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Reelin, a multifunctional extracellular protein that is important for mammalian brain
development and function, is secreted by different cell types in the prenatal or
postnatal brain. The spatiotemporal regulation of Reelin expression and distribution
during development relates to its multifaceted function in the brain. Prenatally Reelin
controls neuronal radial migration and proper positioning in cortical layers, whereas
postnatally Reelin promotes neuronal maturation, synaptic formation and plasticity. The
molecular mechanisms underlying the distinct biological functions of Reelin during
and after brain development involve unique and overlapping signaling pathways that
are activated following Reelin binding to its cell surface receptors. Distinct Reelin
ligand isoforms, such as the full-length protein or fragments generated by proteolytic
cleavage differentially affect the activity of downstream signaling pathways. In this
review, we discuss recent advances in our understanding of the signaling transduction
pathways activated by Reelin that regulate different aspects of brain development
and function. A core signaling machinery, including ApoER2/VLDLR receptors, Src/Fyn
kinases, and the adaptor protein Dab1, participates in all known aspects of Reelin
biology. However, distinct downstream mechanisms, such as the Crk/Rap1 pathway
and cell adhesion molecules, play crucial roles in the control of neuronal migration,
whereas the PI3K/Akt/mTOR pathway appears to be more important for dendrite and
spine development. Finally, the NMDA receptor (NMDAR) and an unidentified receptor
contribute to the activation of the MEK/Erk1/2 pathway leading to the upregulation of
genes involved in synaptic plasticity and learning. This knowledge may provide new
insight into neurodevelopmental or neurodegenerative disorders that are associated with
Reelin dysfunction.
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INTRODUCTION

Reelin is an extracellular glycoprotein that controls diverse aspects of mammalian brain
development and function (D’Arcangelo, 2014). The most prominent activity of Reelin is the
control of neuronal migration and cellular layer formation in the developing brain. This is
evident from anatomical studies of reeler mutant mice that lack Reelin expression (Lambert de
Rouvroit and Goffinet, 1998). These mutants exhibit a neurological phenotype characterized
by ataxia and a typical ‘‘reeling’’ gate. Anatomically, their brains exhibit widespread neuronal
lamination defects due to the failure of radially-migrating neurons to reach their destination in
the developing forebrain, and cerebellar hypoplasia, which is likely due to the failure of Purkinje
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cells to form a cellular layer (Goffinet, 1983; Miyata et al., 1997).
Similar phenotypes are observed in human patients carrying
REELIN homozygous mutations, resulting in lissencephaly with
cerebellar hypoplasia (Hong et al., 2000).

In addition to controlling neuronal migration in the prenatal
brain, Reelin plays important roles in the postnatal and adult
brain, promoting the maturation of dendrites, synaptogenesis,
synaptic transmission and plasticity, thus modulating the
formation and function of synaptic circuits. This view is
supported not only by animal studies involving heterozygous
reeler mice, which model some behavioral dysfunction similar
to schizophrenia (Costa et al., 2002), but also by recent human
genetic studies identifying heterozygous REELIN mutations in
lateral temporal epilepsy (Dazzo et al., 2015), and pointing
to REELIN as a risk factor in autism (De Rubeis et al.,
2014). Furthermore, accumulating evidence that Reelin signaling
antagonizes the toxic effects of β-amyloid at the synapse,
underscores the potential relevance of this ‘‘developmental’’
factor for neurodegenerative disorders (Durakoglugil et al., 2009;
Krstic et al., 2012; Pujadas et al., 2014).

To foster a better understanding of the mechanisms of
development and disease, in this review we focus on recent
advances in our knowledge of the signaling transduction
pathways that regulate the different biological activities of Reelin
in the brain.

