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performance than BLASTP, and completes the search 20 

times faster. Compared to the most sensitive existing meth-

ods being used today, CS-BLAST and SSEARCH, LAST 

with MIQS and m = 106 shows comparable homology 

detection performance at 2.0 and 3.9 times greater speed, 

respectively. Results demonstrate that MIQS-powered 

LAST is a time-efficient method for sensitive and accurate 

homology search.

Keywords Amino acid substitution matrix · Homology 

detection · Alignment quality

Abbreviations

ROC  Receiver operating characteristic

FDR  False discovery rate

TP  True positive

FP  False positive

Introduction

Protein homologs are likely to have similar structures, per-

forming similar functions. Therefore, searching for protein 

homologs with known structures and functions is generally 

the first and most important step for selecting proteins for 

study and sample production, and for target selection in the 

field of structural and functional genomics. It is also a nec-

essary task for biological and functional annotation in mod-

ern biology. Database search methods such as BLASTP [1] 

and SSEARCH [2] have been widely used for this purpose.

Considering the relative closeness between amino acids 

can help to enhance the sensitivity of database search meth-

ods. Amino acids are classifiable based on chemical prop-

erties stemming from their side chains, suggesting that 

substitutions between amino acid pairs occur at distinct 

Abstract Protein database search for public databases 

is a fundamental step in the target selection of proteins in 

structural and functional genomics and also for inferring 

protein structure, function, and evolution. Most database 

search methods employ amino acid substitution matrices to 

score amino acid pairs. The choice of substitution matrix 

strongly affects homology detection performance. We ear-

lier proposed a substitution matrix named MIQS that was 

optimized for distant protein homology search. Herein we 

further evaluate MIQS in combination with LAST, a heu-

ristic and fast database search tool with a tunable sensitiv-

ity parameter m, where larger m denotes higher sensitiv-

ity. Results show that MIQS substantially improves the 

homology detection and alignment quality performance of 

LAST across diverse m parameters. Against a protein data-

base consisting of approximately 15  million sequences, 

LAST with m = 105 achieves better homology detection 
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rates according to similarity in their chemical properties. In 

turn, substitution probabilities presumably reflect relative 

similarities between amino acids. Many efforts have been 

undertaken to deduce amino acid substitution probabilities 

from a collection of protein sequences. These probabilities 

have been converted to residue pair scores, so that high 

sums of scores between two aligned sequences are useful as 

a measure of homology estimation. A 20 × 20 matrix con-

sisting of scores of all amino acid pairs is called an amino 

acid substitution/scoring matrix. Classical substitution 

matrices such as PAM [3] and BLOSUM [4] are still domi-

nant choices for homology search.

Many other substitution matrices have been proposed 

along with claims of superior performances. For example, 

some attempts have been undertaken to derive optimized 

matrices in terms of homolog discrimination performance 

[5–7] and alignment accuracy [8]. Maintaining the struc-

tural integrity of proteins is a fundamental constraint of 

amino acid substitution. Therefore, several earlier studies 

have been conducted to generate structure-dependent matri-

ces [9–11]. Nevertheless, the use of structure-dependent 

matrices is restricted to proteins with structural informa-

tion. One line of research has pursued incorporation of the 

sequence context into homology searches. Deviating from 

the form of substitution matrix, CS-BLAST deals with 

substitution probabilities in the form of a sequence profile 

computed based on nearby sequence context, by which sig-

nificant sensitivity enhancement was achieved [12]. Imple-

mentation of non-standard context-specific methods in 

existing database search methods is not trivial. Therefore, 

inferring a better standard substitution matrix is expected 

to have a much broader impact on the database search tech-

nologies. We earlier proposed a highly sensitive matrix, 

which we call MIQS, by exploring the principal compo-

nent subspace of classical substitution matrices, based on 

the postulation that there might be a chance to obtain better 

matrices for detecting distantly related proteins in the space 

around classical substitution matrices [13]. In that study, 

990 points (=matrices) in the space were tested for their 

performance at remote homology detection to determine 

the optimal matrix, which was designated MIQS. We dem-

onstrated that its application to SSEARCH achieved the 

highest level of homology detection performance among 

pairwise aligners [13].

