regulate immunity, the
microbiota (30) and intestinal homeostasis by affecting the
activity of rate-limiting enzymes, indoleamine-2,3-dioxygenase
1 (IDO1), IDO2, tryptophan-2,3-dioxygenase (TDO) and
kynurenine monooxygenase (KMO). As a transport substrate
in butanoate metabolism, butyrate (31) seems to play a
paradoxical role in normal colonocyte growth and the cell
differentiation of colorectal cancer cells. In addition, post-
translational arginine methylation is responsible for the
regulation of stem cell biology, alternative splicing (32),
epigenetics and immune surveillance (33). These studies
suggest complex interactions between metabolism, TME and
host immunity response. More experiments should be conducted
to identify the connection between abnormal metabolic
FIGURE 5 | The heat map of clinical characteristics and gene expression
level between high- and low-Metabolism Score groups. LUAD specimens
were divided into high- and low-Metabolism Score groups, clinical
characteristics (age_at_initial_diagnosis, follow-up results, gender,
pathologic_M, pathologic_N, pathologic_T, pathologic_stage, cancer_status,
radiation_therapy, survival time and survival status), and 14 MRGs expression
levels were mapped.
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processes and malignant phenotypes of lung cancer, such as
tumor proliferation, migration, radiosensitivity, etc.

There are emerging evidences that RT may trigger host
responses not only in the field with radiation exposure but also
in the remote out-of-field arena (16). Therefore, clarifying the
difference between tumors and tumor microenvironment (TME)
between radiosensitive and radioresistant tissues may provide
novel targets to increase the efficacy of RT in NSCLC. We found
significant differences in TME between high and low-
Metabolism Score groups, including immune cell infiltrations,
ICIs response status and immune factors expression
(Figures 7A-G). As a well-known pleiotropic cytokine,
interleukin-2 (IL-2) (34) regulates the proliferation/
differentiation of effector lymphocytes and the expansion/
survival of regulatory T cells. The application of IL-2-based
therapeutics has brought great benefits to tumor patients, such
as renal cell carcinoma and melanoma patients (35, 36). As
shown in Figure 6F, lower expression level of IL-2 in the high-
Metabolism Score group compared with low-Metabolism Score
Frontiers in Immunology | www.frontiersin.org 9
group, which indicates less effective T cells and worse anti-tumor
response in high-Metabolism Score subgroups. Fibroblast
growth factor 5 (FGF5) (37) was reported to induce resistance
to HER2-targeted therapies in breast cancer. Moreover,
downregulation of FGF5 could inhibit cell growth and invasion
of NSCLC cells (38, 39). We found higher expression of FGF5 in
the high-Metabolism Score subgroups, which indicated more
immune suppressive environment in this groups. Immune
factors may affect proliferation of immune cells and immune
escape capabilities of NSCLC cells, ultimately leading the survival
of NSCLC patients.

During the process of modelling, 14 metabolic-related genes
were screened out, including PPOX, DTYMK, GCDH, HEMK1,
JMJD7.PLA2G4B, NEU1, NT5C3A, NNT, TKFC, POLR3G,
TRDMT1, SMS, UAP1 and WARS2. However, the functions of
those genes on radiosensitivity, tumorigenesis, differentiation,
migration, metastasis, immunological tolerance, and drug
vulnerability remain to be clarified. As a penultimate enzyme of
heme biosynthesis, PPOX catalyzes the 6-electron oxidation of
A B

C

FIGURE 6 | The Metabolism Score based on a metabolic prognostic model possibly acted as an independent risk factor in LUAD. (A) Univariate Cox regression
analysis of risk factors in LUAD. (B) Multivariate Cox regression analysis of risk factors in LUAD. (C) Assessment nomogram with Metabolism Score to evaluate
prognosis of LUAD (1-, 3- and 5-year survival rates).
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protoporphyrinogen IX to form protoporphyrin IX. Inhibition of
PPOX was reported to significantly reduce the growth of colon
cancer cells in vitro and in vivo (40). We found that high
expression of PPOX was positively correlated with the effect of
vorinostat (41), a promising histone deacetylase inhibitor that
could selectively ablate drug-resistant tumor cells in MAPK
inhibitor-resistant melanomas. However, the connection
between PPOX, radiosensitivity and immune systems
remains unclear.

As a thymidylate kinase involved in nucleotide biosynthetic
process, DTYMK could positively promote proliferation of
hepatocellular carcinoma through regulating the cell cycle (42).
Meanwhile, LKB1 mutant lung cancers have deficits in
nucleotide metabolism that confer hypersensitivity to DTYMK
Frontiers in Immunology | www.frontiersin.org 10
inhibition (43). We found that high expression of DTYMK in
tumors was positively correlated with the activity of asparaginase
(Supplementary Table S13). However, the influence of DTYMK
on aspartate synthesis was rarely reported. Moreover, aspartate
synthesis plays an important role in the proliferation of cancer
cells when respiration is impaired (44), while hypoxia (45) may
promote radiation resistance of tumor cells. More experiments
could be developed to explore the connection between DTYMK,
aspartate synthesis and radiosensitivity in NSCLC.