REELIN EXPRESSION AND CLEAVAGE

The spatiotemporal regulation of Reelin expression underlies its
multifaceted roles in brain development. During the embryonic
development of forebrain structures Cajal-Retzius cells secrete
high levels of Reelin in the marginal zone, thus regulating
neuronal migration and cellular layer formation (D’Arcangelo
et al., 1995; Ogawa et al., 1995). These cells begin to die shortly
after birth and disappear from the neocortex once neuronal
migration is completed. In the hippocampus, however, residual
Cajal-Retzius continue to secrete Reelin at early postnatal days,
affecting aspects of development such as axonal or dendrite
branching and maturation (Del Río et al., 1997; Niu et al., 2004;

Kupferman et al., 2014). As postnatal development continues,
the expression of Reelin becomes predominantly localized
to a subset of GABAergic interneurons that are positioned
throughout cortical and hippocampal cell layers (Alcántara
et al., 1998; Pesold et al., 1998). Albeit at reduced levels,
these interneurons continue to express Reelin in the juvenile
and adult forebrain. The significance of this late postnatal
and adult pattern of expression is likely related to the
modulation of synaptic activity and plasticity (Weeber et al.,
2002; Beffert et al., 2005; Pujadas et al., 2010; Trotter et al.,
2013).

The mouse full-length Reelin protein is approximately
385 kDa and is 95.2% identical to the human protein
(D’Arcangelo et al., 1995). The main body of the protein is
composed of eight unique repeats (R), each centered around
an epidermal growth factor (EGF)-like cysteine pattern that is
typical of extracellular proteins (Figure 1). At the N terminus
there is a signal peptide and a small region of similarity
with F-spondin, whereas at the C terminus there is a small
carboxy-terminal region (CTR) that is positively charged. The
presence of the signal peptide indicated that Reelin is an
extracellular protein. Indeed, it is readily detected in the
culture medium of Reelin-expressing cells (D’Arcangelo et al.,
1997). Secretion is essential for function, and mutations that
interfere with secretion cause a reeler phenotype identical
to that resulting from null mutations (D’Arcangelo et al.,
1997; de Bergeyck et al., 1997). After secretion, full-length
Reelin is cleaved by metalloproteases at two specific sites,
generating three large fragments, an N-terminal (Nt = N-R2),
a central (C = R3-R6), and a C-terminal (Ct = R6-CTR)
fragment (Figure 1). The C fragment alone is sufficient to
activate intracellular signaling and to induce layer formation
in cortical slice cultures (Jossin et al., 2004; Yasui et al.,
2007). However, the full-length protein is more potent than the
C fragment, presumably due to the presence of the Nt region,
which promotes aggregation, and the CTR, which promotes
proper folding (Utsunomiya-Tate et al., 2000; Kubo et al.,
2002; Nakano et al., 2007; Kohno et al., 2015). Recent studies
identified the cleavage sites that produce the three major Reelin

FIGURE 1 | Schematic structure of the Reelin protein and its cleavage fragments. Reelin contains a signal peptide (S), an F-spondin-like domain (SL), eight
consecutive Reelin repeats (R) each harboring an epidermal growth factor (EGF)-like motif that separates two subdomains (A and B), and a positively charged
carboxy-terminal region (CTR). The full-length protein is cleaved by extracellular metalloproteases at specific sites (arrows), an N-terminal (Nt) site within R3 and a
C-terminal site between R6 and R7. These two cleavage events generate three large fragments, an N-terminal (Nt), a central (C) and a C terminal (Ct) fragment. An
additional cleavage event (empty head arrow) occurs within the CTR (WC) and generates a small carboxy-terminal peptide.
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fragments (Koie et al., 2014; Sato et al., 2016) and demonstrated
that the Nt cleavage affects the duration and the range of
Reelin signaling activity in the developing cortex (Koie et al.,
2014). Further studies are needed to identify proteases that
carry out these processing events in vivo. In addition, recent
studies further identified another cleavage site within the CTR
(WC). Cleavage at this site releases a six amino acid carboxy-
terminal peptide, reducing signaling activity and hindering
dendrite development in the postnatal neocortex (Kohno et al.,
2015).

Taken together, the evidence so far indicates that Reelin
processing downregulates the activity of the full-length protein;
however cleavage events also produce diffusible fragments that
potentially stimulate signaling activity away from the site of
secretion (Jossin et al., 2007).