Although SSEARCH is a highly performing database 

search method with respect to detection sensitivity, its time 

complexity is O(mn), where m and n are residue lengths of 

sequences to be compared. Because publicly available pro-

tein sequence data are increasing exponentially, database 

search method speeds are becoming increasingly important. 

For a more rapid database search, heuristic methods such as 

BLASTP and similar methods have been developed. Many 

heuristic methods first find short sequence matches (called 

seeds) to start alignment from, where longer seeds save 

time but decrease the detection sensitivity. In recent years, 

a fast aligner, LAST, which uses a suffix array of the target 

sequence(s) for finding ‘adaptive’ seeds, has been devised. 

LAST [14] can alleviate the tradeoff between time and 

sensitivity using the adaptive seed approach, where every 

seed is chosen not by a fixed length but by its frequency 

in the target database. LAST’s sensitivity is adjustable by a 

parameter m, which denotes the seed frequency threshold, 

i.e., selected seeds occur m or fewer times in the library 

database.

Actually, MIQS has not been tested for heuristic align-

ers, but only for the rigorous dynamic programming 

method (SSEARCH). Consequently, in this study, by appli-

cation of MIQS to LAST with variation of the m param-

eter as a first trial, we demonstrate that it can achieve faster 

searching than rigorous dynamic programming methods, 

while maintaining comparable sensitivity. We also compare 

LAST to existing sensitive competitors to ascertain their 

potential as a remote protein homolog search method. The 

use of MIQS is shown to enhance LAST performance con-

siderably across varying m. Moreover, LAST performance 

is dominant over BLASTP with respect to both sensitiv-

ity and time. LAST with MIQS is time-efficient compared 

to the most sensitive of existing methods: SSEARCH and 

CS-BLAST.

Materials and methods

Benchmark datasets

For benchmarking database search and alignment meth-

ods, databases of pre-classified homologs such as SCOP 

[15] and CATH [16] are useful. To evaluate methods for 

homology detection performances, we use two datasets 

that were used in our previous study [13]. From the SCOP 

1.75 release, we obtained a non-redundant set of 7074 pro-

teins, which was provided by the ASTRAL compendium 

[17] (SCOP20). The sequence identities between them 

are no more than 20%. SCOP20 was further divided into 

training (n = 3537) and validation (n = 3537) sets, which 

are available from our web site, http://csas.cbrc.jp/Ssearch/

benchmark/. We refer to the validation set as SCOP20 vali-

dation, and used it for evaluating homology detection per-

formances. Other datasets used for comparing detection 

performance are the CATH20-SCOP benchmark set [13], 

which is also available from our web site. It includes pro-

tein domain sequences (n = 1754) derived from CATH ver. 

3.5.0, except those in the SCOP database, filtered using a 

maximum sequence identity of 20%.

The UniProt server provides the UniRef series that com-

prise representative sequences, each of which was chosen 

http://csas.cbrc.jp/Ssearch/benchmark/
http://csas.cbrc.jp/Ssearch/benchmark/
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from a cluster consisting of sequences having more than 

a certain sequence identity [18]. For example, UniRef50 

includes representative sequences from sequence groups 

clustered using a sequence identity of 50%. UniRef50 

(15,327,814 sequences) was downloaded from ftp://ftp.

uniprot.org/pub/databases/uniprot/uniref/uniref50/ on Oct 

30, 2015. SCOP20 validation and UniRef50 were merged 

into UniRef50+. By searching for homologs of SCOP20 

validation sequences in UniRef50+, database search 

methods were examined with a larger dataset to evaluate 

their performances and to assess appropriate options of 

LAST in more realistic situations. For simplicity, we con-

sidered only sequences from SCOP20 as positives. We 

ignored sequences from UniRef50 in the benchmark with 

UniRef50+.