In summary, we demonstrated a comprehensive landscape of
differences between radiosensitive and radio-resistant LUAD
cells, and screened out a series of core genes that may be
involved in radiosensitivity, metabolism reprogramming and
clinical characteristics of NSCLC patients. A metabolism-based
A B
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C

FIGURE 7 | Association between Metabolism Score and immune microenvironment. (A) Boxplot showing ratio infiltration differences of 8 immune cells between
high- and low-Metabolism Score groups in LUAD. The Wilcoxon rank-sum test was used for the significance test. (B) The infiltration correlation between the above
eight immune cells. (C) Correlation between tumor purity score and Metabolism Score. (D) Correlation between immune score and Metabolism Score. (E, F)
Response rate to immune checkpoint inhibitors (ICIs) between high- and low-Metabolism Score groups based on TIDE scores and immune checkpoint cohort
(IMvigor210). (G) Differently expressed immune-related genes (DEIRGs) in tumor environments between LUAD with high and low Metabolism Scores were mapped
with boxplots. *p < 0.05, **p < 0.01 and ***p < 0.001.
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prognostic model using Metabolism Scores was constructed to
predict immune infiltration, ICIs response, drug vulnerability
and prognosis of LUAD patients. Our study provides novel
targets and prognostic models for LUAD from the perspective
of metabolism, and predicts the potential connection between
radiosensitivity, metabolism reprogramming, and immune
response activity.
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/supplementary material.
Frontiers in Immunology | www.frontiersin.org 11
ETHICS STATEMENT

This work was reviewed and approved by the Medical Ethics
Committee of the Fifth Affiliated Hospital of Sun Yat-sen
University, and the experimental procedures were conducted
in accordance with the Declaration of Helsinki.
AUTHOR CONTRIBUTIONS

S-LP and RW concepted and designed the manuscript. S-LP, RW
and Y-LZ developed the methodology and analyzed the data. S-LP
drafted the manuscript. S-LP, RW, WW, G-HZ, X-TH, SY and Q-
DL collected the data and reviewed the manuscript. Z-GL was
A B

D

E

F

G

C

FIGURE 8 | Association between MRGs, Metabolism Score and clinic drug vulnerability. (A-F) Gene expression and drug IC50 were downloaded from CellMiner
and used to evaluate the correlation coefficient between MRGs and drug vulnerability. (G) The correlation coefficient was calculated based on the Metabolism Score
and drug IC50. Higher coefficients were shown with longer bars, and the color of bars was counted by p-value.
June 2022 | Volume 13 | Article 872910

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Peng et al. Metabolism Score for LUAD
responsible for project administration and supervision. All authors
contributed to the article and approved the submitted version.
FUNDING

This work was supported by Guangdong Basic and Applied Basic
Research Foundation (Grant 2020A1515110599 to S-LP) and
China Postdoctoral Science Foundation (Grant 2020M683066 to
S-LP), Zhuhai City Medical and Health Technology Plan (Grant
No. ZH2202200013HJL, awarded to Z-GL), The Fundamental
Research Funds for the Central Universities (Grant No.
19ykzd07, awarded to Z-GL).
ACKNOWLEDGMENTS

We thank NHC Key Laboratory of Radiobiology, Jilin University
for providing technical support, and Scribendi (https://www.
scribendi.com/) for its linguistic assistance during the
preparation of this manuscript.
Frontiers in Immunology | www.frontiersin.org 12
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2022.872910/
full#supplementary-material

Supplementary Figure 1 | The construction of a protein-protein interaction (PPI)
network. DEGs between radio-resistant (A549RR) and parent (A549) cells were
analyzed to evaluate PPI using the STRING database. Molecules and connections
were mapped as nodes and lines. Proteins with high combined scores (> 0.9) and
high co-expression coefficient (> 0.9) were screened out and mapped.

Supplementary Figure 2 | Validation of metabolic-based prognostic models in
lung adenocarcinoma (LUAD) patients received radiation therapy. (A). Metabolism
Score and overall survival status of LUAD patients received radiation therapy using
metabolic prognostic model and Kaplan–Meier plotter analysis. (B). Prediction and
observed of ROC curve based on Metabolism Score.

Supplementary Figure 3 | Expression of DTYMK, GCDH, HEMK1 in A549 and
A549RR cells measured by RT-qPCR. **p < 0.01.

Supplementary Figure 4 | Percentages of immune subtypes in LUAD with low
and high Metabolism Score calculated by ssGSEA algorithm. Immune subtypes
with significant difference between low and high Metabolism Score groups were
marked. **p < 0.01 and ***p < 0.001.
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