REELIN RECEPTORS

The best-characterized Reelin receptors are the apolipoprotein
E receptor 2 (ApoER2, also called LRP8) and the very low-
density lipoprotein receptor (VLDLR). These proteins belong
to the low-density lipoprotein receptor (LDLR) family. They
have partial functional redundancy and play an essential
role in Reelin-mediated neuronal migration based on the
observation that double knockout mice display a reeler-like
phenotype (Trommsdorff et al., 1999). ApoER2 and VLDLR
bind Reelin with high affinity and internalize the ligand in
endocytic vesicles, leading to the activation of downstream
signaling molecules (D’Arcangelo et al., 1999; Hiesberger et al.,
1999; Strasser et al., 2004; Yasui et al., 2010). After the
signal is transduced, some receptor molecules recycle to the
membrane whereas others are targeted for lysosomal degradation
(Hong et al., 2010). A Reelin domain contained within the
C fragment and including the Lys2467 residue is essential for
ApoER2/VLDLR interaction, signal transduction and cortical
layer formation (Jossin et al., 2004; Yasui et al., 2007).
Despite functional overlap, ApoER2 and VLDLR play distinct
roles in neuronal migration due, in part, to their different
expression pattern. In the developing neocortex VLDLR is
expressed almost exclusively in apical processes of migrating
neurons at the top of the cortical plate where it mediates a
mode of migration known as somal or terminal translocation,
whereas ApoER2 is also expressed in the intermediate zone
where it likely promotes the transition from multipolar to
bipolar morphology and early stages of radial migration
(Hirota et al., 2015). Other reported differences between the
two receptors include their ability to internalize Reelin at
different rate and in distinct lipid compartments, thus likely
differentially affecting signal transduction machineries (Duit
et al., 2010).

Other transmembrane proteins that have been proposed to
function as Reelin receptors include β1-containing integrins,
which were first reported to bind Reelin in vitro (Dulabon
et al., 2000). However, genetic knock out studies later
demonstrated that β1 integrins are required for radial glia
scaffold formation rather than for neuronal migration per se
(Belvindrah et al., 2007). Even though their function is not

essential, possibly due to redundancy with other cell adhesion
molecules, in utero electroporation studies suggest that β1
integrins contribute to corticogenesis as downstream effectors.
Reelin signaling was shown to alter integrin-dependent cell
adhesion by downregulating α3 integrin levels in the cortical
plate (Sanada et al., 2004), and by activating integrin α5β1, thus
promoting the anchoring of leading processes to the fibronectin-
rich marginal zone (Sekine et al., 2012). It should be noted
that in this model integrins do not bind Reelin directly and
therefore do not function as receptors. Recently, another study
suggested a direct interaction between Reelin and EphB tyrosine
kinase receptors. The Nt region of Reelin was reported to
bind EphB and activate forward signaling in neurons (Bouché
et al., 2013). However, EphB-deficient mice display only a
very mild migration phenotype, suggesting that they do not
play a major role during prenatal brain development. Their
involvement in postnatal functions of Reelin remains to be
elucidated.

Taken together, genetic and biochemical data so far support
the notion that ApoER2 and VLDLR are the major Reelin
receptors in the developing brain.

REELIN SIGNAL TRANSDUCTION IN THE
CONTROL OF NEURONAL MIGRATION

Disabled-1 (Dab1) is an intracellular adaptor protein that is
essential for Reelin signal transduction. This protein binds the
cytoplasmic tail of lipoprotein receptors, including ApoER2
and VLDLR (Trommsdorff et al., 1999) and upon Reelin
binding, becomes phosphorylated on tyrosine residues by Src-
family kinases (SFKs) Fyn and Src (Howell et al., 1999a;
Figure 2A). These kinases are themselves upregulated in a Dab1-
dependent way via a positive feedback mechanism (Arnaud
et al., 2003; Bock and Herz, 2003). Dab1 phosphorylation
is required for neuronal migration, as demonstrated by the
observation that phospho-mutant Dab1 mice (Howell et al.,
2000), double Fyn/Src knockout mice (Kuo et al., 2005), as well
as spontaneous or genetically engineered Dab1 knockout mice
(Howell et al., 1997; Sheldon et al., 1997; Ware et al., 1997;
Yoneshima et al., 1997; Kojima et al., 2000) all show similar
reeler-like phenotypes. Dab1 signaling is rapidly downregulated
by a mechanism that involves the ubiquitination of phospho-
Dab1 by the E3 ubiquitin ligase component Cullin 5, and
its degradation by the proteasome system (Feng et al.,
2007).