To evaluate the alignment quality of each method, we 

used the subset of CATH20-SCOP benchmark set as in 

our previous study. We selected up to ten domain pairs 

randomly from each family in the CATH20-SCOP set and 

aligned each pair using DaliLite [19]. Alignments with 

Z-scores >2 generated by DaliLite were used as reference 

alignments. Thereby, we obtained reference alignments of 

588 pairs from 670 domains. We compared sequence align-

ments generated by each method with the structural align-

ments generated by DaliLite.

Alignment/search programs

We evaluated four database search methods. All were 

local aligners: one was from methods based on rigorous 

dynamic programming (SSEARCH 36.3.7b); the other 

three were from heuristic methods (BLASTP 2.2.27+, CS-

BLAST 2.2.3, and LAST 638). We used default settings for 

BLASTP and CS-BLAST. We tested them with both BLO-

SUM62 and MIQS for SSEARCH and LAST. When we 

apply MIQS, we use gap penalties of −10 for open and −2 

for extension for SSEARCH, and gap penalties of −13 and 

−2 for LAST. Gap penalties of −13 and −2 are the default 

settings of LAST with MIQS. Those values are sufficient 

to reduce overextended alignments, according to calibra-

tion with FLANK [20]. In LAST, we can control a tradeoff 

between speed and sensitivity through the −m option. This 

option designates the rareness limit for initial matches. The 

default value for this option is ten, meaning that selected 

seeds occur no more than ten times in the library data-

base. Increasing this value makes LAST more sensitive 

but slower. We examined  102,  103,  104,  105, and  106 as this 

value for the option to elucidate appropriate settings.

Computational resource usage benchmark

Calculations for computational resource usage comparison 

were executed using a 2.70 GHz processor (Xeon(R) CPU 

E5-2680; Intel Corp.) in a Linux environment. The CPU 

time was measured using the time command. Maximum 

memory usage for each program was measured using the 

qacct command of the Sun Grid Engine.

Results

Homology detection performance comparison

Homolog detection is the key feature of database search 

methods. Structural classification of proteins (SCOP) and 

CATH databases comprise classified protein homologs 

with known structure. They have often been used for the 

evaluation of homology detection performance. The 

SCOP20 validation set (n = 3537) and CATH20-SCOP 

(n = 1754), consisting of protein sequences with pairwise 

similarity of no more than 20% was established previously 

for distant homology detection benchmarks (see “Materials 

and methods” section).

All-against-all search of the SCOP20 validation set 

permits the evaluation of database search performance for 

identification of distantly related proteins, i.e., homologs 

with <20% sequence identity. For a realistic database 

search benchmark, we constructed an expanded library 

dataset (UniRef50+), which includes the UniRef50 data-

base (15,327,814 sequences) and the SCOP20 validation 

set. We submitted sequences of SCOP20 validation as 

query sequences against UniRef50+. We then examined 

hits from SCOP20 validation. When multiple hits were 

obtained for a single target protein, only the most signifi-

cant one (with the lowest E-value) was chosen.

In this study, hits from the same SCOP superfamily clas-

sification for a query protein are regarded as true positives 

(TPs). Those from a different SCOP fold classification 

are labeled as false positives (FPs). Domains in the same 

fold might have a homologous relation (albeit more dis-

tant). Therefore, different superfamily hits from the same 

fold are defined as neither TPs nor FPs. There are argua-

bly homology relations among some SCOP classifications 

even across folds. Thus, detection performance evaluation 

was also carried out according to the rule set by Julian 

Gough (JG) (http://www.supfam.org/SUPERFAMILY/

ruleset.html) [21], where SCOP classifications with puta-

tive homologous relations are redefined at the superfamily 

level, as described in earlier reports [22, 23].

The ROC curve, which is a widely recognized mode of 

performance evaluation, draws TP and FP counts as a cer-

tain threshold varies, where a larger area under the ROC 

curve represents better performance. For each method, an 

ROC curve is drawn using the expected value (E-value) as 

the threshold across homology searches (here, we ignored 

queries with no TPs except for themselves), where TP and 

ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref50/
ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref50/
http://www.supfam.org/SUPERFAMILY/ruleset.html
http://www.supfam.org/SUPERFAMILY/ruleset.html
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FP counts are weighted by 1/(number of other homologs 

that belong to the query superfamily in SCOP20 valida-

tion) to prevent the bias from larger protein superfamilies 

from the ROC curve trend [12].