Genetic studies demonstrated that Dab1, and thus Reelin
signaling, is specifically required for a specific mode of radial
migration termed somal or terminal translocation, but not for
glial-guided locomotion (Franco et al., 2011). The molecular
mechanism of translocation involves the recruitment of Crk
adaptor proteins, which bind phospho-Dab1 and cause the
activation of the GTP exchange factor (GEF) C3G, and the
subsequent activation of the Rap1 GTPase (Franco et al., 2011;
Jossin and Cooper, 2011; Figure 2A). Consistently, double
Crk/CrkL mutant mice display a reeler-like cortical phenotype
(Park and Curran, 2008). The Crk/C3G/Rap1 pathway ultimately
promotes the interaction between migrating neurons and Reelin-
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FIGURE 2 | Reelin signaling mechanisms in brain development and function. Reelin is secreted as a full-length protein that contains three large cleavable
domains, an Nt, a C, and a Ct domain. The central domain binds to ApoER2 and VLDLR receptors, which internalize the ligand and transduce the Reelin signal by
activating Src/Fyn kinases that phosphorylate the adaptor protein Dab1. Downstream of this canonical pathway, distinct signaling cascades regulate specific biologic
activities at different times during brain development. (A) Prenatally, Reelin controls neuronal migration and cortical layer formation through the Crk/C3G/Rap1
pathway. This signaling cascade regulates the function of cell adhesion molecules, including nectin3, N-Cadherin, and Integrin α5β1, which facilitate somal
translocation and cellular layer formation. (B) During early postnatal development, the Crk adaptor proteins and the PI3K-Akt-mTOR pathway contribute to Reelin
activity by promoting protein translation, dendrite outgrowth and spine development. (C) In the late postnatal and adult brain Reelin affects synaptic function and
plasticity. This activity is mediated in part by ApoER2, which interacts with the NMDAR through PSD-95, causing Ca2+ influx and the activation of CamKII. An
unknown receptor also mediates the activation of the MEK-Erk1/2 pathway by Src/Fyn kinases. Together these signaling pathways promote synaptic activity and
plasticity through the induction of immediate-early genes involved in learning and memory such as those containing LRN enhancers.

producing Cajal-Retzius cells through adhesion molecules such
as nectins 1/3 and N-Cadherin, enabling neuronal translocation
and inside-out layer formation (Gil-Sanz et al., 2013; Figure 2A).
Given the enrichment of ApoER2 and VLDLR in the apical
processes of migrating neurons near the marginal zone, both
these receptors are likely to mediate the signal transduction
that promotes translocation (Hirota et al., 2015). In addition,
Reelin-Dab1 signaling through Rap1 and N-Cadherin affects
the orientation of migrating neurons undergoing the transition
from multipolar to bipolar morphology in the intermediate
zone, before initiating radial migration into the cortical plate
(Jossin and Cooper, 2011). This migration step may be mediated
preferentially by ApoER2, since this is the only receptor
that is expressed in the intermediate zone (Hirota et al.,
2015).

In addition to Crks and Rap1, biochemical studies identified
several molecules that may be involved in Reelin-dependent
neuronal migration. These include proteins that regulate
cytoskeletal dynamics and cell motility, such as Lis1, Nckβ
and N-WASP (Assadi et al., 2003; Pramatarova et al., 2003;
Suetsugu et al., 2004), and proteins that downregulate Rap1 due
to their GTPase activating protein (GAP) activity. Among Dab1-
interacting proteins Lis1, the product of the PAFAH1b1 gene that
is responsible for human lissencephaly type I, may be particularly
relevant to cortical development. Lis1 binding to phospho-
Dab1 is Reelin-dependent, and genetic interaction between
Dab1 and PAFAH1b1 demonstrates a functional relationship