The ROC plot in Fig. 1a shows that increasing m yields 

improved performance of LAST, as expected. Using BLO-

SUM62 (the default matrix of LAST), LAST with m = 105 

(hereinafter, LAST5) is able to detect 144 weighted TPs 

(wTPs), whereas LAST with m = 106 (hereinafter, LAST6) 

detects 153.7 wTPs until a false discovery rate (FDR) of 

10%. LAST5 exceeds BLASTP (wTP = 137 at FDR = 10%) 

in this benchmark. The application of MIQS improves 

LAST’s detection performances across both m values, 

compared with BLOSUM62. The performance of LAST6 

with MIQS (wTP = 180.3 at FDR = 10%) is comparable 

to that of SSEARCH with BLOSUM62 (wTP = 180.3 at 

FDR = 10%) and is slightly less than that of CS-BLAST 

(wTP = 190 at FDR = 10%). As described earlier [13], 

MIQS also enhances SSEARCH performance, yielding 

the highest performance among those tested. Figure  1b 

presents the ROC plot as shown in Fig.  1a but with the 

Julian Gough (JG) standard. The curve trends closely 

resemble the non-JG standard version with the exception 

of CS-BLAST. CS-BLAST is the only method that shows 

a substantial ROC performance boost using the JG stand-

ard, surpassing the performance of SSEARCH with MIQS, 

though the performance of SSEARCH with MIQS is com-

parable to that of CS-BLAST at FDR = 10%. The relative 

performance of CS-BLAST in CATH20-SCOP is consist-

ent with that in the SCOP20 validation benchmark with-

out the JG standard. The performance boost only for CS-

BLAST is remarkable, presumably because it was trained 

with a similar definition to the JG standard [22]. Regarding 

the larger library, we confirmed that we were able to obtain 

almost identical ROC curves in all-against-all comparisons 

only using SCOP20 validation, except for m parameters. 

LAST6-against-UniRef50+ is approximately equivalent to 

LAST4-against-SCOP20 validation (Fig. S1). We learned 

that larger m values should be used for the larger library.

We also assessed the detection performances using the 

 ROCn score, which is defined as [24]

where T is the total TP count and ti is the TP count until 

the i-th FP appears. The obtained FPs can be less than 5, 

in which case, the unobserved hits are regarded as FPs. 

The  ROC5 score therefore is “the normalized area under 

the ROC curve until the fifth FP” [22]. Mean  ROC5 scores 

calculated using TPs and FPs retrieved until FDR = 10% in 

the ROC analysis (Fig. 1) are shown in Fig. 2. The  ROC5 

result shows good agreement with Fig.  1, demonstrating 

ROC
n
=

1

nT

n
∑

i=1

t
i
,

the superiority of LAST5 and LAST6 with MIQS over 

BLASTP, and the comparative performance of LAST6 

using MIQS with SSEARCH using BLOSUM62. It is 

also readily apparent that CS-BLAST is extremely sensi-

tive to application of the JG standard. The performance 

of SSEARCH using MIQS is comparable to that of CS-

BLAST in the JG standard and is better in the non-JG 

standard.

Fig. 1  Superfamily level homology detection benchmark across 

database searches of the SCOP20 validation sequences against 

UniRef50+. ROC plot for weighted FP versus weighted TP counts up 

to particular E-values. Each FP or TP is weighted by 1/(number of 

the other domains in the query superfamily). Some FPs are ignored 

according to the JG standard in (b) but not in (a). Solid black line rep-

resents FDR = 10%. See “Results” section for additional details
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We then confirmed the robustness of the results 

described above, by using CATH20-SCOP, which is 

regarded as independent of the SCOP 1.75 release. Figure 3 

presents results of all-against-all searches with CATH20-

SCOP. Because of the database size difference, LAST per-

formance against CATH20-SCOP saturates earlier than that 

against UniRef50+ approximately at m = 103. The ROC 

curve trends resemble the curves for SCOP20 validation 

(Fig. 1), indicating that LAST with MIQS is as sensitive as 

CS-BLAST and SEARCH with BLOSUM62.

Alignment quality comparison

Alignment quality is another important factor to be con-

sidered in the selection of database search methods. 

Alignment quality is crucially important for downstream 

modeling such as protein structure prediction [25, 26]. 

We therefore examine the alignment qualities of database 

search methods using the previously established 588 pair-

wise DaliLite alignments of CATH20-SCOP benchmark 

set. DaliLite aligns two sequences based on structural 

information. Therefore, it is much more precise than pair-

wise aligners, which rely solely on sequences. We com-

pared sequence alignments generated using each method 

with the structural alignments generated by DaliLite as 

reference alignments, and evaluated the alignment quality 

of each method using two terms: sensitivity and precision 

of alignments. The alignment sensitivity, the ratio of cor-

rectly aligned residue pairs to structurally equivalent resi-

due pairs, is defined as (N∩S)/S, where N is the number 

of residue pairs in the sequence alignment generated by 

each method and S is the number of residue pairs in the 

DaliLite alignment. The alignment precision, which is the 

ratio of correctly aligned pairs to aligned pairs, is defined 

as (N∩S)/N. For a given alignment output consisting 

of multiple hits for a single target protein, only the one 

with the greatest significance (with the lowest E-value) is 

used. Like the ROC analysis for the homology detection 

benchmark, the curve for the sum of sensitivity versus the 

sum of (1—precision) up to different E-value thresholds 

enables the evaluation of alignment sensitivity and preci-

sion, which share a tradeoff relation in the same space. 

This mode of comparison is more effective than separate 

evaluation of sensitivity and precision.

Figure 4 shows that LAST with m = 104 and BLASTP 

with BLOSUM62 have similar degrees of alignment 

quality. SSEARCH and CS-BLAST are significantly bet-

ter than BLASTP and LAST with BLOSUM62. Remark-

ably, MIQS yields immense performance improvement 

in LAST, even exceeding those of SSEARCH with BLO-

SUM62 and CS-BLAST. The improvement by MIQS 

is also considerable for SSEARCH, underscoring its 

robustness.

Fig. 2  Homology detection benchmark per query. Superfamily level 

homology detection performances are shown for all-against-all search 

of the SCOP20 validation set. Mean  ROC5 scores for TPs and FPs 

collected until FDR = 10% in the ROC curve (Fig. 1) are shown. ‘JG’: 

some FPs are ignored according to the JG standard. See “Results” 

section for additional details

Fig. 3  Superfamily level homology detection benchmark across data-

base searches of CATH20-SCOP versus CATH20-SCOP. ROC plot 

for weighted FP versus weighted TP counts up to particular E-values. 

Each FP or TP is weighted by 1/(number of other domains in the 

query superfamily). The solid black line represents FDR = 10%. See 

“Results” section for additional details
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Computational resource usage comparison

Because publicly available genetic data are increasing 

exponentially, database search method speeds are becoming 

increasingly important. To assess computational resource 

usage by the database search methods, ten sequences cho-

sen randomly from SCOP20 validation were submitted 

as a query in a multi-fasta format file against UniRef50+ 

using database search methods with BLOSUM62 if appli-

cable. Figure  5 shows that LAST becomes slower as m 

increases. LAST5 and LAST6 are 14.7 and 1.7 times faster 

than BLASTP, respectively, again indicating LAST’s domi-

nance. LAST6 are, respectively, 2.0 and 3.8 times faster 

than CS-BLAST and SSEARCH. Given the high detec-

tion and alignment performance (Figs. 1, 2, 3, 4), LAST6 

with MIQS is a more time-efficient method than either CS-

BLAST or SSEARCH.