between these proteins (Assadi et al., 2003). Furthermore, Lis1-
interacting PAFAH1b alpha subunits bind specifically to VLDLR,
potentially promoting the interaction between Lis1 and Dab1
downstream of this receptor (Zhang et al., 2007). Lis1 then affects
cytoskeletal dynamics necessary for radial migration through the
dynein motor complex (Wynshaw-Boris and Gambello, 2001).
Additionally, Dab2IP, a Dab1-binding protein that functions as
a Rap GAP, as well as Rap1GAP, were shown to affect neuronal
migration in the neocortex (Franco et al., 2011; Jossin and
Cooper, 2011; Lee et al., 2012; Qiao et al., 2013). Even though a
direct involvement of Rap GAPs in Reelin signaling has not been
established, it is likely that this class of proteins regulates Rap1
activity, balancing the GEF activity of C3G and thus enabling
proper neuronal orientation and migration through the cortical
plate.

REELIN SIGNAL TRANSDUCTION IN THE
CONTROL OF DENDRITE AND SPINE
DEVELOPMENT

Dendrite outgrowth is disrupted in homozygous reeler mice.
Dendritic defects are also apparent in immature hippocampal or
cortical cultures isolated from mutant mice, but not in mature
cultures (Niu et al., 2004; Jossin and Goffinet, 2007; MacLaurin
et al., 2007). Since Reelin treatment rescued these defects, these
in vitro studies first demonstrated that Reelin directly promotes
dendrite development. Following studies further demonstrated
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that Reelin enables initial dendritic outgrowth by promoting the
extension of the Golgi apparatus into apical dendrites (Matsuki
et al., 2010), and then orienting and stabilizing the leading
processes in the marginal zone (Chai et al., 2015; Kohno et al.,
2015; O’Dell et al., 2015). The signal transduction machinery
that mediates the activity of Reelin on dendrite development
involves the canonical pathway that also controls neuronal
migration, including ApoER2/VLDLR, Dab1, SFKs and Crks
(Niu et al., 2004; Park and Curran, 2008). Downstream of Dab1,
the signaling mechanism that affects dendrite development
likely involves the Phosphoinositide 3-kinase (PI3K) and Akt
(Figure 2B). Earlier studies demonstrated that Reelin activates
PI3K and Akt in vitro in a manner that is dependent on SFK
activity and Dab1 phosphorylation (Beffert et al., 2002; Bock
et al., 2003). PI3K may be activated through direct interaction
between the regulatory subunit p85α and Dab1 (Bock et al.,
2003). Akt is likely activated, at least in part, by the classic
PI3K/PDK cascade, however, in vivo studies demonstrated that
the Crk adaptor proteins are required for Reelin-induced Akt
phosphorylation, placing the kinase functionally downstream
of these adaptors (Park and Curran, 2008). Downstream of
Akt, mTOR and further downstream proteins such as p70S6K
and ribosomal protein S6 are robustly induced by Reelin
treatment in neuronal cultures and likely contribute to dendrite
growth (Jossin and Goffinet, 2007; Ventruti et al., 2011;
Figure 2B).

Other molecules that have been implicated in Reelin-
dependent dendrite outgrowth include the amyloid precursor
protein (APP; Hoe et al., 2009), which binds Dab1 via its
cytoplasmic tail (Homayouni et al., 1999; Howell et al., 1999b),
and the Cdc42/Rac1 guanine nucleotide exchange factor αPIX,
which affects dendritic Golgi translocation (Meseke et al., 2013).
In addition to outgrowth, dendrite compartmentalization is an
important aspect of maturation that is affected by Reelin. In
the hippocampus, distal apical dendrites of pyramidal neurons
express specific ion channels. Recent studies demonstrated that
Dab1/SFK signaling is required for the molecular identity of
this dendritic compartment, which regulates the processing
of information in hippocampal circuits (Kupferman et al.,
2014). Reelin signaling also promotes dendritic spine formation
and growth in the cortex and hippocampus of juvenile
mice (Niu et al., 2008; Pujadas et al., 2010; Iafrati et al.,
2014). The signaling mechanism that underlies this function
involves the canonical pathway and possibly additional signaling
molecules such as RasGRF1/CamMKII (DiBattista et al.,
2015; Kim et al., 2015). Finally, the molecular composition
of the dendritic spines is affected by Reelin. Specifically,
Reelin promotes the maturation of spines by regulating
the NMDA receptor (NMDAR) subunit composition via an
unidentified mechanism (Groc et al., 2007; Ventruti et al.,
2011).