The higher speed of LAST might be attributable in part 

to its intensive memory usage because LAST requires 

much more memory than other methods do (Fig. 5). Actu-

ally, LAST requires more than 20 GB of memory for the 

database search of UniRef50+, which is more than two 

times that of other methods. We can restrict LAST’s mem-

ory usage to 7 GB (‘−s 7G’ option for lastdb command), 

which is a similar amount of memory usage to those of 

CS-BLAST and SSEARCH, by constructing smaller sub-

databases, which makes LAST slightly slower, but still 

faster than competitors, indicating its resource effectiveness 

(Fig. 5). It is noteworthy that numerous other alternatives 

are available to tune LAST performance (http://last.cbrc.jp/

doc/last-tuning.html).

Discussion

A substitution matrix governs proper alignment extension 

from the seed, affecting homology detection sensitivity. In 

our previous study [13], MIQS, which was optimized to 

robustly represent the known protein space of the SCOP 

database, was able to enhance homology detection perfor-

mance, where SSEARCH (rigorous dynamic programming) 

was used for both the optimization and the performance 

evaluation. In this study we show that the application of 

MIQS also robustly improves homology detection perfor-

mance of the seed-and-extend heuristic method (LAST), 

compared to BLOSUM62, using the SCOP20 validation set 

and its expansion, UniRef50+ with two different definitions 

of homology, and CATH20-SCOP, an independent bench-

mark. Fortunately, LAST allows new scoring schemes for 

such as MIQS. In contrast, BLAST is applicable only for 

a limited set of predefined scoring schemes: this is pre-

sumably because it cannot calculate statistical significance 

(E-values), without hard-coded, pre-calculated parameters 

Fig. 4  Alignment quality benchmark for pairwise alignments 

(n = 588) constructed using sequences in the CATH20-SCOP set. 

ROC plot for the sum of sensitivity against the sum of (1—precision) 

until varying E-values is shown across all pairwise alignments, where 

sensitivity = TP/(TP + FN) and precision = TP/(TP + FP) Fig. 5  Running time and maximum memory usage of ten searches 

against UniRef50+. Time (s) is shown in a log10 scale. ‘LASTn_

small’: the UniRef50+ database for LAST was constructed with ‘−s 

7G’ option, so that the LAST search occupies less than 7G of mem-

ory

http://last.cbrc.jp/doc/last-tuning.html
http://last.cbrc.jp/doc/last-tuning.html
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for each scoring scheme that it does allow. LAST uses the 

ALP library to calculate E-values for any scoring scheme 

[27].

As shown in our previous work [13], seed-and-extend 

heuristic methods, such as BLAST and LAST, tend to 

produce short alignments, and so do substitution matrices 

based on protein blocks instead of alignments, such as the 

BLOSUM series. In contrast, MIQS tends to produce well 

balanced alignments, in terms of both alignment sensitiv-

ity and precision, compared to existing matrices, leading to 

improved alignment quality, as shown for SSEARCH and 

LAST. Note that the gap costs used in this study for LAST 

are suitable for preventing homologous over-extension 

(HOE), according to the estimates by the ALP library.

Both BLAST and LAST reduce computational costs by 

the seed-and-extend heuristic method, where the number of 

seeds primarily regulates the tradeoff between sensitivity 

and computational cost (time). Using LAST one can regu-

late the tradeoff by adjusting the m parameter to the size 

of database, as shown in this study. LAST with m = 105, 

for instance, works 20 times faster than BLAST against a 

database consisting of around 15 million sequences while 

maintaining BLASTP-level sensitivity. This demonstrates 

that LAST’s adaptive seeding based on the seed-frequency 

statistics greatly overwhelms BLAST’s fixed-length seed-

ing for remote protein homolog search. With MIQS, LAST 

with m = 106 can achieve database searches that are as sen-

sitive as those of CS-BLAST and SSEARCH about two 

and four times faster, respectively, demonstrating that com-

bining the heuristic method, LAST, with a sensitive matrix, 

MIQS, is a time-efficient alternative for remote homology 

search.
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