REELIN SIGNALING AND THE
MODULATION OF SYNAPTIC FUNCTION

Heterozygous reeler mice exhibit altered hippocampal synaptic
plasticity and multiple behavioral abnormalities, such as

defects in executive function and contextual fear conditioning
learning (Brigman et al., 2006; Krueger et al., 2006; Qiu
et al., 2006). Early culture studies demonstrated that Reelin
potently enhances hippocampal long-term potentiation (LTP),
a cellular mechanism underlying learning and memory, and
this effect is dependent on the presence of both, VLDLR
and ApoER2 (Weeber et al., 2002). A specific splicing
variant of ApoER2 was required for Reelin-induced LTP
enhancement and memory formation in vivo (Beffert et al.,
2005). Mechanistically, it was shown that this ApoER2 variant
interacts with the NMDAR through PSD-95, and this complex
mediates Reelin–induced Ca++ influx through the NMDAR
(Beffert et al., 2005; Chen et al., 2005; Figure 2C). Genetic
studies later demonstrated that Dab1 is also required for
Reelin-induced enhancement of hippocampal LTP and for
hippocampal-dependent behavioral tasks (Trotter et al., 2013).
This study also demonstrated that postnatal Dab1 loss affects
basal and plasticity-induced Erk1/2 signaling, suggesting a
cross-talk with canonical Reelin signaling. Indeed, Reelin
was shown to induce Erk1/2 signaling in a SFK-dependent
manner in cultured neurons (Lee et al., 2014). Surprisingly,
however, Reelin-induced Erk1/2 phosphorylation did not
require the activity of ApoER2 and VLDLR, and it was only
partially dependent on Dab1, suggesting the involvement of
an unidentified receptor triggering a non-canonical pathway
(Figure 2C). Erk1/2 activation leads to the expression of
synaptic immediate-early genes (IEGs), and thus potentially
affects synaptic function (Lee et al., 2014). Others further
showed that Reelin induces IEGs expression via a novel
enhancer element named LRN (LRP8-Reelin-Neuronal), and
that these events affect associative learning. In this model,
interaction between the ApoER2 (LRP8) and the NMDAR
triggers Ca++ influx, Erk1/2 signaling and CREB-dependent
IEGs transcription (Telese et al., 2015). In addition, they reported
that proteolytical cleavage of ApoER2 by γ-secretase is a crucial
component of the synapse-to-nuclear signaling triggered by
Reelin. Interestingly, Notch1, another γ-secretase substrate, was
also recently shown to contribute to Reelin-mediated synaptic
potentiation by interacting with ApoER2 and NMDAR, and
stimulating Erk1/2 activity and CREB-dependent transcription
(Brai et al., 2015).

In addition to its well-documented postsynaptic effects,
Reelin also acts presynaptically, causing a rapid enhancement
of spontaneous neurotransmitter release. This effect is due
to the mobilization of VAMP7-containing synaptic vesicles,
and requires canonical ApoER2/VLDLR receptors, PI3K and
Ca++ signaling (Hellwig et al., 2011; Bal et al., 2013).
Despite robust pre- and postsynaptic effects, acute deletion
of the Reelin gene in adult mice does not result in impaired
synaptic plasticity. However, it renders the adult brain strikingly
sensitive to amyloid-induced synaptic suppression, leading to
profound learning disabilities (Lane-Donovan et al., 2015).
Although specific molecular and physiological mechanisms
remain to be further elucidated, these findings indicate
that Reelin has the potential to modulate synaptic activity
and thus affect memory formation in the adult and aging
brain.
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